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Abstract 

Musicians, critics, musicologists and even lay audience seem to agree that improvising 

musicians interact with each other during collective improvisation. However little is known 

about the nature of such interactions. In particular, a key question is to which extent this 

interaction involves the content of the music (rhythm, harmony, melody, expressiveness)? 

Such a question is crucial for designing smarter music interaction systems. In this chapter, we 

propose an analytical framework to identify correlates of content-based interaction. We 

illustrate the approach with the analysis of interaction in a typical jazz quintet. We extract 

audio features from the signals of the soloist and the rhythm section. We measure the 

dependency between those time series with correlation, cross-correlation, mutual information, 

and Granger causality, both when musicians play concomitantly and when they do not. We 

identify a significant amount of dependency, but we show it is mostly due to the use of a 

common musical context, which we call the score effect. Therefore, we argue that either 

content-based interaction in jazz is a myth or that interactions do take place but at unknown 

musical dimensions. 

The Need for Models of Interactive Music 

Complexity in nature often results from interactions between individual agents. Music being a 

by-product of cultural evolution, it is natural to model music form a complex system 

viewpoint. For instance, the complex productions of a music band can be seen a resulting 

from a set of interacting agents. Not surprisingly, multi-agent musical systems have been used 

in many fields of music computing: composition, improvisation, and interactive systems in 

which human musicians play with virtual agents. For instance, Dahlstedt and McBurney 

(2006) describe an autonomous agent framework for computer-aided composition. Each agent 

represents a specific compositional process, and agents cooperate to produce music with the 

goal of triggering various emergent musical properties. Mama (Murray-Rust et al., 2006) is an 



 

 

interactive multi-agent architecture, in which the intention of agents is expressed in the 

context of speech act theory, extended to so-called “musical acts". They argue that the use of 

a formal set of musical acts allows precise communication between agents, avoiding the 

complex tasks of analyzing the intentions of other agents from their productions. This system 

has been extended (Murray-Rust et al, 2011) to a computational model for communication 

between musical agents and/or humans who engage in dialogues. 

Multi-agent architectures have also been applied to real-time music creation. Inspired by 

insect swarms dynamics, Blackwell (2003) designed an improvisational system which self-

organizes thanks to the interactions between agents. Similarly, Beyls (2007) describe how a 

“society of musical agents” may use biological principles to interact via mutual affinities. 

Other multi-agent systems have attempted to include humans in the loop. For instance, 

Genjam (Biles, 2001) is a system based on a genetic algorithm that learns to improvise over a 

jazz accompaniment, with the help of a human mentor. Similarly, Improvagent (Collins, 

2008) discusses how human feedback can be used for reinforcement learning to improve a 

system performance. 

Multi-agent systems are also used to reproduce human musical interaction. In those systems, 

agents representing virtual performers (soloists or accompanying musicians) typically listen to 

a human user's input by analysing an audio signal or symbolic data such as MIDI, and react 

with specific behaviors. A desired property of these reactive systems is to let interaction be 

defined by explicit rules associated to each agent, either programmed or learnt automatically 

from music material. For instance, Wulfhorst et al. (2003) describe an interactive 

accompaniment system in which a community of musical agents which uses “fuzzy rules" to 

interact with a human user. Chimera (Gifford and Brown, 2009) triggers various “metric 

scenarios”, depending on the content played by live performers, and generates a rhythmic 

accompaniment, and Jambot (Gifford and Brown, 2011) is an agent which performs 

“transformational mimesis”, by producing a percussive accompaniment that imitates the user's 

input rhythm. In VirtualBand (Moreira et al., 2013) and Reflexive Looper (Pachet et al., 

2013), agents are trained and synchronized to imitate the musical style of real musicians, and 

produce musical output that exhibits specific audio features, depending of the audio analysis 

of the other agents' or human user's actions. Finally, Hamanaka et al. (2001) propose a model 

in which the musical reaction of a musician (a MIDI guitarist) is learnt from a series of 

examples. However, the system does not address the situation of simultaneous musicians 

playing together.  



 

 

A striking aspect of all these multi-agent music systems, is that none of the interactions 

proposed, to our knowledge, actually relies on a precise analysis of human musical 

interaction. All of them are based on a priori models of music interaction. These models 

hypothesize (usually implicitly) that music interaction is a complex phenomenon, involving 

structures that emerge from reactive behaviors. This paper questions this hypothesis by a 

practical experiment, inspired by studies on interaction as described in the next section. 

Analyzing Human Music Interaction 

Synchronization 

Musical interaction is recognized as an important feature of improvised music, in particular in 

jazz (Monson, 1996). Interaction includes temporal synchronization between the performers, 

which aims to “the achievement of a groove or feeling” (ibid., p. 28). The studies by Keller 

(2008) and Novembre et al. (2012) investigate joint action and musical coordination in 

musical performance: auditory anticipation, integrative attention, and the distinction between 

one's own and other's behavior. Temporal coordination, or tempo coordination, have been 

investigated in duets in jazz improvisations (Schögler, 2000), and piano performances 

(Shaffer, 1984; Moore and Chen, 2010). Synchronization and coupling phenomena between 

musicians have been investigated in the context of chamber music ensembles (King, 2004) 

and string quartets (Goebl, 2009). More recently, Müller et al. (2013) used EEG recordings of 

couples of guitarists engaged in improvisations in order to identify synchronization patterns at 

various sampling frequencies. These studies address the analysis of synchronization between 

musicians, either when they follow a classical music score or when they improvise, but do not 

investigate the impact of these interactions on musical production. Neural correlates of jazz 

improvisation have been found during solo performance (Limb and Braun, 2008), as well as 

during group performance (Donnay et al., 2014). However, specific activities in the brain do 

not imply that there are correlates of interaction in musical productions. 

Content-Based Interaction 

Musicians themselves claim to interact beyond mere temporal synchronization by adapting 

various dimensions of their playing, e.g., expressiveness, melody, harmony, and rhythm, to 

the music produced by the other performers (Moran et al., 2015). In this chapter, we call these 

interactions content-based interaction. Such interaction is performed by adapting the content 

of a musical output to that of the other performers (ibid., pp. 21-25).  



 

 

Several studies of music group performance have been conducted to understand the 

mechanisms of joint action and implicit synchronization. Schober and Spiro (2013) asked jazz 

musicians to evaluate the interaction they experienced when they jammed together by 

answering a series of questions. After an initial playing phase where the musicians jammed 

together, they were asked to evaluate the interaction they experienced by answering a series of 

questions. The results revealed a fair amount of discrepancies between the musicians, and the 

study concludes that fully shared understanding of interactive phenomenon may not be related 

to the performance's quality. 

Marchini et al. (2013) and Papiotis et al. (2012) used computational analysis tools to identify 

the difference in the productions of musicians playing musical exercises alone versus with 

another performer. Both audio signals and gesture data have been collected and time-series 

analysis tools such as Pearson's correlation coefficient and mutual information were used to 

evaluate the dependency between the musicians. These studies show that musicians tend to 

synchronize both in intonation and dynamics. However, these studies focus on the situation 

where musicians play a given score, so the interaction is limited to expressiveness parameters. 

In D’Ausilio et al. (2012), Granger causality is used to investigate non-verbal communication 

(gestures) between a conductor and an ensemble. This study also addresses performance of 

written music and therefore does not address the implicit communication occurring within an 

improvising ensemble. 

The Score Effect 

In this study, we focus on the causal relations that may appear between the musical 

productions of two musicians who interact while improvising. We study musical interaction in 

the context of lead sheet based jazz improvisation, such as bebop, a standard setup in which 

musicians improvise on a known tune (Limb and Braun, 2008). A lead sheet, such as the one 

displayed on Figure 1, specifies the melody and the chords. The tune is played several times 

in a row. A typical performance consists of one statement of the melody specified by the lead 

sheet, followed by a series of solos, and one final statement of the melody. 

<FIGURE 1 ABOUT HERE> 

During the solos, the musicians create new melodies freely, but have to stick to the skeleton 

of the tune, such as the imposed chord sequence, and to synchronize to salient events of the 

tune. This skeleton creates correlations between the content produced by individual 

musicians, that we call the score effect. 



 

 

We are interested in correlations between the musician's productions that are not due to the 

score effect. To answer this question, our basic idea is to compare interdependency measures 

between two instruments when they played together, and when they played at different 

moments in time, but on the same score. Such an analysis should indeed reveal the added 

effect caused by actual interaction, as opposed to the score effect. 

We study a corpus of jazz multitrack recordings performed during both a live concert and a 

studio session. In these recordings, each track corresponds to a single instrument. We extract 

audio feature time-series from the audio tracks, and use various interdependency measures to 

assess the presence of correlates of content-based interaction in these recordings. We discuss 

the results in the last section. 

Materials and Method 

Audio Recordings 

Our corpus is composed of 12 multitrack audio files of performances by the “Mark d'Inverno 

Quintet", a jazz bebop band composed of Mark d'Inverno (piano), François Pachet (guitar), 

and three critically acclaimed professional jazz musicians: Ed Jones (saxophone), Larry 

Bartley (upright bass), and Winston Clifford (drums). Recordings were performed in two 

conditions: in a studio and a concert. In both conditions, each track corresponds to one 

instrument (saxophone, bass, drums, piano and guitar). The studio tracks were recorded live at 

Livingstone studios in London, in professional conditions, and musicians played in isolation 

booths to avoid spills (tracks mixing the sound of several instruments). The concert was 

recorded in Barcelona in 20111. Instruments were recorded using a live setup (amplifier line 

out to Direct Input (DI) box for the guitar, dynamic microphones for the other instruments). 

Due to those live conditions, the concert recordings contain minor sound spills for the bass, so 

we processed the bass tracks with a low-pass filter2 to reduce the spills. Both recordings 

consist of six original songs composed by the band: I Got It Good and that Ain't Bad, I Just 

Can't Remember, May's Dance, Song Bouncy, Very Late, and Why Not. The songs are denoted 

by 𝑆1, … , 𝑆12 as follows: 𝑆1 (resp. 𝑆7) is the live (resp. studio) recording of I Got It Good and 

that Ain't Bad, 𝑆2 (resp. 𝑆8) is the live (resp. studio) recording of I Just Can't Remember, etc. 

Each song contains five tracks, one per instrument, and follows a classical jazz structure: the 

                                                 
1 A video recording of the concert can be found at http://www.youtube.com/watch?v=5S1WxqR7BJE 
2 The low-pass filter has been set at 48dB per octave with a 500Hz cutoff. 



 

 

band plays a succession of harmonic grids, from 8 to 16 bars long. First, the band plays the 

song's melody once, and then musicians take solos. 

We focus on the interaction between the saxophone soloing and the bass and drums 

accompaniments. In the discussion section of this paper, we extend the study to the analysis of 

other couples of instruments. 

Segmentation of the Audio Tracks 

We consider the audio signals that correspond to the solos sections. There are from three to 13 

solo sections in a single song, for a total of 71 sections3. We use the following notation to 

denote a specific solo in a specific track: 𝑆𝑖,𝑡
𝑚, where 𝑚 is the index of the song, 𝑖 is the index 

of the solo in the song, and 𝑡 is the instrument, e.g., 𝑆2,𝑏𝑎𝑠𝑠
1  is the audio signal played by the 

bass during the second solo on I Got It Good and that Ain't Bad. Figure 2 shows a couple of 

audio signals extracted from the saxophone and bass tracks of the eighth solo section of the 

song I Got It Good and that Ain't Bad. In the following, we investigate the correlations 

between such couples of signals. 

<FIGURE 2 ABOUT HERE> 

Feature Extraction 

We consider a feature set consisting of 72 features, named 𝑓1 to 𝑓72. The set contains the 

following MPEG-7 low-level timbral descriptors (Chang et al., 2001): spectral centroid, 

spectral decrease, spectral flatness, spectral kurtosis, spectral rolloff, spectral skewness, 

spectral spread, harmonic spectral centroid, harmonic spectral deviation, harmonic spectral 

spread, harmonic spectral variation and two harmonic to noise ratios (computed with 700Hz 

and 1000Hz as fundamental frequencies). Following Kim and Sikora (2004), we strengthen 

this feature set by adding 59 low-level features. To take into account melodic and harmonic 

dimensions, we add the YIN pitch and inharmonicity factor4 (De Cheveigné and Kawahara, 

2002), as well as chroma. We add perceptual descriptors that are computed with 

psychoacoustic scales: 14 Mel-frequency cepstrum coefficients with their average value and 

variance, and 24 bark-band amplitudes. We add two features commonly used in music 

information retrieval (MIR): RMS, crest factor and zero-crossing rate. Finally, we add the 

                                                 
3 available at http://www.flow-machines.com/InteractionAnalysis 
4 Both YIN features are computed with an absolute threshold of 0.2 for the aperiodic/total ratio. 



 

 

high frequency content and high frequency ratio, two descriptors that provide additional 

timbral information. 

We segment each audio file 𝑆𝑖,𝑡
𝑚 into beats and we extract the feature set on the raw signals for 

each segment, to obtain time-series of audio features. We use the shorthand notation 𝑓𝑘(𝑆𝑖,𝑡
𝑚) , 

for the time series that consists of the values of feature 𝑓𝑘 on each beat of 𝑆𝑖,𝑡
𝑚. We end up with 

72 time-series per solo section and per instrument. Figure 2 shows the waveforms of the 

saxophone and bass tracks of the first solo of I Just Can't Remember. The figure also shows 

the time-series corresponding to the RMS values of the saxophone track and to the Spectral 

Centroid of the bass track. 

Time-Series Analysis 

We evaluate the correlations between couples of time-series corresponding to the same song 

and different instruments. Following Marchini et al. (2013) and D’Ausilio et al. (2012), we 

use several methods: time-series analysis (Pearson's correlation coefficient, cross-correlation 

functions, Granger causality); information theory (windowed mutual information) and 

information dynamics (Abdallah and Plumbley, 2009). 

 Pearson's correlation coefficient measures the instantaneous linear dependency 

between two time-series, and provides a [−1,1] bounded value: 1 for total positive 

synchronization, 0 for no correlation and -1 for negative correlation; 

 Cross-correlation measures the linear dependency between series, like Pearson's 

coefficient, but computes it with various time lags applied between them. We use 

cross-correlation to analyze the non-instantaneous dependency of the time-series. The 

goal is to capture situations in which a musician (say, the bass player) reacts to another 

(the saxophone) with some delay. We compute the cross-correlation with different 

time lags, from 1 to 8 beats long. For each time lag, we consider the absolute value of 

the cross correlation; 

 Mutual information (Giaşu, 1977) measures the amount of common information 

between two time-series. It provides an unbounded value, expressed in bits. Papiotis et 

al. (2012) computes mutual information with sliding windows, to assess the 

dependency over one and five seconds. The average value is eventually considered. 

We use a similar technique, but with 1-beat overlap, 16-beat long windows, to ensure 

tempo-independence. We compare shifted time-series: the [𝑖, 𝑖 + 16] beats of the 

saxophone time-series, with the [𝑖 + 8, 𝑖 + 24] beats of the bass time-series; 



 

 

 Granger causality (Granger, 1969) is a statistical hypothesis test to determine if a time-

series can predict another one. We use the causal density, which yields an unbounded 

value that grows with the amount of non-linear dependency. First, we pre-process the 

couples of time-series by demeaning and detrending them. Then, we build a Granger 

regression model, with 8 beats as maximal time lag, and compute the causal density.  

We investigate the dependencies between the saxophone and the bass tracks for each possible 

couple of audio features, and for each solo section of the song. These indicators quantify both 

linear (correlations) and non-linear (mutual information, Granger causality) relations within 

the solo sections. The next section investigates the nature of these dependencies. 

Score Effect or Content-Based Interaction? 

For a given song 𝑆𝑚, a given couple of features (𝑓𝑘, 𝑓𝑙) and an interdependency indicator 𝐷 

(𝐷 is either Pearson's correlation coefficient, cross-correlation functions, mutual information, 

or Granger causality), we compute (1) the total interaction and (2) the amount of score effect. 

The difference between (1) and (2) is the amount of content-based interaction. For each of the 

12 songs in the corpus, we consider a total of 5184 couples (72 × 72) of features. For each 

couple of feature, we consider 4 indicators. We create two sets of dependency values: 

 The first set, noted 𝑇𝑘,𝑙,𝐷(𝑆𝑚) , consists of all the dependency values computed on 

time-series extracted from the same solo sections, i.e. when musicians played 

concomitantly. The values in 𝑇𝑘,𝑙,𝐷(𝑆𝑚) estimate the dependency that comes from 

both content-based interaction and the score effect (the musicians improvise on the 

same score). Let 𝑛 be the number of solo sections in the song, 𝑇𝑘,𝑙,𝐷(𝑆𝑚) is defined 

by: 𝑇𝑘,𝑙,𝐷(𝑆𝑚) = {𝐷 (𝑓𝑘(𝑆𝑖,𝑠𝑎𝑥
𝑚 ), 𝑓𝑙(𝑆𝑖,𝑏𝑎𝑠𝑠

𝑚 )) |𝑖 = 1, … , 𝑛}. Note that 𝑇𝑘,𝑙,𝐷(𝑆𝑚) 

contains 𝑛 values. 

 The second set, 𝐶𝑘,𝑙,𝐷(𝑆𝑚), consists of all the dependency values computed on time-

series extracted from crossed solo sections. These values measure only the score 

effect, as no direct interaction between musicians is at play (they played on the same 

score but not concomitantly). 𝐶𝑘,𝑙,𝐷(𝑆𝑚) is defined by: 𝐶𝑘,𝑙,𝐷(𝑆𝑚) =

{𝐷 (𝑓𝑘(𝑆𝑖,𝑠𝑎𝑥
𝑚 ), 𝑓𝑙(𝑆𝑗,𝑏𝑎𝑠𝑠

𝑚 )) |𝑖 ≠ 𝑗}. Note that 𝐶𝑘,𝑙,𝐷(𝑆𝑚) contains 𝑛×(𝑛−1)

2
 values. 



 

 

For each song 𝑆𝑚, 𝐶𝑘,𝑙,𝐷(𝑆𝑚) consists of all the measures of the score effect and 𝑇𝑘,𝑙,𝐷(𝑆𝑚) 

consists of all the measures of the total amount of dependency. Before we interpret the values 

contained in these sets, we assess their statistical significance. 

Interpretation 

For each song 𝑆𝑚, 𝑚 = 1, … , 12 each couple of features (𝑓𝑘, 𝑓𝑖) and each indicator 𝐷, we use 

the one-way ANOVA (Bartko, 1966) to determine if the data contained in the two sets 

𝑇𝑘,𝑙,𝐷(𝑆𝑚) and  𝐶𝑘,𝑙,𝐷(𝑆𝑚) is statistically significant, by analyzing the ratio between the 

between-sets and within-sets variances. We run the ANOVA with the threshold 𝛼 = 0.05.  If 

the test fails for the couple of features (𝑓𝑘, 𝑓𝑖) and the indicator D, the dependency measures 

contained in the sets are not statistically significant over the various combinations of solo 

sections, and we cannot interpret the data. On the contrary, if 𝑇𝑘,𝑙,𝐷(𝑆𝑚) and  𝐶𝑘,𝑙,𝐷(𝑆𝑚) pass 

the ANOVA, we interpret the data as follows.  

We first compute the Mean Relative Change between the sets, defined by: 

𝑀𝑅𝐶𝑘,𝑙,𝐷(𝑆𝑚) =
𝑚𝑒𝑎𝑛(𝑇𝑘,𝑙,𝐷(𝑆𝑚))−𝑚𝑒𝑎𝑛(𝐶𝑘,𝑙,𝐷(𝑆𝑚) )

𝑚𝑒𝑎𝑛(|𝐶𝑘,𝑙,𝐷(𝑆𝑚) |)
 

𝑀𝑅𝐶𝑘,𝑙,𝐷(𝑆𝑚) > 0 indicates that the amount of total interaction is higher than the score effect. 

We select the couples of features (𝑓𝑘, 𝑓𝑖) for which this is the case, and discard the other ones. 

Strong content-based interaction should present a high Mean Relative Change. For instance, 

. 1 indicates that content-based interaction is 1 10⁄ th of the score effect. 

Results and Discussion 

This section presents the results obtained for the interaction between saxophone and bass. For 

each indicator 𝐷 we select (𝑓𝑘, 𝑓𝑖) the couple of features for which the highest number of 

songs have passed the ANOVA test with a positive MRC. Formally, 𝑘, 𝑙 are defined as 

follows: 

𝑘, 𝑙 = argmax
𝑖,𝑗

 |{𝑚 ∈ {1, … ,12} ∶ 𝑀𝑅𝐶𝑖,𝑗,𝐷(𝑆𝑚) > 0}| 

If several couples of features (𝑓𝑘, 𝑓𝑖) maximize the number of songs with a positive 𝑀𝑅𝐶𝑖,𝑗,𝐷, 

we consider all of them (see Figure 3). The main result of this analysis is that there is no 

couple of features for which more than 5 songs (out of 12) pass the ANOVA test with a 



 

 

positive Mean Relative Change. This absence of a clear correlate is further confirmed by the 

lack of consistency between indicators, as discussed below. 

<FIGURE 3 ABOUT HERE> 

Correlation Indicators 

For Pearson's correlation coefficient, the best couple of features is {𝑅𝑀𝑆, 𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝑅𝑜𝑙𝑙𝑜𝑓𝑓}. 

Five songs pass the ANOVA with a positive value of MRC (see Table 1). Furthermore, the 

maximum value for the correlation coefficient in 𝑇𝑘,𝑙,𝐷 is 0.26 which is low. The average of 

the mean relative change values is 0.9, which indicates that the amount of score effect is 

comparable to that of content-based interaction.  However, this happens on a fraction of the 

corpus.  

For the cross-correlation indicator we obtain 20 couples of features (Table 2). For these 

couples we get significant correlations in at most 4 songs out of 12. The best average 

correlation value is 0.28, which is higher than the best correlation measured with Pearson's 

coefficient. However, the best couple for Pearson's ({𝑅𝑀𝑆, 𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝑅𝑜𝑙𝑙𝑜𝑓𝑓}) is absent from 

those 20 couples of features. Additionally, the maximum number of common songs between 

these 2 indicators is only 3 (obtained for the couple {𝐶𝑟𝑒𝑠𝑡𝐹𝑎𝑐𝑡𝑜𝑟, 𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒} with 

3 beat offset, and songs 𝑆3, 𝑆10, 𝑆11). 

Mutual Information and Granger Causal Density 

For the sliding window mutual interaction indicator, we obtain 3 best couples of features. 

Only 3 songs pass the ANOVA for these couples (see Table 3). The Granger causal density 

indicator detected a single couple of features (spectral kurtosis, harmonic spectral spread) for 

which four songs passed the ANOVA with a positive MRC (0.34). As a summary, we 

observe no songs and no couples of features shared across the indicators. Marchini and 

Papiotis (2012) argue that interaction takes place when at least two indicators yield the same 

couples of features. Therefore, our findings support the claim that the amount of content-

based interaction observed is mostly due to spurious data effects. We analyzed 5184 couples 

of feature time-series, with four interdependency indicators (actually 11 if we count all the 

time lags for cross-correlation). In such a high-dimensional space, statistical artifacts may be 

related to the curse of dimensionality. 



 

 

Interaction between Other Couples of Instruments 

We presented the results obtained for saxophone and bass. We investigated relations in a 

similar way for other couples of instruments: saxophone against drums, bass against drums, 

and drums against bass. Indeed, these are couples of instrument which are said to interact (see 

e.g. “musical interaction within the rhythm section and between the rhythm section and the 

soloist is [a] distinctive process in jazz improvisation” (Monson, 1996, pp. 17-18).  The 

results we obtain for saxophone against drums are similar. Measures reveal less candidates 

than with the saxophone/bass couple, the maximum average correlation result is 0.26, and, 

like in the saxophone/bass study, no candidate is detected for more than one interdependency 

indicator (correlation functions, mutual information or Granger causal density). For the sake 

of brevity, we do not display the full results here5. 

The dependency we measure between the instruments of the rhythm section (bass against 

drums and drums against bass) show slightly better results: seven songs passed the statistical 

significance test, and we measure a maximum average correlation of 0.4. Yet, interaction 

consistency is also low (about 58% of the dataset), and the dependency values are weak (<

0.5). Finally, no candidate is shared by more than one indicator. 

These results seem to further confirm our claim that the amount of content-based interaction, 

as we define it here, is mostly due to statistical artifacts, and that correlations observed 

between audio signals are spurious relationships caused by the score effect. 

Conclusion 

The goal of this study is to assess to which extent human musicians improvising jazz with a 

shared lead sheet actually interact with each other during solos. To this aim, we proposed a 

framework for analysis, based on the comparison of correlation estimators computed when 

musicians play together and when they do not. We illustrated our approach with the analysis 

of multitrack audio recordings of jazz performances. We studied the correlation between the 

solo (saxophone) player and the rhythm section (bass and drums), as well as between the 

members of the rhythm section. We analyzed the audio signals corresponding to performances 

where the musicians played concomitantly, and when they did not. We used 72 features, and 4 

types of correlation indicators. We did not find statistically significant correlates of interaction 

between audio signals, beyond the score effect. Therefore, we argue that either content-based 

                                                 
5 They are available at http://flow-machines.com/InteractionAnalysis 



 

 

interaction in jazz is a myth or that (more probably) interactions do take place but at yet 

unknown musical dimensions. 

The interactive behaviors investigated in this study are somewhat limited: we were looking 

for low-level correlates of interaction, and not for high level ones such as rhythmic patterns or 

melodic citations. However, our study questions the use of feature-based mappings for the 

design of musical agents to simulate interactive behaviors. More generally, it questions the 

basic, often implicit, hypothesis that complex phenomena (like ensemble jazz improvisation) 

actually involves complex interactions. Such hypothesis should not be taken for granted, and 

should be investigated further.  
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