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ABSTRACT 

This paper proposes to use the techniques of Music 
Information Retrieval in the context of Music 
Interaction. We describe a system, the SongSampler,  
inspired by the technology of audio sampling, which 
automatically samples a song to produce an instrument 
(typically using a MIDI keyboard) that plays sounds 
found in the original audio file. Playing with such an 
instrument creates an original situation in which 
listeners play their own music with the sounds of their 
favourite tunes, in a constant interaction with a music 
database.  The paper describes the main technical issues 
at stake concerning the integration of music information 
retrieval in an interactive instrument, and reports on 
preliminary experiments.  

1. INTRODUCTION 

Music information retrieval research so far has not been 
much concerned with building interactive music 
systems. Systems which rely on a real-time music 
performance generally use it as an input front-end for a 
search, in a one-way approach which doesn’t allow any 
subsequent interaction. In Query by Humming (QbH, 
[1]), the user sings a melody, and audio files containing 
that melody are retrieved. However, QbH does not 
exploit the resulting songs to respond to  the original 
musical expression of the user, like e.g. improvising 
jazz musicians quoting or mimicking each others ([2]). 
Similar paradigms like Query by Rhythm ([3]) or Query 
by Timbre ([4]) share the same drawback.  
Tzanetakis in [5] proposes an alternative browsing 
environment which offers a direct, continuous 
sonification of the user’s actions. For instance, changing 
the target value of a query on tempo from 60 to 120 
would morph the current song into a faster one, whereas 
traditional settings would require the user to press a 
“submit” button, which would stop the former song, and 
trigger the next one. While this is one step towards a 
seamless interaction with a music database, the system 
still offers no expressive control on the music as a music 
instrument would do. It remains a sophisticated jukebox. 

Interactive music systems propose ways of transforming 
in real time musical input into musical output. Such 
responsiveness allows these systems to participate in 
live performances, either by transforming the actual 
input or by  generating new material according to some 
analysis of the input. Musical interactive systems have 
been popular both in the experimental field [6] as well 
as in commercial applications, from one-touch chords of 
arranger systems to the recent and popular Korg Karma 
synthesizer [7]. While some interactive systems, referred 
to in [6] as “sequenced techniques”, use pre-recorded 
music fragments in response to the user’s input, these 
sequences are usually predetermined, and their mapping 
is predefined (triggered by e.g. dynamics, or specific 
notes, etc.). With the very large quantity of music 
available on personal computers, comes the fantasy of 
an interactive instrument able to explore any music 
database, responding to the user’s input with 
automatically selected extracts or samples. 
This paper describes a system, the SongSampler, which 
is an attempt at combining both worlds of music 
interaction and music information retrieval. Using 
techniques inspired by audio sampling, we propose to 
automatically produce a music instrument which is able 
to play the same sounds as an arbitrary music file. The 
SongSampler uses MIR techniques such as content 
descriptors or similarity measures in order to select the 
song(s) to sample in a music database. The resulting 
instrument influences the user’s performance, which, in 
turn, is analyzed with MIR tools  to produce queries and 
modify the sampler’s setting. Playing with such an 
instrument creates an original situation in which 
listeners play their own music with the sounds of their 
favourite tunes, in a constant interaction with a music 
database.   

2. AUTOMATIC SAMPLING 

Audio Sampling ([8]) is the process of mapping 
arbitrary sounds (or samples) to a music instrument. 
Each note played on the instrument (typically a MIDI 
keyboard) triggers an audio sample corresponding to 
the pitch of the key (e.g. a C-60) and its loudness. Such 
digital samplers have been introduced in the 80s, and 
have been very popular thanks the realistic effect 
achieved by this technique: virtually any sound can be 
produced by a sampler, by definition. However, the 
creation of a particular setup for a sampler (e.g. a piano 
sound) is known to be a tedious and difficult task: 
samples must be first recorded (e.g. from existing, real 
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music instruments), then assigned to the keys of a MIDI 
instrument. Details concerning the actual triggering of 
sounds must be carefully taken into account, such as the 
loop of the sustain part of the samples until the key is 
released. This process of specifying a sound for a 
sampler is usually done by hand [9]. 
The core of the system described here consists in 
producing automatically setups for software-based 
samplers, so that the sounds triggered correspond to the 
actual sounds present in a given music title. 
Consequently, a sampler setup produced from a given 
audio file will produce an instrument that plays the 
same sounds as the original audio file. 
A popular format for what is referred to here as a 
“sampler setup” is the SoundFont® file format [10]. A 
typical SoundFont® file contains : 
• Samples, which can be digital audio files, e.g. .wav, 

or loaded from ROM on the wavetable device. 
Samples have the option of being looped.  

• Generators, which control properties of a sample 
such as initial pitch and volume as well as how 
these parameters are affected over time. 

• Instruments, which use one or more samples 
combined with effects generators to create a sound 
producing device.  

The automatic extraction of a SoundFont®-like setup 
from an arbitrary audio file thus requires to : 
• analyse (i.e. segment) the audio data to extract 

“meaningful” samples in the music 
• extract high-level audio descriptors from the 

samples to select automatically the most appropriate 
samples to use for a given context. Notably, detect 
the pitch of each sample so it can be mapped to an 
instrument note 

• detect parts of the segment that can be looped 
automatically (or, as it turns out, do more complex 
processing to time-stretch the samples) 

Each of these 3 steps have received a vast number of 
technical solutions, which we will not review here. The 
SongSampler has a modular architecture, in which any 
suitable algorithm can fit.  
However, we are dealing here with arbitrary music files, 
of arbitrary complexity, e.g. polyphonic, containing 
percussion instruments, effects, etc. In the next 
paragraphs, we propose a number of algorithms which 
we have designed specifically to fit this particular 
application context.  

2.1. Multiscale segmentation 
 
The aim of the segmentation algorithm is to extract 
samples that can act as well-defined musical events, i.e. 
which have a salient note or percussion played by some 
instrument(s) in the foreground, and a background 
based on the global sound of the sampled song. For 
instance, a typical sample from the song “Yesterday” by 
“The Beatles” ([11]) would be Paul McCartney singing 
“..day…”, with the song’s original background of 

acoustic guitar, bass and violin. The song is cut in the 
time domain, which means that each sample contains 
several instruments playing at the same time, and not 
separated individual tracks.  
Typical segmentation algorithms ([12,13,14]) first 
computes a set of features from the signal cut into 
frames, and then detect the segment boundaries by 
looking for abrupt changes in the trajectory of features. 
In this work, we look for the energy variations of the 
signal. The signal is cut into frames (2048 points at 
44100Hz), and for each frame, we compute the short–
term spectrum. The spectrum itself is processed by a 
Mel filterbank of 20 bands. Each band’s energy is 
weighted according to the frequency response of the 
human ear, as described e.g. in [14]. Finally, the energy 
is summed across all bands. Change detection is done 
by smoothing the energy profile by a zero-phase 

filtering by a Hanning window of size wS , and looking 

for all the local maxima of the smooth version. The 
segment boundaries are the deepest valleys in the raw 
energy profile between 2 adjacent peaks in the smooth 
profile.  
 

 
 

Figure 1A: Segmentation of an extract of “The Beatles - Yesterday”. 
(Top) Segmented energy profile using a small Sw (150ms) : short events 
(right) get properly detected, while larger events (left) get 
oversegmented. (Bottom) Corresponding smoothed energy profile, used 
for peak detection. 
 

While this scheme is effective for simple, percussive 
music, we observe that for non percussive, richer 
polyphonic music, the quality of the segmentation 

depends on the choice of wS . In large events such as a 

sung note lasting for several seconds (e.g. the final “-
day” in “Yesterday”), there may be several small peaks 
of energy corresponding to the other instruments 
playing in the background (e.g. a succession of chords 
played on the guitar). With a small wS , all these peaks 

would be segmented, and the corresponding atomic 
event for the sampler application would be cut into 
several short identical notes (see Figure 1A). With a 
large wS  on the other hand, short meaningful events 

like isolated guitar chords get missed out (Figure 1B). 
 



  

 

 

 
Figure 2B: Segmentation of an extract of “The Beatles - Yesterday”. 
(Top) Segmented energy profile using a large Sw (1s) : large events 
(left) are appropriately recognized, however smaller events (right) 
are missed out. (Bottom) Corresponding smoothed energy profile 

Therefore we propose a multiscale segmentation 
algorithm, which adapts the size of the convolution 
window to the local shape of the energy profile. More 
precisely, we compute the STFT of the energy profile 
on a running 2-second window (with 90% overlap). As 
the energy profile is sampled using 50% overlapping, 
2048 point frames (i.e. 43Hz), the FFT describes the 
frequency content between 0 and 20Hz, with a 
frequency resolution finer than 1Hz. We select the 
predominant local periodicity of the profile as the 
barycentre point (spectral centroid) of the spectral 
distribution within each frame :   
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where S is the magnitude spectrum of a frame. We then 
smooth the energy profile using a Hanning window size 

wS equal to the inverse of the centroid of the 

corresponding FFT frame (to ensure continuity, 
Hanning window coefficients are normalized so they 
sum to one regardless of their length).  
 
Figure 2-Bottom shows the SFFT of the energy profile 
used in Figure1. Large events correspond to low 
frequencies in the energy profile, i.e. small centroid 
frequencies in the spectrogram (order of 1Hz). 
Consequently, these zones get smoothed with large 
Hanning windows (order of 1 sec.). On the other hand, 
short events in the energy profile correspond to higher 
frequency content, higher centroids, and smaller 
windows size (order of 200ms). Figure 2-Top illustrates 
the corresponding multiscale segmentation, which 
preserves large, noisy events as well as short, high 
amplitude ones. 
 

 
 

Figure 3: (Top) Multiscale segmentation of the same extract, using an 
adaptive convoluation window size : large windows on the left, and 
smaller windows on the right. (Bottom) Corresponding spectrogram of 
the energy profile, super-imposed (in black) with the spectral centroid of 
each frame, used to determine the windows size 

2.2. Automatic Extraction of High-Level Descriptors  

Each of the segments generated by the previous step 
constitutes a note, which will be mapped on the 
instrument. The mapping of the samples is based on 
a number of high-level descriptors automatically 
extracted for each sample. The SongSampler relies 
on the EDS (Extractor Discovery System) [16] to 
generate such descriptors. EDS is a system based on 
genetic programming which is able to automatically 
generate arbitrary perceptual descriptors, given only 
a test database and corresponding perceptive tests, 
by discovering and optimizing adapted features and 
machine learning models. In the current 
implementation of the SongSampler, EDS was used 
to generate a descriptor of harmonicity (see [16]). 
This  descriptor is used in the SongSampler to filter 
out samples corresponding to non harmonic events 
(e.g. a snare-drum hit). However, there is an infinity 
of such descriptor/mapping possibilities, depending 
on the application context. For instance, if the 
mapping is done on a digital MIDI drum kit, we 
could use the EDS to generate a drum sound 
classifier (see e.g. [17]) in order to affect the 
percussive samples to the right pads. One key 
advantage of using the EDS is that the descriptors 
are by construction adapted to the type of samples 
used in the SongSampler. We expose further 
possible uses for the EDS in section 5. 

2.3. Salient pitch detection 

The SongSampler maps the samples to the keyboard key 
corresponding to their pitch, so a melody can be played. 
In the current implementation of the system, the pitch 
descriptor was not generated by the EDS, but rather was 
manually designed. We describe this specific algorithm 
in this section. Traditional monophonic, mono-



  

 

 

instrument pitch detection algorithms are based on peak 
detection in the signal's spectrum. In more complex 
sound sources, state-of-art approaches look at spectral 
periodicities, either by a “comb-filter” sample-summing 
approach ([18,19]), or by a FFT approach ([20]). Such 
analyses done with a high frequency resolution have the 
advantage of yielding precise estimates of fundamental 
frequency, which e.g. can be used to study fine 
properties of instrument timbre. However, such high 
resolutions come at the expense of rather complex 
algorithmic provisions to cope with a number of signal 
complexities like inharmonicity or vibrato : 
inharmonicity factor, subband processing in [19], 
tracking of partial trajectories in [20]. 
In our context, we are only interested in a rough pitch 
estimate, with limited precision both in frequency 
(precise to the semi-tone, which is the MIDI resolution) 
and time (one salient pitch estimate for each sample). 
We apply a STFT to the signal, and converts the 
frequency scale into a midi pitch scale, using a bank of 
band pass filters, on per midi pitch from C0 to C7 with 
the width of one semitone. The remaining of the 
algorithm thus deals with a much simpler symbolic 
signal, a “pitchogram” which represents the energy of 
each potential midi pitch in the signal.  
Figure 3f shows such a pitchogram (averaged over time) 
for a sample from “Yesterday”, for midi pitches ranging 
from 30 (F#1) to 90 (F#6). The pitchogram is then 
looked for local maxima, each of which constitute a 
pitch hypothesis. 
Each pitch hypothesis receives a harmonic score 
according to the presence or not of another pitch 
hypothesis at the position of its harmonics : 
• at octave (midi pitch+12) 
• twelfth(octave+fifth) (midi pitch+19) 
• fifteenth(two octaves) (midi pitch+24) 
• major seventeenth (two octaves+major third) (midi 

pitch+28), etc. 
The harmonic score is computed as the weighted sum of 
the harmonics’ energy. Figure 3 shows the 5 best-score 
pitch hypotheses with their harmonics. Each of the 
harmonics’ energy is the energy of the corresponding 
pitch hypothesis as found in the pitchogram. 
Additionally, we reinforce the scores of pitch hypothesis 
which uniquely explain one of their harmonics, e.g. the 
first harmonic in Figure 3-b. Note that the first 
harmonic of 3-b doesn’t become a pitch hypothesis and 
doesn’t appear as a new plot in Figure 3, because it has 
no harmonics, and thus receives a minimal score. 
Finally, we pick the pitch hypothesis with the best score. 
In Figure 3, the best hypothesis is 3-c, which both 
includes a uniquely explained harmonic, and has an 
important harmonic score. The corresponding pitch is 
the midi pitch of its fundamental, i.e. 52 (E3). Note that 
others strategies are possible to cope with polyphony 
(e.g. choosing all hypotheses whose score exceeds a 
certain threshold) 
 

 
 
Figure 4: the 5 main pitch hypotheses (a-e) corresponding to the time-
averaged pitchogram (f). Brackets show the harmonic relations between 
the partials of each hypothesis. Dotted-line squares highlight the partials 
which are explained by a unique pitch hypothesis. 

 
We have conducted a small evaluation in order to fine-
tune the weights involved in the computation of the 
harmonic score. The test database has 50 samples 
extracted automatically from 3 pop songs, and the target 
pitch were determined manually. We test 2 parameters : 
the number of harmonics to be considered (nh), and the 
weights of the harmonics, parameterized by exponential 

).exp( nγβα −  curves, with gamma ranging from –1 

to 1. We observed that these parameters have little 
influence on the algorithm’s precision. The best 
precision (0.76) was obtained for nh=5 and gamma=0.4 
(slightly decreasing weights). For better precision, 
harmonic weights could be adapted to specific 
instrument timbres. 

2.4. Time stretching 

The samples extracted by segmentation from the 
original song have the same duration as in the original 
song  (e.g. 1.44 second for the above-mentioned “day” 
sample from “yesterday”, in the original recording in 
the Help album). However, when these samples are 
mapped on a music instrument, we want the duration to 
match the musician’s intention: notes can be shorter or 
longer than in the original song they were extracted 
from. 
The process of modifying the duration of a note is 
called time stretching. Time stretching in traditional 
samplers is done by looping within the sustain part of 
the sample for the appropriate (longer) duration. This 
requires loop start and end points, which are usually 
found manually, and requires much trials-and-errors. 
Looping is well adapted for clean monophonic, mono 
instrumental samples. However, in our context of 
sampling arbitrary recording, with complex polyphony, 
background percussion, and “real-world” sound 
production like reverberation, this approach yields very 
poor results. 
We time-stretch the samples using a technique know as 
phase-vocoder, which analyses the short term spectrum 



  

 

 

of the signal and synthesizes extra frames to morph 
between the original signal’s frames (e.g. adding an 
extra 50 millisecond every 50 milliseconds). The 
technique relies on a phase continuity algorithm called 
identity phase locking ([21]).  
In our application context, many samples resulting 
from the segmentation algorithm described above are 
not ideally stable: while each sample is a coherent note 
(e.g. “day”), there are still minor events occurring in 
the background (e.g. softer notes of the guitar 
accompaniment), which creates discontinuities of 
timbre, energy, etc… 
 

 
Figure 5: time stretching with stability zone weighting 

If we apply the phase-vocoder to the whole sample, the 
algorithm would also stretch these transient events, 
leading to unrealistic, “slow-motion” sounds, known as 
transient smearing (e.g. guitar attacks lasting for too 
long). To avoid stretching zones of discontinuity in the 
signal, we first analyze each sample to find zones of 
spectral stability, using the EDS harmonicity descriptor 
(section 2.2). Each stable zone receives a stability score, 
and we only stretch these zones, by a stretch factor 
which is proportional to the zone’s stability. (Figure 4) 

3. ARCHITECTURE 

Figure 5 describes the architecture of the system. The 
core of the SongSampler is implemented in Java. It is 
composed of 2 concurrent interacting processes, a 
player, and a sampler. The interaction occurring 
between the Sampler and the Player is at the center of 
the application we propose in this work, and is 
described in details in the next section.  In this section, 
we only describe the nature and medium of the 
communication between the components. 
The SongSampler relies on 2 other components: 
• MidiShare [22] is a real-time multi-task MIDI 

operating system. MidiShare applications are able to 
send and receive MIDI events, schedule tasks and 
communicate in real-time with other MidiShare 
applications.  

• Fluidsynth [23] is a real-time software synthesizer 
based on the SoundFont 2 specification. The 

SongSampler relies on fluidsynth to efficiently play 
the samples analysed by the Sampler.  

 

 
Figure 6: Architecture of the SongSampler, showing the 4 main 
components and their Java native interface. 

Both Fluidsynth and the Sampler process are declared as 
MidiShare applications. MIDI messages coming from 
the user (e.g. through a MIDI keyboard) are routed via 
MidiShare to the Sampler.  
After analysis, the Sampler forwards the midi messages 
to Fluidsynth, which triggers the corresponding samples 
and renders them to the audio device. 
The Player communicates with a music database. It can 
autonomously query the db according to various criteria, 
which are inferred from the current state of the system 
and the user’s actions. It can also play a song, and 
interact with the sampler by proposing new songs to 
sample.  
The Sampler performs the analysis described in section 
2 (possibly prepared in non-real time), assigns samples 
to Fluidsynth, reacts to midi messages coming from the 
user (e.g. midi program changes), and interacts with the 
player by forwarding the incoming user actions. 
Fluidsynth is piloted in Java from the Sampler using 
Java native interfaces (JNI) which were developed for 
this project. Both Fluidsynth and the sampler 
communicate with MidiShare via JNI which were 
developed by Grame ([22]). 

4. PRELIMINARY EXPERIMENTS  

The SongSampler can be used in a variety of 
playing/listening modes, which results from the many 
possibilities of interaction between the Player and the 
Sampler process. In this section, we describe our 
preliminary experiments with the system. 



  

 

 

4.1. Turn Taking 

Figure 6 illustrates a first mode of interaction, where the user 
and the system’s music player take turns.  
In this setting, a song is chosen (e.g. our followed 
example, “Yesterday”), and analysed by the sampler : 
the song is segmented into meaningful notes and 
samples are analysed for pitch. The Sampler then maps 
the samples in fluidsynth in such a way that the 
samples are changed after each pressed key, and iterate 
in time order. For instance, pressing a key 3 times 
would trigger the 3 samples “yes-”, “-ter-”, “-day”. The 
samples are matched to every note on the keyboard, but 
keep a relation to their pitch in the original signal. For 
instance, the “yes” sample in “yesterday” has an 
original detected pitch of “G3”. If the user triggers this 
sample by pressing the “F3” key, fluidsynth 
automatically pitch-shifts1 the sample to match the 
wanted pitch, i.e. the sample will be played one tone 
lower than in the original signal. 
When the mode is started, the Player starts playing the 
song normally. At anytime, the user can press a note on 
the keyboard. When the note is received, the Player 
stops, and the Sampler seamlessly triggers the sample 
corresponding to the current position in the song. The 
user keeps the lead until he stops playing, i.e. a given 
time has passed since the last played note, at which 
point the Player starts playing the song again, at the 
position of the last triggered sample. Moreover, the new 
behavior of the Player depends very closely on the 
user’s performance : 
• bpm interaction: as the user plays with the Sampler, 

the bpm of its performance is tracked, using a real-
time beat tracker ([24]). Upon restart of the Player, 
the song is time-stretched (using the technique 
exposed in section 2.3) to match the bpm of the 
user’s performance.   

• pitch interaction: the performed pitch of the last 
triggered sample is compared to the sample’s 
original pitch, and upon restart, the Player pitch-
shifts the song to match the transposition interval 
(using a phase-vocoder like for time-stretching). 

Using these simple mechanisms, the user can play new 
melodies with the sounds of the original song. In turn, 
the original song is modified according to the user’s 
performance. 

Example on Yesterday 
Figure 6 is a transcription of a turn-taking interaction 
between a user and the song “Yesterday” by The 
Beatles. The example starts at the second line of the first 
verse. The Player plays the music corresponding to the 
melody {D,D,C,Bb,A,G} at a normal rate. At this point 
(#1), the user takes the lead, and press the {Bb} key, 
which is the original pitch of the next sample in queue 

                                                        
1 In the current version of fluidsynth, pitch-shifting is 
done by resampling.  

(Paul McCartney singing “here”). Then the user starts 
deviating from the melody with an ascending pattern 
{C, C#,D}. This successively triggers the samples “to”, 
“stay”, “oh”, at a different, increased pitch than in the 
original song. Simultaneously, the user increases the 
tempo from the original bpm of 100 quarter notes per 
minutes to an “allegro” tempo of 140 bpm. After 
triggering the “oh” sample, the user stops playing. The 
Player now takes the lead (#2), and restarts the original 
song at the position of the next sample (“I”). As the last 
triggered sample is pitched a perfect fifth higher than 
the original pitch, the original song is pitch shifted by a 
fifth, which creates a feeling of continuity with the 
user’s phrase. At the same time, as the user bpm is 
higher than the bpm of the original song, the song is 
time-stretched to match the new tempo.  

4.2. Collaborating 

Figure 7 illustrates another mode of interaction, in 
which the Player loops on a section of the original file 
(the introduction of Yesterday). In the mean time, the 
Sampler processes another section of the song (Paul’s 
voice on the first verse and chorus). The user is then 
able to improvise a phrase with the accompaniment of 
the original song. This mode is an interesting exercise 
for musicians, as they have to make the best of the 
offered accompaniment, e.g. in Figure 7, although the 
song is in the key of F major, the guitar vamping on the 
introduction does not play the third degree (A). This 
leaves an ambiguity on the major/minor character of the 
song2, which is exploited by the user (alternation of 
minor third Ab and major third A). 

4.3. Exploring the database 

The Sampler and the Player need not process the same 
song. For instance, in the previous mode, the Sampler 
may query a song in the database according to any 
metadata, e.g. instrument = piano. Consequently, the 
user would play on top of Yesterday’s guitar comping 
with e.g. the piano sound of a Beethoven sonata. 
Moreover, the Sampler thread can listen to the end of 
each of the user’s phrases, and change the synth’s 
settings with another piano song so that the user 
explores all piano songs/sounds in the database.  

5. FURTHER WORK 

Many standard techniques of Music Information 
Retrieval can be integrated in the interactive system 
describe above. This section lists some of the 
possibilities we envision : 

                                                        
2 This ambiguity on the song’s key is actually largely 
exploited in the melody of original song, as analysed 
e.g. in [25] 



  

 

 

• Editorial metadata on the songs : play only with 
samples from the Beatles, or only “Brasilian 
sounds” 

• High-Level Descriptors on the samples :  Perceived 
Energy ([16]) (samples with high energy are 
triggered when keys are pressed with a high 
velocity, while softer samples are triggered for lower 
velocities), Instrument ([27]) (play only samples of 
acoustic guitar). As described in section 2, the 
SongSampler relies on the EDS to automatically 
generate such descriptors. 

• Query by Melody ([1]) The user plays the melody of 
“Michelle” with the Samples of “Yesterday”, and 
the Player replies with “Michelle” 

• Query by Harmony ([28]): The player selects a song 
whose harmony matches the phrase being played 

• Query by Timbre ([4]): the SongSampler may 
interact with the user by proposing (i.e. either play 
or sample) songs which sound similar to the song 
currently being played/listened to. 

• Structural Analysis of the songs ([29]) : sections to 
sample or to loops (see 4.2.) may be automatically 
detected. 

6. CONCLUSION 

This paper describes a system, The SongSampler, which 
automatically samples a music file in order to produce 
an instrument that plays the same sounds as the original 
audio file. This is an attempt at mutually enriching both 
worlds of Music Information Retrieval and Music 
Interaction. The process of interacting with a music 
collection creates a novel immersive browsing 
experience, in which queries are not necessarily 
formulated by the user, but are rather inferred from the 
user’s actions. On the other hand, playing with such a 
MIR-enabled interactive instrument enhances the 
feeling of appropriation by letting listeners play their 
own music with the sounds of their favorite tunes. 
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Figure 7: Turn Taking on “Yesterday – The Beatles”. 

 
Figure 8: Playing on top of the introduction of “Yesterday”, with samples from the verse and chorus 


