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Abstract.  This paper addresses a new method using nary linear 

constraints for scenario recognition in the context of on-line monitoring of 

patients hospitalized in intensive care units. This method is compared with 

the classical and binary constraints-based method. Our system, called 

DéjaVu, compares on the fly dynamic scenes which represent the real 

evolution of a patient, with predefined scenarios which represent an 

expected evolution of the patient. Both scenarios and scenes are 

represented as temporal networks of numerical constraints between instants 

(TCSP). The recognition task is performed by minimizing a particular 

simple temporal network (STP) which always has very few cycles. 

Classically the Floyd-Warshall algorithm is well adapted to the 

minimization of STP, and it is equivalent to path-consistency. Exploiting 

the topological characteristic of the STP, we propose a more efficient 

method, using arc-consistency. It is based upon a reformulation of the STP 

by a dual CSP on nary linear equality constraints. We prove that 

minimizing the primal STP is equivalent to making the dual CSP arc-

consistent. We explain our method and give theoretical and practical 

results. Although the STP-to-CSP transformation is theoretically more 

expensive than the Floyd-Warshall algorithm, we show that, in practice, it 

leads to better results for networks with few cycles, such as the ones used 

for on-line medical scenario recognition. 

1. INTRODUCTION 

The problem of automatic monitoring of patients has been tackled 

by many recent works (see [1] for a review of recent systems). In 

[2], M. Dojat proposed a mechanism based upon artificial 

intelligence techniques, to perform this task without human 

intervention. The efficiency of this system, named NéoGanesh, is 

currently being improved by adding to it a scenario recognition 

module that should recognize on the fly some typical behaviors of 

the patient, in order to adapt its response (see the DéjaVu system 

[3]). The scenario recognition method handles two entities: some 

predefined scenarios designed off-line by a physician, and the 

dynamic clinical session, constructed from physiological 

measurements. It consists of comparing the session to a set of 

predefined scenarios and deciding which scenarios describe the 

real evolution of the patient. As it should be performed in real-time 

we have to use the most efficient algorithm to realize the 

comparison task. 

1.1 Medical scenarios 

Representing the scenarios requires the ability of representing time 

and events. Such a representation is usually done by using 

networks of temporal constraints. As we need to represent 

numerical constraints, we chose to use networks of numerical 

binary constraints between instants, called Temporal Constraint 

Satisfaction Problem (TCSP) [4, 5]. 

We recall that a TCSP is a graph of interval constraints between 

real variables. Every constraint is a union of separate intervals. In 

particular, when the constraints are defined by one continuous 

interval, the graph is called a Simple Temporal Problem (STP). A 

TCSP can be seen as a theoretical binary-CSP where the goal is to 

find the instants values such as the difference between instants 

belongs to the interval [5]. 

In our application domain, both session and scenarios are 

represented by a STP. Below is an example of a typical scenario 

(S01) used as data for recognition on the fly. 

 
e1: (DisconnectionPatient=initiates), e2: (DisconnectionPatient=terminates),
e3: (Respiratory.normal=initiates), e4: (Respiratory.normal=terminates),
e5: (Respiratory.tachypnea=initiates), e6: (DisconnectionPatient=initiates),
e7: (DisconnectionPatient=terminates), e8: (Respiratory.tachypnea=terminates),
e9: (Respiratory.normal=initiates), e10: (Respiratory.normal=terminates),
e11: (RepiratoryRate.increasing=inèitiates), e12: (RespiratoryRate.increasing=terminates).

 
 

 

Figure 1.    Medical scenario for a mechanically ventilated patient 

This scenario is an excerpt from mechanical ventilation 

management. It indicates a progressive obstruction of the 

endotracheal tube followed by ventilation instabilities after 

suctioning (see [3] for more details). 

1.2 Scenario recognition 

The difficult problem of recognition has already received much 

attention [6, 7, 8] and more precisely in the range of real-time 

monitoring [9, 10, 11]. Classically, the method of checking the 

compatibility of a session and a predefined scenario, consists in 

merging the session with each predetermined scenario, and 

minimizing the "fusion graph". To obtain the fusion graph, we first 

compute the over-graphs of the session and each scenario, then we 
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perform the intersection of these over-graphs. The existence of one 

empty constraint in the minimal graph means that it is inconsistent, 

and then the session is incompatible with the scenario. The 

minimization of a temporal graph has already been studied in [5]. 

They proposed the Floyd-Warshall algorithm to perform the 

minimization of a STP and proved its equivalence with the 

algorithm of path-consistency (PC1). The complexity of Floyd-

Warshall never exceeds O(n3) and no better algorithm in 

complexity has been found so far. Nevertheless Floyd-Warshall 

has a major drawback: it completes the graph, which may be an 

expensive hypothesis when the graph has a lot of nodes. Thus by 

creating universal constraints, it uses all of the information, 

initially expressed or not, in the network. In our context, all the 

knowledge the experts need, is expressed in a non complete graph. 

Therefore the completion leads to the creation of a lot of useless 

constraints. The monitoring system is not supposed to deal with 

these additional constraints. Starting from this point, we propose a 

new method for minimizing a temporal constraint network, that 

selects the expressed constraints (exclusively the useful ones) and 

works with an incomplete graph. 

The method uses a dual reformulation of the original TCSP into 

a CSP. The resultant CSP only contains linear nary equalities on 

real variables. Then the method reduces the dual CSP into an arc-

consistent CSP, by filtering the nary constraints. The idea consists 

of defining the semantic of the equality constraints from the 

topological configuration of the primal TCSP: each constraint 

expresses the existence of a cycle in the primal TCSP. Moreover 

the reformulation only uses the useful information since it 

considers the expressed cycles in the scenario (see section 2). The 

efficiency of this method is based upon an interesting property of 

all the scenarios provided by the medical experts: Once 

represented as TCSP, the scenarios have a basis of cycles with a 

small number of cycles in comparison with their number of 

vertices. Generally, the graph provided by the medical experts 

contains less than 20 cycles and a great number of vertices. 

Although our method was NP-complete in general, we show that in 

our context, it leads to better results than the algorithm of Floyd-

Warshall. 

The following table gives the main characteristics of the two 

approaches: the classical one, based on Floyd-Warshall algorithm 

and the one we propose, called Dual&Arc-Consistency. 

 

Floyd-Warshall Dual&Arc-Consistency 

use binary constraints: 

continuous real intervals including 

real variables 

use nary constraints: 

linear equality on real variables 

goal: reduce the constraints goal: reduce the domains 

completes the initial graph and uses 

the whole information 

reformulates the graph and uses 

the expressed information (the 

existence of cycles). 

 

The idea of reformulating a problem into a CSP and using the 

CSP techniques to solve it more efficiently, has already been 

explored in [12], in the context of Truth Maintenance Systems 

(TMS). The goal is to deduce more logical formulae from the 

TMS, while keeping both completeness and reasonable time-

consuming. The TMS is then encoded into a dynamic CSP whose 

filtering process computes more deductions than the classical 

algorithm used in the TMS model. 

The rest of the paper is constructed as follows. The next section 

details the three main steps of our approach and the algorithm we 

use to compute the dual reformulation. Theoretical and practical 

results are given in section 3 to compare the two methods, and 

confirm the interest of our approach. Section 4 provides some 

properties. In section 5, reusing a part of this method, we give a 

way of processing an incremental minimization of dynamic 

temporal scenarios. Section 6 is a conclusion of the interest of our 

approach and our work under development. 

2. MINIMIZATION BY ARC-CONSISTENCY 
ON NARY-CONSTRAINTS 

In this section, we describe a method to detect the inconsistency of 

a temporal constraint network representing a scenario. Previous 

approaches [13, 7] have shown that there exists a dual 

correspondence between any temporal network and a particular 

CSP. Starting from this idea, we propose to combine two 

approaches: 1) The formalism of temporal constraint networks to 

express scenarios in a natural way ; 2) a CSP solver to detect the 

relevant (not inconsistent) scenario. This requires the reformulation 

of the TCSP in a particular dual CSP with finite domain linear 

constraints and then the application of arc-consistency [14, 15] on 

this CSP. To achieve this reformulation, we need to identify all the 

cycles of the graph, which is a NP-complete problem in general. 

But we justify our choice by a particular property of the real-world 

medical scenarios: they have a low density of cycles. This section 

describes our method and the algorithm we use to compute all the 

cycles of a graph. We implemented our method using the object-

oriented framework for Constraint Satisfaction BackTalk [16]. We 

obtained quite reasonable execution times for the task of 

recognition. 

2.1 Reformulation of a TCSP into a dual CSP  

Let G=(X,A), a given oriented TCSP. X (respectively A) is the set 

of nodes (respectively. links). |X| =N. |A| =M. 

Let G'=(X',D',C'), the resulting CSP. 

The reformulation of G into G' consists of two steps: 

First, we look for all the cycles of G, using the algorithm 

described in the subsection 3.1.c. We compute for each cycle e the 

set of its arcs (a1,...,ak) and the orientation vector 
⎯⎯→

,mue defined 

by the following relation: 

 

For all arc ai in A, 

mue(i) = 0 if e doesn't contain the arc [ ai=(s,t) ]. 

mue(i) = 1 if e contains the arc ai 

mue(i) = -1 if e contains the arc [ -ai=(t,s) ]. 

 

Then, we define the CSP G'. 

1. X' = {v(ei,ej) / ei in X, ej in X and there is a link from ei to ej in 

the primal graph G} 

2. D' = Scalar of Dij, where Dij is the domain of the variable 

v(ei,ej). Dij is exactly the interval labeling the arc from ei to ej in 

the primal graph G. 

3. The constraints represent the existence of cycles in the primal 

graph and they are deduced from the property of consistency of 

a cycle. They are nary and linear equalities. Figure 2 shows 

this deduction on a simple instance of TCSP. 
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Algorithm dualOf(G): 

result = a CSP  

temporal variables : C 

Begin 

C := AllCycles(G). 

X' := . 

For each arc (s,t) in A, X' := X' U {v(s,t)}. 

For each v(s,t) in X', D'(v(s,t)) := Label((s,t),G). 

For each cycle e=(a1,...ak) in C, 

Begin 

   create the vector 
⎯⎯→

,mue. 

   create the constraint [  (mue(i)*vi) = 0 ], where vi is 

the variable corresponding to the i-th arc of A. 

   Add the constraint in C'. 

End. 

Return (X',D',C') 

End. 

The AllCycles function takes one temporal constraint network G 

and returns the list of all the simple cycles of G. The variable D' is 

represented by an array in which each entry is indexed by one 

variable of X'. 

 

Figure 2.    Table of conversion of a cycle of binary temporal 

constraints in a linear arithmetic equality constraint. 

In this example, the constraint EA will not be reduced by the 

minimization process (see the section 4 for a proof), so it will be 

removed and only the arc AB, BC, AD and DC will be used to 

compute the dual CSP. This one is shown on the right box. It has 4 

variables related by one constraint which expresses the fact that 

there is only one cycle in the STP. 

Minimizing the STP is strictly equivalent to perform an arc-

consistency procedure on its dual CSP. The method and its proof 

are described in the section 2.2 and 4. Notice that this technique 

can be used for the minimization of TCSP (the temporal 

constraints are disjunctive). In this case, the variables will have 

discontinuous domains and the complexity of arc-consistency will 

be increased, lowering the interest of our approach. 

2.2 Detection of inconsistency and minimization 

In section 4, some theoretical properties show that if any primal 

graph G is such that every cycle is consistent and minimal then the 

corresponding dual CSP G' is arc-consistent. Moreover, as far as 

domain reduction is concerned, on linear constraints and interval 

domains, arc-consistency produces the same result as filtering. 

These properties allow us to detect any inconsistency in G by 

simply performing a procedure of filtering on the dual graph G'. 

The obtained graph is exactly the minimal graph of the initial 

temporal network G. 

 

Algorithm minimize(G): 

result = G', the minimal graph of G 

 

Begin 

G' := dualOf(G). 

arc-consistency(G'). 

affectDomainsToArc(G', G). 

return G  "If G is inconsistent, G' contains 

empty domains, otherwise G' is arc-consistent" 

End. 

The affectDomainsToArc procedure is responsible for the 

update of the primal graph G, from the dual one G'. The cost of 

this task is negligible if  one maintains a link between every arc of 

G and its constrained variable in G'. 

 

Algorithm isInconsistent?(G): 

result = true if G is inconsistent 

 

Begin 

G' := dualOf(G). 

arc-consistency(G'). 

if there is an error then Return true "G is inconsistent" 

return false "G has no inconsistency" 

End. 

 

The following figure (Figure 3) illustrates the dual CSP 

constructed by our method from the scenario of Figure 1. As the 

latter includes three cycles, the dual CSP has three constraints. 

 

Variables:

X’= {V4,5;V5,8;V12,8;V7,8;V6,7;V5,6;V11,4;V11,2}

Domains:

V4,5 in {0}; V5,8 in [4,30]; V12,8 in [4,12]; V7,8 in [4,12];

V6,7 in [0,4]; V5,6 in [0,60]; V11,4 in [0,15]; V11,12 in [0,45].

Constraints:

[1] : V4,5 + V5,8 - V12,8 - V11,12 + V11,4 = 0.

[2] : V4,5 + V5,6 + V6,7 + V7,8 -V12,8 +V11,12 + V11,4 = 0.

[3] : V5,8 - V7,8 - V6,7 - V5,6 = 0.
 

V11,4

in [0,15]

V4,5

in {0}

V5,6

in [0,60]

V6,7

in [0,4]

V7,8

in [4,12]

V12,8

in [0,45]

V11,12

in [0,45]

V5,8

in [4,30]

[1] [2] [3]

 

Figure 3.    Dual CSP G' represented by a text or by a hyper-graph. 

This scenario is consistent but not minimal. Indeed the 

algorithm returns that the corresponding TCSP has no 
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inconsistencies. More precisely, the TCSP obtained by our 

method is the minimal graph.  

2.3 The identification of all the cycles in a 
connected graph 

The Dual CSP construction requires the set of all the cycles of the 

graph. As the temporal constraint networks representation used for 

the medical scenarios, does not include this knowledge, we need to 

compute it. This task is the crucial point of our approach. Hence, 

its complexity is mainly responsible for the time requirements of 

the whole approach and great care should be given to its 

implementation. 

In [17], Read and Tarjan propose an algorithm that computes 

very efficiently all the simple cycles of a connected graph. This 

algorithm is based on an optimized backtracking procedure and has 

O(N+M+MC) time requirements, where C stands for the number 

of cycles in the graph. 

In the worst case, C equals 2k-1, with k = M-N+1. As it is not 

possible to have information about the topology of our temporal 

constraint network before its minimization, we don't know the 

number of cycles, a priori. Thus we present a theoretical 

complexity study based on the computation of all the possible 

cycles. It corresponds to the case when 2k-1 cycles really exist in 

the graph. In this context, the above algorithm performs no 

backtracking at all and its time bounds become O(N+M+M*(2k-

1)). We implemented a simple algorithm that tries the 2k-1 possible 

cycles in a connected graph and we use it to compare the 

efficiencies of the Floyd-Warshall algorithm and our approach. It 

calculates a basis of simple cycles and then combines them to 

deduce all the other cycles. 

3. RESULTS 

This section details the theoretical and practical studies of the 

evolution of our method, when the size of the primal graph 

changes. We compare this evolution with the Floyd-Warshall 

method, relatively to the value of k (the cardinality of a basis of 

cycles). We give a limit value of k, under which the Dual&Arc-

Consistency method (Dual&AC) is faster than the algorithm of 

Floyd-Warshall, and the experiments confirm this theoretical 

study. 

3.1 Theoretical study 

First, we recall that the number of cycles in a basis B, is M-N+1 

and noted k (we use the notations of section 2). Let us study the 

time complexity of our method and compare it with the classical 

one. 

The search of the basis B is in O(NM) complexity. The chosen 

algorithm builds a covering tree (N-1 nodes) and successively 

completes it with the remaining arcs ; thus its complexity is O((N-

1)*(M-N+1))=O(MN). Starting from B, the computational burden 

for the search of all the cycles is in O((2k-1-k)*M) (see section 2.3). 

The cost of the arc-consistency process is O(b*C) where b is 

constant and C is the number of constraints expressed in the dual 

CSP (i.e. the number of cycles existing in the STP) Therefore, the 

time requirement of this task should be negligible in comparison 

with the reformulation process one. Thus the complexity of this 

approach is theoretically exponential. But if k is small, i.e. M is 

closed to N, then the complexity becomes O(a*N2), which is better 

than the Floyd-Warshall algorithm. Below we compare the time 

complexities. 

 

f-ratio (k,N) = ln (CFloyd-Warshall / CDual&AC)

k = m- n+1

f-
ra

ti
o

(k
)

x

x

x

x

x
x

 

Figure 4.    Theoretical study of the function 

f-ratio(k,N) = ln(FloydWarshall-Complexity / Dual&AC-Complexity). 

The Figure 4 shows the curve of the function f-ratio depending 

on k and N. f-ratio allows us to compare the two complexities and 

gives a theoretical heuristic to choose between the two methods : if 

f-ratio(k,N)>0 then Dual&AC must be preferred to Floyd-

Warshall. In the figure, the curves are calculated keeping N 

constant and changing k. To build the curves, we used a program 

that simulates a random generation of STP for a given number of 

nodes. It appears that the trends of the curves are similar for all the 

values of N. This result shows that the Dual&AC approach is 

consistent compared to Floyd-Warshall. Note that the results do 

not take into account the initialization nor the Arc-Consistency 

complexity. 

 

k
 m

ax
im

u
m

N
12

Interest of the Dual&AC approach :

 f(N) = V, V equals to the value of k such that f-ratio(k,N) =0

15

9

20

10

8

0
0

40 60

5

15

 

Figure 5.    The maximal threshold V of k beneath which Dual&AC is 

interesting. 

The interest of Dual&AC can be given by the maximal value V 

of k : for every k <V, the Dual&AC method leads to better result 

than Floyd-Warshall. We obtained this value (V) by noting the 

values k such as f-ratio(k,N)=0 (see the function in Figure 5). 

Theoretically, the maximal value of k is given by ln(Erreur !

)=ln(N). As shown in Figure 5, we find that V depends on N with 

the relation : 4,8*ln(N)) - 4,38, deduced from the curves in Figure 

4. 

3.2 Practical results 

To evaluate our method, we compare the time complexity for the 

two approaches, depending  on k and N, the number of nodes in 

the graph. 
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Figure 6 shows the complexities of the two methods, Floyd-

Warshall and Dual&AC. Three cases are considered : N=12, N=15 

and N=20. The cases N=12 and N=15 correspond to real-world 

scenarios, specified by medical experts. The case N=15 is inspired 

by [18]. 

The practical results confirm the theoretical ones: there is a limit 

value V for k, beneath which our method is clearly preferable to 

Floyd-Warshall ; For N = 12, V = 5,6 ; for N = 15, V = 6,0 and for 

N=20, V = 7,0. These values are lower than the theoretical limit we 

have found (VN=12  8, VN=15  9, VN=20 = 10). This is due to the 

board effect of the initialization and the BackTalk treatment. 

However the trend of the curves are very similar to the theoretical 

ones and it suffices to "check out" that the Dual&AC approach 

gives better results than Floyd-Warshall for k lower than a limit 

value. When k is higher than V, the Dual&AC approach becomes 

exponentially expensive. Concerning the gap between theoretical 

and practical values of V, it is important to notice that the 

theoretical results are true "more or less a constant" which depends 

on the computer used to do the experiments. As the theoretical 

value is given by 4,8*ln(N) - 4,38, the constant 4,38 is supposed to 

change. In Figure 7, the experimental limit value is given by 

4,8*ln(N) - 7,38. 

Floyd-Warshall versus Dual&Arc-Consistency

0

500
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1500

2000

2500
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k=m-n+1
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p
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x
it

y
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m
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DualBT,N=12

Floyd,N=20

DualBT,N=20

Floyd(Long),N=15

DualBT(Long),N=15

7.0

N=20

6.0

N=15

5.6

N=12  

Figure 6.    Comparison of the complexities of Floyd-Warshall and 

Dual&AC, depending on k. 

The curves for N=12 and N=15 are closely mingled. This result 

confirms the fact that the behavior of the method is very distantly 

dependent of N. The value of N only influences the position of the 

curves and consequently the value of V ; but the behavior is always 

the same, as also shown in the following figure. 

The Figure 7 shows the evolution of the logarithm value of the 

ratio (Floyd-Warshall-Complexity/Dual&AC-Complexity). It aims 

to find a criteria for choosing the more convenient method to 

minimize a STP, according to the properties of the STP itself: 

given a STP G=(N,M), one should minimize G by Dual&AC if f-

ratio(M-N+1)>0, and by Floyd-Warshall otherwise. 

 

How to choose between Floyd-Warshall and dual&arc-consistency ?

the function f-ratio : k,N -> ln(Cfloyd(n)/CdualBT(k,N))

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

3

0 1 2 3 4 5 6 7

k=m-n+1

f-
r
a
ti

o
(k

)

ln(Floyd/DualBT ),N=12

ln(Floyd/DualBT ),N=20

ln(Floyd/DualBT ),N=15

7.06.05.6

How to choose between Floyd-Warshall and dual&arc-consistency ?

the function f-ratio : k,N -> ln(Cfloyd(n)/Cdual&AC(k,N))

f-
r
a

ti
o

(k
)

k=m-n+1
 

Figure 7.    Experimental curves of the function f-ratio. 

Once more, the results globally confirm the theoretical ones. The 

theoretical curves of f-ratio have a decreasing and almost linear 

trend. Practically the global trend is more precise. There is a 

minimal cost of problem's building that we cannot prevent. We 

find that for problems with a small k, this cost should be taken into 

account and could influence the final complexity.  

In the previous study, there are as many basic calculations as 

possible cycles. Each basic calculation creates a linear nary 

constraint in the dual CSP only if the temporal network actually 

contains the potential cycle. Then, one can avoid some useless 

operations in the AllCycles procedure, as proposed by the Read and 

Tarjan algorithm (see section 2.3). Thus one can still improve the 

global efficiency as shown in the following figure. 

-2

-1,5

-1

-0,5

0

0,5

1

1,5

k=m-n+1

f-
ra

ti
o
(k

)

kmax, 2k-1 operations

kmax, Read&Tarjan

?
 

Figure 8.    Pessimistic criteria for choosing between Floyd-Warshall and 

Dual&AC. 

The optimal criteria would be the maximal admissible value of k 

above which Floyd Warshall is preferable to Dual&AC. As shown 

in the figure, the criteria k<4,8*ln(N)-7,38 is not optimal. As a 

matter of fact, it only gives a pessimistic criteria. 

4. PROPERTIES 

Our approach assumes that only the constraints involved in a 

cycle of a STP are needed to perform the minimization. Below is 

the proof that this hypothesis is a valid one. As a matter of fact 

only the constraints involved in a cycle may be modified by any 

minimization procedure. As a consequence, if all the cycles of a 

STP are minimal and consistent, then the whole STP is minimal 

and consistent. 

4.1 Property 1 

This is a property of the minimization on a cycle of 3 nodes. 

For all cycles C of 3 labeled arcs, the minimization of C 

doesn't change the label of its arcs if there is one or two arc(s) 

with universal constraint. 
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Proof:  

Recall what the minimization consists of. We have 3 nodes 

A,B,C related two by two by interval constraints: 

D A

BC

RD,A

RA,B

RA,B = [a,b]

RD,A = [c,d]

RD,B = [e,f]

 
Preliminary definitions: 

• The composition o of two intervals is the classical operation of 

composition in the domain of intervals. For all floats a,b,c,d, 

[a,b] o [c,d] = [a+c, b+d]. 

• The opposite of one interval R = [a,b] is by definition [-b,-a] 

and we note it -R. 

• We note  the universal constraint : ]-, +[. 

• The minimization consists of reducing the intervals, using the 

composition o. 

In the example, RDB will be updated by RDB  (RDA o RAB) = 

[max(e, a+c), min(f, b+d)] ; RAB and RDA will be updated by a 

similar relation. 

In the example, RDA, RDB and RAB may be changed by 

minimization. 

Now, let us consider the situation in a constraint graph, where 

three nodes A,B,C, are not in a cycle. What happens while 

minimizing ? 

There is two possible cases. 

If one constraint is in a cycle of 3 arcs, with two universal 

constraints, then it isn't modified. This is the case of RAB in the 

figure. We have: RAB = RAB  (RAC o RCB) = RAB   = RAB. 

If two constraints are in a cycle of 3 arcs, with one universal 

constraints, then they aren't modified. This is the case of RDA and 

RAB. We have: 

RDA = RDA  (RDB o - RAB) 

RDA = RDA  ((RDA o RAB) o - RAB) 

RDA = RDA  ( (RAD o - RAB) o RDA), because the composition o 

is associative and commutative. 

RDA = RDA, because of the lemma: for all intervals R1 and R2, 

R1((R2 o -R2) o R1) = R1. 

The same reasoning can be applied to RAB. 

Finally we proved the property. 

Lemma : 

For all interval R1 and R2, R1  ((R2 o -R2) o R1) = R1 

Proof: 

Trivially, there exists a positive float, say , such that, for all 

intervals R2, (R2 o -R2) = [-,]. 

We note that, by definition, for all interval R, R = [inf(R), 

sup(R)]. 

R1  ((R2 o -R2) o R1) = R1  ([-,].o R1) 

 = R1  ([-+inf(R1), +sup(R1) 

=[max(inf(R1),inf(R1)-),min(sup(R1),sup(R1)+ )] 

 = [inf(R1), sup(R1)] 

 = R1. 

4.2 Property 2 

In an incomplete STP, the missing constraints are replaced by 

universal ones, through completion. Thus we can enunciate the 

following property: 

Every interval constraint which is not included in an 

expressed cycle of a STP graph G, is not changed by the 

minimization process. So there's no need to consider them in 

order to detect the inconsistencies in G. 

Proof : 

A B

C1
C2

  

Figure 9.    Minimization of a constraint in a completed STP 

Let us consider two nodes A and B of a completed STP noted G. 

Let H be the following hypothesis. 

H: The constraint AB is reduced by minimization of G and AB is 

not included in any cycle of non universal constraints. 

Following property 1, AB can be reduced only when considered 

in a triangle of non universal constraints. Let AC1 and BC1 be these 

constraints. We now face two possibilities: 

1. AC1 and BC1 were not universal before minimization. 

2. AC1 and/or BC1 have been previously reduced by the 

minimization. 

The first possibility contradicts H, because ABC1 would have 

been a cycle of non universal constraints before minimization. 

The second possibility implies that AC1 and/or BC1 have been 

considered in triples of non universal constraints during a previous 

operation of the minimization. Let us consider the case of AC1 and 

let us introduce the triple (AC1, AC2, C2C1). Once more, two 

possibilities exist: 

1. AC2 and C2C1 were not universal before minimization. 

2. AC2 and/or C2C1 were previously reduced by minimization. 

The first possibility contradicts H because of the cycle AC2C1B. 

A similar reasoning can be performed with the second 

possibility. This recursive reasoning must stop because the number 

of node of the STP is finite. Therefore, we will end by deducing 

that AB was included in a cycle of non universal constraints before 

minimization. 

Thus H is an inconsistent hypothesis. We conclude that any 

constraint that can be reduced by minimization in a non completed 

graph, has to be included in a cycle. The property is proved. 

4.3 Property 3 

Let G be a TCSP. Let B be a basis of cycles on G.  

If all the cycles of G are consistent and minimum then G is 

consistent and minimum. 

Proof: 

Let assume that G is inconsistent (or not minimal), then there is a 

cycle which is not consistent (or not minimal) because of the 

property 1. This consequence contradicts the hypothesis of the 

property because one of the cycle is inconsistent or not minimal. 

So that proves the property.  
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Finally, the minimization of a non completed STP is only 

dependent on the cycles included in it. This justifies the Dual&AC 

approach. 

5. INCREMENTAL MINIMIZATION 

In our context, the session dynamically changes every time a 

temporal measure is done. In this case, the fusion graph only 

changes locally. Considering this fact, an incremental 

minimization would be more adapted, since it would avoid the 

calculation of the whole expressed cycles of the STP. We just 

present here an idea of what the incremental minimization should 

be in our context and how our method can be extended with this 

aim. 

The incremental minimization requires some knowledge to be 

memorized. The temporal network stores a permanent link to its 

dual CSP. Every event modifying the temporal network is 

propagated in the corresponding dual CSP. Thus, the CSP becomes 

a dynamic CSP as defined in [19]. Two events are authorized in the 

context of medical monitoring: adding or removing a temporal 

constraint. Adding a constraint over-constrains the current CSP, 

whereas removing a constraint requires a mechanism to restore the 

domain of the variables linked by the removed constraint. For this 

reason, after adding a constraint, we attach a historic of the 

domains reduction to this constraint,. This can be modeled by a set 

of associations (variable -> old domain). Whenever a new 

constraint C is created, for each variable v of C, the domain value 

of v is added in the historic of C. Whenever a constraint C is 

removed, for each variable v of C, so that it remains in the CSP, 

the domain of v is set to its memorized value. 

Moreover the CSP is always kept arc-consistent, hence the STP 

is automatically maintained minimal. As we assume that the STP 

should be connected, we must remove all the unlinked nodes and 

arcs of the STP and also the unconstrained variables of the CSP, 

during the retraction of one constraint. 

 

Static Minimization

tem
poral scenario

dual C
S

P
 

Incremental Minimization

Events : add (e3,e13), add (e13, e11)

BackTalk filtering
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Figure 10.   Incremental minimization when a new constraint is added.

As far as incremental addition is concerned, we just need to 

compute the new cycles including the new temporal constraint C, 

because the other ones were previously transformed in the dual 

CSP. The responsible procedure can be easily implemented, 

reusing the Read and Tarjan algorithm. Indeed the basic step 

consists in computing the cycles including a particular edge of the 

graph. Thus it is quite well adapted to the calculation of all the 

cycles containing C. 

 

ActionWhileAdding (Co, G) 

Comments: add Co in the STP G and propagate in the dual CSP. 

Data: G=a STP, Co=a binary constraint, G'=the dual CSP of G, 

G'=(X',D',C'). 

Begin 

    AddBinaryConstraint(Co, G). 

    C := CyclesWithArc(Co, G'). 

    if C is not empty then  

    Begin 

        create the variable v(Co) in X'. 

        for each cycle in C, create a nary constraint in C'. (as 

explained in section 2) 

        Arc-consistency (G'). 

    End. 

End. 

 

ActionWhileRemoving(Co, G) 

Comments: remove Co from the STP G and propagate in the 

dual CSP. 

Data: G=a STP, Co=a constraint in G, G'=the dual CSP of G. 

Begin 

    RemoveBinaryConstraint(Co, G). 

    remove useless constraints in G. 

    remove nary constraints related to v(Co) from C'. 

    let be C the set of these obsolete constraints. 

    remove unconstrained variables from X'. 

    for each constraint c of C, for each variable v of c, remaining 

in X', Begin 

       oldD := old domain of v from the historic of c.  

       if oldD includes current domain of v, then restore oldD as 

the current domain of v. 

   End. 

    Arc-consistency(G'). 

The following figure shows what happens 

when adding a binary constraint in the scenario 

G of Figure 1. 

First let us add the constraint (e3, e13), labeled 

D1. This doesn't create any cycle. Thus C is 

empty and no propagation is performed in the 

dual CSP. 

Then we add the constraint (e13, e6), labeled 

D2. This adds three cycles, returned by the 

cyclesWithArc((e13,e6), G) function call. Then 

three nary constraints are created with their 

historic. 
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End. 

To perform the arc-consistency, we reuse the filtering procedures 

of the CSP environment BackTalk, which we have also used for 

the global minimization. 

6. CONCLUSION 

In this paper, a particular use of nary constraints was presented and 

applied in the context of medical scenario recognition. It was 

proved that the minimization of the STP is equivalent to the arc- 

consistency of a particular Finite-Domain CSP with linear nary 

equalities. This work also shows, on a real-world example, the 

interest of the dual reformulation of a problem using only the 

useful information (here the existence of a cycle). From this result, 

we built a method which leads to better results than the classical 

algorithm when the STP has a basis of cycles with a cardinality 

less than a given limit. The method is very distantly dependent on 

the number of nodes of the STP. Moreover, it offers the advantage 

of being easily reusable, since it only has to be connected to a CSP 

solver and to have a graph of numerical temporal constraints as 

input. Thus, this idea could be reused in various applications areas, 

such as Time-Map Management and environments dedicated to 

multimedia document authoring [20]. Indeed these problems 

represent temporal graphs with few cycles due to their strong 

semantic nature. 

As further works, we would have a more general and more 

efficient method. As the transformation TCSP-CSP doesn't modify 

the domains of the temporal constraints, we can apply it on general 

TCSP with discontinuous domains. Then the CSP computed by our 

method have discontinuous real domains of variables. We plan to 

exploit the optimized filtering algorithm for real variables to use 

our method for the minimization of general TCSP.  

In our context, as we assume that the session is consistent, the 

global minimization of the graph may be avoided and replaced by 

an incremental one. Thus we are currently extending it in order to 

perform an incremental minimization, whenever the graph locally 

changes. The idea is to check the truth of the relation of 

equivalence between the minimization and the dual-arc-

consistency when we use an incremental minimization and a 

dynamic arc-consistency, as defined in [19]. 
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