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Abstract:
We are interested in developing multimedia technology for enriching the listening
experience of average listeners. One main issue we focus on is the design and
construction of software systems in which users interact with music in various ways
while maintaining as much as possible the semantics of the original music. In this
context, we develop a research activity concerning music spatialization. We propose a
system called MidiSpace, in which users may listen to music while controlling in real
time the localization and spatialization of sound sources, through a simple interface.
We then introduce the problem of mixing consistency, and propose a solution based on
a constraint propagation mechanism. The proposed environment contains both an
authoring mode, in which sound engineers or composers may specify spatialization
constraints to be satisfied, and a listening mode in which listeners can modify
spatialization settings under the supervision of a constraint solver that ensures the
spatialization always satisfies the constraints. We describe the architecture of the
system and report on experiments done so far.

1. Active L istening

We believe that listening environments of the future can be greatly enhanced by
integrating relevant models of musical perception into musical listening devices,
provided we can develop appropriate software technology to exploit them. This is the
basis of the research conducted on “Active listening”  at Sony Computer Science
Laboratory, Paris. Active Listening refers to the idea that listeners can be given some
degree of control on the music they listen to, that give the possibility of proposing
different musical perceptions on a piece of music, by opposition to traditional
listening, in which the musical media is played passively by some neutral device. The
objective is both to increase the musical comfort of listeners, and, when possible, to
provide listeners with smoother paths to new music (music they do not know, or do
not like).  These control parameters create implicitly control spaces in which musical
pieces can be listened to in various ways.  Active listening is thus related to the notion
of Open Form in composition (Eckel, 1997) but differs by two aspects: 1) we seek to
create listening environments for existing music repertoires, rather than creating
environments for composition or free musical exploration (such as PatchWork
(Laurson & Duthen, 1989),  OpenMusic (Assayag, 1997), or CommonMusic (Taube,
1991)), and 2) we aim at creating environments in which the variations always
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preserve the original semantics of the music, at least when this semantics can be
defined precisely.

The first parameter which comes to mind when thinking about user control on music
is the spatialization of sound sources. In this paper we study the implications of giving
users the possibility to change dynamically the mixing of sound sources. We will first
review previous approaches in computer-controlled sound spatialization, and propose
a basic environment for controlling music spatialization, called MidiSpace. In section
4, we exhibit knowledge that can be used to define a semantic on sound spatialization,
and we propose to use constraint propagation algorithms to represent faithfully a
substantial part of this knowledge. After a review of basic approaches in constraint
propagation for multimedia systems, we describe our algorithm, which handles cycles,
non linear functional constraints, and inequalities. Section 5 describes the overall
design and implementation of the resulting system.

2. Music Spatialization

Music spatialization has long been an intensive object of study in computer music
research. Most of the work so far has concentrated in building software systems that
simulate acoustic environments for existing sound signals. These works are based on
results in psychoacoustics that allow to model the perception of sound sources by the
human hear using a limited number of perceptive parameters (Chowning, 1971).
These models have led to techniques allowing to recreate impression of sound
localization using a limited number of loudspeakers. These techniques typically
exploit difference of amplitude in sound channels, delays between sound channels to
account for interaural distances, and sound filtering techniques such as reverberation
to recreate impressions of distance.
For instance, The Spatialisateur IRCAM (Jot & Warusfel, 1995) is a virtual acoustic
processor that allows to define the sound scene as a set of perceptive factors such as
azimuth, elevation and orientation angles of sound sources relatively to the listener.
This processor can adapt itself to any sound reproduction configuration, such as
headphones, pairs of loudspeakers, or collections of loudspeaker.  Other commercial
systems with similar features have recently been introduced on the market, such as
Roland RSS, the Spatializer (Spatializer Audio Labs) which allows to produce a stereo
3D signal from an 8-track input signal controlled by joysticks, or Q-Sound labs’s Q-
Sound, which builds extended stereophonic image using similar techniques. This
tendency to propose integrated technology to produce 3D sound is further reflected,
for instance, by Microsoft’s DirectX API now integrating 3D audio.
These sound spatialization techniques and systems are mostly used for building
various virtual reality environments, such as the Cave or CyberStage (Dai et al 97),
(Eckel, 97). Recently, sound spatialization has also been included in limited ways in
various 3D environments such as Community Place’s implementation of VRML (Lea
et al., 1996), or ET++ (Ackermann, 1996).
Based on these works, we are interested in exploiting spatialization capabilities for
building richer listening environments. A main point of concern is to maintain some
sort of consistency of musical pieces, while allowing the user to navigate freely in a
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control space. We will first describe our system MidiSpace, which precisely allows
user to control in real time spatialization of sound sources, without any restriction. In
section 4, we will show how to add some semantics to limit the range of user actions
in a meaningful way.

3. The Basic MidiSpace System

MidiSpace is a software system that embodies our ideas in active listening and user
controlled music spatialization.

3.1 Overview

MidiSpace is a real time player of Midi files which allows users to control in real time
the localization of sound sources through a 2D interface (extensions to audio and 3D
are discussed in 6).  MidiSpace takes as input arbitrary Midi files (IMA, 1983). The
basic idea in MidiSpace is to represent graphically sound sources in an editor, as well
as an avatar that represents the listener itself. In this editor, the user may either move
its avatar around, or move the instruments themselves.  The relative position of sound
sources and the listener’s avatar determine the overall mixing of the music, according
to simple geometrical rules illustrated in Figure 1. The 2D interface of MidiSpace is
represented in Figure 2. Additional features such as muting sources are provided but
not discussed here.  The real time mixing of sound sources is realized by sending Midi
volume and panoramic messages. More details on the implementation are given in
section 5.

listener’s
avatar

sound source

α ρ

Figure 1. Volume of sound_sourcei = f(distance(graphical-objecti, listener_avatar)). f is a function mapping
distance to Midi volume (from 0 to 127). Stereo position of sound source i = g(angle(graphical_Objecti,
listener_avatar)), where angle is computed relatively to the vertical segment crossing the listener’s avatar, and g
is a function mapping angles to Midi panoramic positions (0 to 127).

It is important to understand here the role of Midi in this research. On the one hand,
there are strong limitations of using Midi for spatialization per se. In particular, using
Midi panoramic and volume control changes messages for spatializing sounds does
not allow to reach the same level of realism than when using other techniques (delays
between channels, digital signal processing techniques, etc.), since we exploit only
difference in amplitude in sound channels to recreate spatialization. However, this
limitation is not important for two reasons : 1) this Midi-based technique still allows
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to achieve a reasonable impression of sound spatialization which is enough to validate
our ideas, and 2) more sophisticated techniques for spatialization can be added in
MidiSpace, independently of its architecture (see section 6 about the extension to
audio files).

Listener’s avatar

Authoring mode switch

Figure 2. The 2D Interface of MidiSpace. Here, a tune by Bill Evans (Jazz trio) is being performed.

3.2 The Temporal Aspect of MidiSpace Interaction

3.2.1 Annotations and Representation of Content

The need for representing and exploiting representation of content in multimedia
systems is now widely acknowledged. The Mpeg7 project for instance aims at
standardizing content representation of multimedia documents for future multimedia
applications. Other standards in use or in progress are more dedicated to musical
information, such as SMDL or HyTime. However, these formats are not primarily
designed for real time applications.
In MidiSpace, we developed a simple format for representing annotations on musical
pieces, that can be interpreted in real time to influence the spatialization.  Examples of
annotations useful for spatialization are : the structure of the musical piece (how a
piece is divided into various segments such as introduction, chorus, coda, etc.),
harmonic information (e.g. the chord sequence associated with the music), analytical
information (e.g. the underlying keys or tonalities), etc.  Our format is based on a
time-tagged attribute/value representation.  The time information is expressed in
musical beats, and is therefore independent of the tempo. For instance, the structure of
the musical piece illustrated in Figure 2 looks as follows:

[structure]
start=1.000 dur=8 type=Introduction instr=piano
start=9.000 dur=32 type=Exposition instr=piano
start=41.000 dur=32 type=Exposition instr=piano
start=73.000 dur=64 type=Chorus instr=piano
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start=137.000 dur=32 type=Exposition instr=piano
start=169.000 dur=32 type=Exposition instr=piano
start=201.000 dur=8 type=Coda instr=piano …

Figure 3. Structure of a musical piece. Start time and durations are expressed in musical beats.

Similarly, the harmonic information is represented as a chord sequence, and is
illustrated in Figure 4. Chords are represented using a format derived from the chord
format of SMDL (SMDL, 1995; Sloan, 1993), and adapted for tonal popular music
(Jazz, rock, pop) tunes. Chord sequences are divided into parts (such as A, B, C), and
the overall structure of the chord sequence is described in terms of these parts (e.g.
AABA).  This harmonic information is typically used for analytical process, such as
harmonic analysis (Pachet, 1998).  In our context, this information can also be used to
emphasize particular musical segments, e.g. for pedagogical purposes.

[chordSequence]
parts = A, B
structure = AABA
begin part A
start=1.000  dur=4 chord = Bb maj7
start=5.000  dur=4 chord = Eb maj7
start=9.000  dur=4 chord = D min 7
start=13.000  dur=4 chord = G 7
start=17.000  dur=4 chord = C min
start=21.000  dur=4 chord = G 7
end part A
begin part B
start=1.000  dur=4 chord = C min
start=5.000  dur=4 chord = F 7
start=9.000  dur=4 chord = C min 7
…

Figure 4. A Chord sequence annotation

3.2.2 Authoring Mode

The existence of annotations makes it necessary to differentiate between two modes in
MidiSpace: an authoring mode, in which the user may create annotations, and a
listening mode, in which the annotation are used for spatialization. The switching
between these two modes is triggered by a simple icon (see Figure 2). The only
difference between the two modes is a facility to record, while playing, the user
actions which generate annotations files. The user actions are analyzed in real time,
and produce annotations in a format similar to the one described in the preceding
sections. The recorded information is movements of sound sources, as illustrated in
Figure 5.  A specific editor of temporal structures (not represented here) allows to edit
manually the information once recorded.

[movements]
startBeat=7.692 duration=0 instr=bass x=127 y=329
startBeat=7.698 duration=0 instr=bass x=127 y=329
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startBeat=7.881 duration=0 instr=bass x=127 y=329
startBeat=8.067 duration=0 instr=piano x=127 y=329
startBeat=8.214 duration=0 instr=piano x=127 y=329
startBeat=8.463 duration=0 instr=piano x=127 y=329
startBeat=8.631 duration=0 instr=piano x=127 y=329
startBeat=9.36 duration=0 instr=bass x=127  y=329
startBeat=9.531 duration=0 instr=bass x=127 y=329…

Figure 5. Temporal information representing movements of musical sources are represented as annotations.

The architecture of MidiSpace is illustrated in Figure 6. It mainly consists in a real
time player which takes as input a musical data (a Midi file in the current version),
and an annotation file containing all the annotations pertaining to the musical piece.

Music input data
(midi files)

Real Time player

Music meta data
(annotations)

User

Audio devices
(synthetizers &
mixing console)

loudspeakers

Interface

                 

Music meta data
(annotations)

Music input data
(midi files)

Real Time player

Music meta data
(annotations)

User

Audio devices
(synthetizers &
mixing console)

loudspeakers

Interface

Figure 6. On the left, the architecture of MidiSpace in the listening mode. On the right, the architecture in
authoring mode: the main output is an annotation file, which can  be used in the listening mode by users.

The system described here has been fully implemented. Experiments conducted on
various users have brought to evidence the need of including semantic information to
our system. The next section introduces the semantic information we attempted to
represent in the context of MidiSpace: mixing consistency.

4. Introducing Mixing Consistency in MidiSpace

The notion of musical semantics in general has been extensively debated (see e.g.
Meyer, 1956). Without committing to a particular general semantic theory of music,
we believe that it is possible to define a reasonable and pragmatic notion of musical
semantics in the context of interactive systems, based on the properties of the
navigational spaces that may be enforced automatically.  The main claim of this paper
is that in the context of spatialization, this semantics may be represented as a set of
properties imposed on the overall mixing, and that these properties may in turn be
represented as constraints between the sound sources and the listener’s avatar.
Moreover, we propose to represent these constraints as annotations, to be defined in
real time, in order to produce dynamically evolving navigational spaces.
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4.1 Mixing Consistency

The knowledge of the sound engineer is difficult to explicit and even more to
represent as a whole.  Its basic actions are modifications of mixing consoles controls,
such as faders. However, mixing involves a set of actions that can often be defined as
compositions of these atomic actions.  For instance, sound engineers use knowledge
on sound energy to ensure that the overall energy level of the recording always lies
between reasonable boundaries. One effect of this property is that sound levels are
usually not set independently of one another. Typically, when a fader is raised,
another one, (or a group of other faders) should be lowered. Conversely, several sound
sources may be logically dependent. For instance, the rhythm section may consist in
the bass track, the guitar track and the drum track. Other typical mixing action is to
assign boundaries to instruments or groups of instruments, and so forth.
The main proposal of this paper is to show how to encode this type of knowledge on
sound spatialization as constraints, which are interpreted in real time by a constraint
propagation algorithm, in the context of MidiSpace. We will first review the main
approach in constraints for multimedia systems, and then give examples of typical
constraints we need to represent. These examples in turn determine the requirements
for the solving algorithm. We then propose an algorithm which achieves some of
these requirements.

4.2 Constraints for Interactive Systems

Constraints may be defined as relations between objects that should always be
satisfied. Constraints are interesting because they are stated declaratively by the
programmer, thereby avoiding him to program complex algorithms. Constraint
techniques are traditionally divided into two categories: constraint satisfaction
algorithms (CSP) and constraint propagation algorithms. CSP are used mostly for
solving complex combinatorial problems, and are particularly efficient on finite
domains, but are usually not usable for reactive systems, which makes them
unsuitable in our context.
Constraint propagation algorithms are particularly relevant for building reactive
systems (see e.g. (Hower & Graf, 1996) for a review), typically for layout
management of graphical interfaces, from the pioneer ThingLab system (Borning,
1981), to Kaleidoscope (Lopez et al., 1994) and more recently OTI Constraint Solver
(Borning & Freeman-Benson, 1995).  Currently, the choice of a constraint algorithm
depends on the nature of constraints, and the nature of constraint sets. One can
roughly divide constraint propagation systems into three families : 1) simple
algorithms, based on propagation of degrees of freedom, but usually limited to acyclic
dataflow constraints, such as DeltaBlue (Sanella et al., 1993) or QuickPlan
(VanderZanden, 1996), 2) specific algorithms addressing particular classes of
constraints, such as the algorithm for linear constraints and inequalities proposed in
(Borning et al., 1997), and 3) hybrid algorithms, such as UltraViolet (Borning &
Freeman-Benson, 1998) or DETAIL (Hosobe et al., 1996), that attempt to cover all
cases by using specialized and cooperating subsolvers.
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In the next section we describe the constraints required for MidiSpace, and conclude
on the requirement of the constraint propagation algorithm. In section 4.4 we will
describe the algorithm designed to solve these constraints efficiently.

4.3 Constraints and Mixing Consistency

This section describes the main constraints needed to define mixing consistency in
MidiSpace. Constraints are defined by relations holding on variables. We will first
describe the variables needed, and then the relations.

4.3.1 MidiSpace Variables

In MidiSpace, the variables are the following. First there are as many variables as
sound sources on the interface. More precisely, each sound source is represented by a
point pi , i.e. two integer variables (one for each coordinate):

pi , where { }p x yi i i= , with [ ]x yi i, ,∈ 01000  (in a typical screen)

Moreover, there is one variable representing the position of the listener’s avatar, itself
consisting of two integer coordinate variables:

l , where { }l x yl l= , with [ ]x yl l, ,∈ 01000

4.3.2 MidiSpace Constraints

Most of the constraints on mixing involve a collection of sound sources and the
listener. We describe here the most useful ones.

• Constant Energy Level
The simplest constraint is the constraint stating that the energy level between several
sound sources (i = 1, .., n) should be kept constant. According to our model of sound
mixing, this constraint can be stated between variables pi, i = 1, .., n as follows:

p l Ctei
i

n

− =
=

∏
1

Intuitively, it means that when one source is moved toward the listener, the other
sources should be “pushed away”, and vice-versa. The constant value on the right-
hand side of the constraint is determined by the current values of pi and l when the
constraints are defined.  In practice, the total energy level may be approximated by a
linear expression, yielding:

p l Ctei
i

n

− =
=
∑

1

Note that this constraint is non linear. Moreover, the constraint is not functional,
except in the case of two sources only.

• Constant Angular Offset
This constraint is the angular equivalent of the preceding one. It expresses that the
spatial organization between sound sources should be preserved, i.e. that the angle
between two objects and the listener should remain constant. It can be stated between
variables p1 and p2 as follows:
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( , � , )p l p Cte1 2 =

The constraint is generalized to a collection of objects between variables p1,…,
pi…,pn.

( , � , ) ,p l p Cte1 2 1 2= ;    ( , � , ) ,p l p Ctei i1 1= ;    ( , � , ) ,p l p Cten n1 1=

• Constant Distance Ratio
The constraint states that two or more objects should remain in a constant distance
ratio to the listener:

p l p l1 1 2 2− = −α ,

This constraint can be generalized to n objects and the listener:

∀ ≤ − = −i j n p l p li i j j, : ,α

• Radial Limits of Sound Sources
This constraint allows to impose radial limits in the possible regions of sound sources.
These limits are defined by circles whose center is the listener’s avatar (as represented
graphically in Figure 8).

p li − ≥ α inf  (lower limit)

p li − ≤ αsup   (upper limit)

• Grouping constraint
This constraint states that a set of nsound sources should remain grouped, i.e. that the
distances between the objects should remain constant (independently of the listener’s
avatar position):

( )∀ ≤ − =i j n x x Ctxi j i j, : , and ( )y y Ctyi j i j− = ,

4.3.3 More complex constraints

Other typical constraints include symbolic constraints, holding on non geographical
variables. For instance, an “ Incompatibility constraint”  imposes that only one source
should be audible at a time : the closest source only is heard, the others are muted.
This constraint cannot be expressed as a relation between coordinates.
More complex constraints include the “Equalizing constraint” , which states that the
frequency ratio of the overall mixing should remain within the range of an equalizer.
For instance, the global frequency spectrum of the sound should be flat.

4.4 Constraint algorithm

The examples of constraints given above show that the constraints have the following
properties:
• the constraints are not linear. For instance, the constant energy level (between two

or more sources) is not linear. This prohibits the use of simplex-derived algorithms,
such as (Borning, 1997).

• The constraints are not all functional. For instance, geometrical limits of sound
sources are typically inequality constraints.
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• The constraints quickly induce cycles. For instance, a simple configuration with
two sources linked by a constant energy level constraint and a constant angular
offset constraint already yields a cyclic constraint graph.

There is no general algorithm, to our knowledge, which handles non linear, non
functional constraints with cycles. Indigo (Borning et al., 1996) is an algorithm for
functional constraints with inequalities, but does not handle cycles. Conversely, cycle
solvers such as Purple (linear constraints) and DeepPurple for linear inequalities
(Borning & Freeman-Benson, 1998), do not handle non linear constraints.  The
general solution as proposed in the literature consists in using hybrid algorithms such
as Detail or UltraViolet as mentioned in section 4.2. However, these algorithms add a
considerable level of complexity: they are difficult to implement and tune, and may
have unexpected behavior (Borning et al., 1996).

Instead, we designed a simple propagation algorithm which implements only a part of
our requirements, but with predictable and reactive behavior. The current algorithm
we use is based on a simple propagation scheme, and allows to handle functional
constraints, inequality constraints. It handles cycles simply by checking conflicts.
Each variable v is associated to the set of constraints holding on it (predicate
constraints(v)). Each functional constraint has a set of methods, used to compute
values of output variables from values of input variables. The algorithm is triggered
by the modification of one variable, and is described below:

/ /  Each var i abl e hol ds a l i st  of  const r ai nt s,  and each const r ai nt  hol ds t he
/ /  l i st  of  i t s var i abl es
/ /  The pr opagat i on depends on t he t ype of  t he const r ai nt
pr opagat e ( Const r ai nt  c,  Var i abl e v)

i f  c i s f unct i onal  :  pr opagat eFunct i onal ( c,  v)
i f  c i s i nequal i t y:  pr opagat eI nequal i t y( c,  v)

pr opagat eFunct i onal Const r ai nt ( Const r ai nt  c,  Var i abl e v)
r esul t  = t r ue
f or  each var i abl e v’  i n c.  var i abl es,  such as v’  ≠ v,

new- val ue = per f or m- met hod ( v’ ,  v,  v. new- val ue)
r esul t  = r esul t  && per t ur bat e( v’ ,  new- val ue,  c )

endf or
r et ur n r esul t

/ /  I nequal i t y const r ai nt s ar e j ust  checked
pr opagat eI nequal i t yConst r ai nt ( var i abl e v ,  per t ur bat i on v- per t ur bat i on )

r et ur n c. i sSat i sf i ed( )

/ /  Each var i abl e hol ds a val ue ( act ual  cur r ent  val ue) ,  and a new- val ue,
/ /  whi ch r epr esent s a per t ur bat i on,  ei t her  t r i gger ed by t he user  or  comput ed
per t ur bat e( Var i abl e v,  Val ue new- val ue,  Const r ai nt  c)

r esul t  = t r ue
i f   v. val ue ≠ v. new- val ue       / *  v has al r eady been per t ur bat ed

r et ur n (  v. new- val ue = new- val ue )  / *  t he per t ur bat i on i s t he same
endi f
v. new- val ue= new- val ue
f or  each const r ai nt  c ’  i n v. const r ai nt s such as c’  ! = c

r esul t  = r esul t  && pr opagat e( c’ ,  v)
enf or
r et ur n r esul t

Figure 7.  Propagation algorithm of MidiSpace
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4.5 The interface

The interface for setting constraints is straightforward: each constraint is represented
by a button, and constraints are set by first selecting the graphical objects to be
constrained, and then clicking on the appropriate constraint button. Constraints
themselves are represented by a small ball, whose color depends on the constraint’s
type, linked to the constrained objects by lines. Some constraints have specific
behavior, such as “ limit constraints” , which show a circle centered on the listener’s
avatar to display their scope (see Figure 8).

constraints

the upper limit
constraint, set
on the bass

Figure 8. The MidiSpace authoring interface for specifying mixing constraints

Since constraints are themselves represented as graphical objects, they in turn can be
constrained to form hierarchies of constrained objects. This allows, for instance, to
constrain several groups of already constrained objects (as in Figure 8). Additionally,
this mechanism may be used to specify higher-level specifications such as relative
ambitus : constrain the upper limit and the lower limit constraints to remain grouped
together, using the “constant ratio”  constraint.

4.6 Constraints as annotations

The final step in MidiSpace is to allow constraint sets to be dynamically created in
time, to reflect changes in music. A simple way to do so is by considering constraints
as particular annotations. This requires two additions to MidiSpace : 1) a format for
expressing constraints compatible with our annotation format, and 2) a scheme for
adding and removing constraints in real time during listening. For the moment, we
experimented with a simple approach in which the format of constraints is similar to
the format for other annotations, i.e. a time tag, followed by a constraint type (out of a
predetermined number of constraint types), and parameters when needed. In this
scheme, constraints are represented as temporal objects with a start time and a
duration (see Figure 9). It is to be noted that since constraints are considered as fully-
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fledged objects, they also can be moved, and the movements may in turn be
considered as temporal annotations.

[constraints]
startBeat=7.692 duration=2000    type=CtEnergyLevel instr=bass, drums
startBeat=7.698 duration=10000  type=CtEnergyLevel instr=bass, piano
startBeat=7.881 duration=10000  type=CtAntiRelated instr=bass, piano
startBeat=8.067 duration=20000  type=CtUpperBound  instr=piano  parameter=45 …

Figure 9. Constraints as annotations

The difficult part is the real time handling of the constraint set, and raises two
problems:
1)  the incrementality of the algorithm. The constraint propagation algorithm should

be able to incrementally add or remove constraints, without having to recompute
too many variables.

2) the smoothness of the interface. A main concern in building mixing interfaces is
that the user should not be lost because of too sudden movements of objects. When a
constraint is added, it can be the case that some objects are in positions that violate the
constraint. In this case, a natural solution would be to have the objects move smoothly
from the old location to the new one.  This second issue is not yet handled, and is the
subject of current work.

5. Implementation

The implementation of MidiSpace consists in 1) translating Midi information and
annotation files into a set of objects within a temporal framework, 2) scheduling these
temporal objects using a real time scheduler.

5.1 The Parser

The Parser task is to transform the information contained in the Midi file and in the
annotation files into a unified temporal structure. The temporal framework we use is
described in (Pachet et al., 1996), an object-oriented, interval-based representation of
temporal objects. In this framework, each temporal object is represented by a class,
which inherits the basic functionalities from a root superclass TemporalObject.
One main issue the Parser must address comes from the way Midi files are organized
according to the General Midi specifications. Mixing is realized by sending volume
and panoramic Midi messages. These messages are global for a given Midi channel.
One must therefore ensure that each instrument appears on a distinct Midi channel. In
practice, this is not always the case, since Midi tracks can contain events on different
channels. The first task is to sort the events and create logical melodies for each
instrument. This is realized by analysing program change messages, which assign
Midi channels to instruments, thereby segmenting the musical structure.  The second
task is to create higher level musical structures from the basic musical objects (i.e.
notes). The Midi information is organized into notes, grouped in melodies. Each
melody contains only the notes for a single instrument. The total piece is represented
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as a collection of melodies. A dispatch algorithm ensures that, at a given time, only
one instrument is playing on a given Midi channel.

5.2 The Hierarchy of Playable Objects

These objects represent events that can be scheduled in time. Includes both musical
events, such as notes, and also more abstract events such as movements.

PlayableObject

Note

Chord
Melody

Movement

play(date t)

MidiSpaceConstraint

Figure 10. The class hierarchy of playable objects in MidiSpace.

5.3 Scheduling temporal objects

The scheduling of MidiSpace objects uses MidiShare (Orlarey et al. 1989), a real time
Midi operating system, with a Java API. MidiShare provides the basic functionality to
schedule asynchronously, in real time, Midi events, from Java programs, with 1
millisecond accuracy. The main loop of the Midi player consists in 1) creating a task
that schedules all events that fall on the current date, and 2) rescheduling the task to
the next date. When an event is scheduled, it is sent the method play(t), with the date
as parameter. This method is implemented in all subclasses of PlayableObject. Note
objects implement the play(t) method by sending an appropriate Midi message.
Thanks to this representation, it is straightforward to implement dynamically changing
constraint sets, by simply ensuring that constraints implement the PlayableObject
interface, and the method play(t). This method will simply add the constraint to the
current constraint set at the start date, and remove it at the end date.

MidiSpaceConstraint

CtEnergyLevel

CtAntiRelated UpperBound

LowerBound

CtAngle

TemporalObject

Figure 11. An excerpt of the constraint hierarchy

6. Conclusion, Future work

The MidiSpace system shows that it is possible to give users some degree of freedom
in sound spatialization, while preserving some semantics on the mixing of sound
sources. The prototype built so far validates our approach, but future work remains to
be done in several directions.
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First we are currently improving the constraint propagation algorithm to handle more
complex constraints, such as proposed in 4.3.3. These constraints should allow users
or composers to specify finer mixing configurations.
Second, we are experimenting with other interfaces for navigation. A 3D version of
MidiSpace in VRML is in progress (see Figure 12), in which the VRML code is
automatically generated from the 2D interface. Although the result is clearly
stimulating, it is not yet fully satisfying because the 3D interface gives too little
information on the overall configuration of instruments, which is a crucial parameter
for spatialization, but this problem is a general problem with 3D interface, and is not
specific to MidiSpace.

Figure 12. MidiSpace/VRML on the Jazz trio.

Finally, an audio version is in progress, to 1) enlarge the repertoire of available music
material to virtually all recorded music, and 2) improve the quality of the
spatialization, using more advanced techniques such as the ones sketched in 2.

7. References

Ackermann P., Developing object-oriented multimedia software, Dpunkt, Heidelberg, 1996.
Assayag G., Agon C., Fineberg, J., Hanappe P., “An Object Oriented Visual Environment For Musical

Composition” , Proceedings of the International Computer Music Conference, pp. 364-367,
Thessaloniki, 1997.

Borning A., Anderson R., Freeman-Benson B., “ Indigo: A Local Propagation Algorithm for Inequality
Constraints” , Proceedings of the ACM Symposium on User Interface Software and Technology, pp.
129-136, 1996.

Borning A., Freeman-Benson, B. “The OTI Constraint Solver : a Constraint Library for Constructing
Interactive Graphical User Interfaces” , Proceedings of the First International Conference on
Principles and Practice of Constraint Programming, pp. 624-628, 1995.

Borning A., Freeman-Benson, B., “Ultraviolet: A Constraint Satisfaction Algorithm for Interactive
Graphics” , Constraints, Special Issue on Constraints, Graphics, and Visualization, Vol. 3 No. 1, pp.
9-32, April 1998.

Borning A., “The Programming Aspects of ThingLab, a Constraint-Oriented Simulation Laboratory” ,
ACM Transactions on Programming Languages and Systems, 3 (1981), pp. 353-387.



15

Borning, A. Lin, R., Marriott, K. “Constraints for the web” , Proceedings of ACM Multimedia
Conference, Seattle, pp. 173-181, 1997.

Chowing, J. (1971), “The simulation of moving sound sources” , JAES, vol. 19, n. 1, p. 2-6.
Dai P., Eckel G., Göbel M., Hasenbrink F., Lalioti V., Lechner U., Strassner J., Tramberend H.,

Wesche G., “Virtual Spaces: VR Projection System Technologies and Applications” , Tutorial
Notes, Eurographics '97, Budapest 1997, 75 pages.

Eckel G., “Exploring Musical Space by Means of Virtual Architecture” , Proceedings of the 8th

International Symposium on Electronic Art, School of the Art Institute of Chicago, 1997.
Hosobe H., Matsuoka S. Yonezawa A., “Generalized local propagation: a framework for solving

constraint hierarchies” , Proceedings of CP’  96, Boston, August 1996.
Lopez G., Freeman-Benson B., Borning A., “Kaleidoscope: A Constraint Imperative Programming

Language” , In Constraint Programming, B. Mayoh, E. Tougu, J. Penjam (Eds.), NATO Advanced
Science Institute Series, Series F: Computer and System Sciences, Vol 131, Springer-Verlag, 1994,
pages 313-329.

Hower W., Graf, W. H. “a Bibliographical Survey of Constraint-Based Approaches to CAD, Graphics,
Layout, Visualization, and related topics” , Knowledge-Based Systems, Elsevier, vol. 9, n. 7, pp.
449-464, 1996.

IMA, “MIDI musical instrument digital interface specification 1.0” , Los Angeles, International MIDI
Association, 1983.

Jot J.-M., Warusfel O. “A Real-Time Spatial Sound Processor for Music and Virtual Reality
Applications” , Proceedings of International Computer Music Conference, September 1995.

Laurson M., Duthen J., “PatchWork, a graphical language in PreForm”, Proceedings of the
International Computer Music Conference, San Francisco,172-175, 1989.

Lea R., Matsuda K., Myashita K., Java for 3D and VRML worlds, New Riders Publishing, 1996.
Meyer L., Emotions and meaning in music, University of Chicago Press, 1956.
Orlarey Y., Lequay H. “MidiShare: a real time multi-tasks software module for Midi applications” ,

Proceedings of the ICMC, 1989, ICMA, San Francisco.
Pachet F., “Computer Analysis of Jazz Chord Sequences. Is Solar a Blues ?” , Readings in Music and

Artificial Intelligence, Harwood Academic Publishers, to appear, 1998.
Pachet F., Ramalho G., Carrive J. “Representing temporal musical objects and reasoning in the MusES

system”, Journal of New Music Research, vol. 25, n. 3, pp. 252-275, 1996.
Sanella M., Maloney J., Freeman-Benson B., Borning A., “Multi-way versus one-way constraints in

user interfaces: experiences with the DeltaBlue algorithm”, Software Practice and Experience,
23(5):529-566, 1993.

Sloan Donald, “Aspects of Music Representation in Hytime/SMDL”, Computer Music Journal,
Cambridge, MA, MIT Press, 17:4, Winter 1993.

SMDL, Draft International Standard, ISO/IEC CD 10743, 1995.
Taube H., “Common Music: A Music Composition Language in Common Lisp and CLOS”, Computer

Music Journal, vol. 15, n° 2, 21-32, 1991.
Vander Zanden Brad, “An incremental algorithm for satisfying hierarchies of multi-way dataflow

constraints” , ACM Transactions on Programming Languages and Systems, 18(1):30-72, 1996.


