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Jamming With Plunderphonics:
Interactive Concatenative Synthesis Of Music
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Abstract—
This paper proposes to use the techniques of Concate-

native Sound Synthesis in the context of real-time Music
Interaction. We describe a system that generates an au-
dio track by concatenating audio segments extracted from
pre-existing musical files. The track can be controlled
in real-time by specifying high-level properties (or con-
straints) holding on metadata about the audio segments.
A constraint-satisfaction mechanism, based on local search,
selects audio segments that best match those constraints at
any time. We describe the real-time aspects of the system,
notably the asynchronous adding/removing of constraints,
and report on several constraints and controllers designed
for the system. We illustrate the system with several appli-
cation examples, notably a virtual drummer able to interact
with a human musician in real-time.

Index Terms—musaicing, concatenative synthesis, inter-
action, real-time, constraint satisfaction

I. INTRODUCTION

Most Text-To-Speech (TTS) systems today are able to
synthesize text typed in by a user in real-time, through
a grapheme-to-phoneme transcription of the sentences to
utter ([5]). Such systems typically rely on Concatenative
Sound Synthesis (CCS), a paradigm which uses a database
of samples, called units, and a unit selection algorithm that
finds the sequence of units that best match a target sound or
phrase. TTS systems are completely user-driven in the sense
that they only produce responses to the user input (text),
without any possibility for a predetermined strategy.

Inspired by the success of TTS, CSS is gaining more
and more attention in the field of music, as recently re-
viewed in [22]. While some commercial systems like Synful’s
RPM Synthesizer ([8]) also build up on the idea of purely
user-driven synthesis, a number of experimental systems,
like John Oswald’s historical Plunderphonics effort ([10])
or more recent semi-automatic systems ([7], [21]), propose
a generative, compositional approach where the system pro-
duces musical textures according to some prescribed target.
Along these lines, we introduced in [24] the concept of musi-
cal mosaics (“Musaicing”), which reconstructs a given piece
of music using sound samples extracted from other pieces.
While musically more interesting than user-driven synthesis
tools, such generative systems are intrinsically static, and
unable to adapt to real-time user input.

This paper describes a real-time interactive music sys-
tem based on concatenative synthesis, which is an attempt
to find a middle point between the purely user-driven and
purely generative approaches. We propose a system able to
generate an audio track by concatenating audio segments, or
samples, which can be controlled in real-time by high-level
properties holding on their metadata (possibly automati-
cally extracted). The typical sample used in the system is a
few beats’ audio extract from a given piece of music, which
corresponds to a musical bar (or measure), and can there-
fore be looped while preserving a feeling of steady beat and
metric. Figure 1 illustrates such a continuous concatenation
of audio samples, which are being selected from a database
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Fig. 1. Illustration of metadata-driven concatenative syn-
thesis: an audio track is generated as a continuous concate-
nation of audio samples, which are selected in a database
according to some criteria holding on their metadata.

based on metadata such as energy, presence of certain drum
sounds, etc.

We propose a constraint-satisfaction algorithm to control
the high-level properties of the generated audio track, such
as its energy or its continuity, and a real-time mechanism to
allow constraints to be modified at any time. Constraint sat-
isfaction programming (CSP) is a paradigm for solving dif-
ficult combinatorial problems, particularly in the finite do-
main. In this paradigm, problems are represented by vari-
ables having a finite set of possible values, and constraints
represent properties that the values of variables should have
in solutions. CSP is a powerful paradigm because it lets
the user state problems declaratively by describing a pri-
ori the properties of its solutions and use general-purpose
algorithms to find them. There have been numerous ap-
plications of CSP to music, e.g. for automatic generation
of playlists of music titles [1], automatic harmonization [14]
and spatialization [13]. For our “Musaicing” system [24],
we introduced the idea of using CSP to generate audio se-
quences of sound samples, with high-level constraints hold-
ing on the metadata of the samples. The work presented in
this paper is a real-time, interactive extension of Musaicing.

Figure 2 shows an overview of the principal components
of the system. The concatenation engine is composed of a
CSP solver component which is responsible for the contin-
uous solving of the constraint problem, and a player com-
ponent which is responsible for the rendering of the con-
tinuous concatenation of the successive solutions found by
the solver. This concatenation engine can be controlled in
real-time by a set of controller components, which can mod-
ify the constraint problem asynchronously (following the ar-
rows labeled “1” in Figure 2), and may react to information
received from both the solver (“2”) and the player (“3”).

The paper is organized as follows. Section II and III de-
scribe the concatenation engine. Section II presents the
CSP solver which is at the core of the system: an object-
oriented implementation of a local search constraint satis-
faction technique, called adaptive search [4]. Section III
then describes the specific extension of this framework,
which we call incremental CSP, to handle real-time sequence
building and asynchronous CSP modification. We notably
examine the careful communication scheme between the
solver and the player components. Section IV then presents
several possible ways to interact with the concatenation en-



2 JOURNAL OF NEW MUSIC RESEARCH

CSP

Player

Controller

Controller

1

2
3

12

3

Fig. 2. Overview of the principal components of the system.
The concatenation engine is composed of a CSP solver and
a player. The CSP can be modified asynchronously (1) by
several controllers, which are monitoring both the CSP (2)
and the player (3)

gine, and describes a set of controller components that were
designed in this purpose, notably controllers capturing in-
formation from an incoming MIDI or audio stream e.g. from
a human musician interacting with the system. The final
section (V) gives a number of usage examples of the sys-
tem, with an emphasis on a real-time drumming machine
able to interact with a human performer. We show that,
contrary to more traditional mapping-based systems, the
constraint satisfaction approach offers an effective and ele-
gant way to handle the tradeoff between the reactivity and
the autonomy of the system, which is a core issue when
building interesting interactive systems ([12]).

II. CONSTRAINT-BASED CONCATENATIVE
SYNTHESIS

A. Constraint Satisfaction

We define the selection of audio samples to build a con-
catenated audio sequence as a (finite-domain) constraint-
satisfaction problem (CSP). A sequence of samples is mod-
eled as a sequence of M variables V1, V2, ..., VM whose values
can be taken from a finite database of N samples, called
their domain. Each variable Vi represents the ith sample in
the sequence. Figure 3 shows a possible CSP with 4 vari-
ables, each with their finite domain, which can be different
from one variable to the other.

The problem is to assign values to each variable so that
the resulting sequence satisfies a set of constraints defined
by the user. Each constraint may hold on a subset of the
problem’s variables. In the example in Figure 3, constraint
C1 only holds on two variables V1 and V3, while C2 holds on
the four variables of the problem. The constraints typically
hold on metadata of the assigned samples, which can be ei-
ther editorial metadata (e.g. the title of the song from which
the samples are extracted should be different from one vari-
able to the next), or automatically extracted acoustic meta-
data (e.g. the energy of each sample in the sequence should
be higher than 0.5). The issue of extracting such metadata
is not addressed in this paper, however we will give a few
examples in Section V.

B. Adaptive Search

As we described in [24], assigning values to variables un-
der an arbitrary set of constraints is a difficult combinator-
ial problem. The technique we propose here is based on an
adaptation of local search techniques to constraint satisfac-
tion, called adaptive search [4]. Adaptive search formulates
constraints as simple cost functions, which is well suited for
our problem which is clearly over-constrained : it is likely
that the constraints cannot all be satisfied at the same time,
especially when dealing with numeric acoustic metadata. A
constraint forcing samples to have, say, their energy equal
to 0.8 will never be exactly satisfied if there is no sample in
the domain of the constrained variables with this exact en-
ergy value. The cost of a constraint represents ”how badly”
the constraint is satisfied, for a given assignment of vari-
ables. In the previous example, a 0.78 energy sample will
be a low-cost candidate for the constraint.

More precisely, we define:
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Fig. 3. A CSP with 4 variables and 3 constraints.

• the cost F (Vi,C) of a given variable Vi with value Xi,
with respect to a given constraint C, which represents
”how badly” Xi satisfies C

• the cost F (Vi) of a given variable Vi with value Xi, which
is the weighted sum of its costs F (Vi,C) with respect
to each constraint holding on Vi. Each constraint has
a weight, which enables to balance the importance of
some constraints over some others. Section III.F will
illustrate the importance of constraint weighting.

• the global problem cost F (CSP ), which is the sum of
the F (Vi) for all Vi in the problem.

Assigning a new value to the a variable V0 modifies the
costs F (V0, Ci) of all the constraints Ci holding on V0, in
turn possibly modifies all the costs F (Vi) of all the variables
within the scope of one of several constraints Ci, and finally
the global problem cost F (CSP ).

The algorithm works as follows:

• Start with a random assignment of values to variable
(i.e. a random sequence of samples)

• Compute F (CSP ), the total cost of the sequence.
• Repeat until F (CSP ) is below a given threshold :
– For each variable Vi, compute F (Vi)
– Find Vw the worst variable in the sequence, i.e. whose

cost is the highest.
– Find its best possible new value by successively trying

all the values in its domain, and selects the value that
minimizes the global cost F (CSP ) (note that it does
not necessarily minimize F (Vw)).

– Assign this value to Vw.

Additionally, there is a provision for handling local min-
ima, through the use of a tabu list: worst variables for which
no value can be found to decrease the total cost are labeled
as “tabu” for a given number of iterations. This trick, along
with a technique inspired by simulated annealing, forces the
algorithm to explore other regions of the search space.

C. Constraints as Cost functions

The main interest of this algorithm is that constraints
are simply seen as cost functions, and hence are very
easy to define. For instance, the “all different” constraint
stating that all variables should have different values is
defined as follows:

AllDifferentCt.cost ()
Return 1 - the number of different values in the problem
divided by the size of the sequence.

More complex constraints can be defined as easily. For
instance, the “distance” constraint forces each variable
Vi in scope to have a value Xi for which a given numer-
ical metadata p(Xi) is as close as possible as a target
value pt (e.g. “all these variables should have an energy of
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0.1”). The corresponding cost function is defined as follows :

DistanceCt.cost()
Return the mean distance between the p(Xi) and pt, i.e.
1

M

∑M−1

i=0
|p(Xi)− pt|2

The “continuity” constraint holds on a set of variable
Vi, i = 1..s. It forces each duple of successive variables
{Vi, Vi+1} to have values {Xi, Xi+1} for which a given
numerical metadata p has similar values {p(Xi), p(Xi+1)}.
The corresponding cost function can be defined as follows :

ContinuityCt.cost()
Return the mean distance between all p(Xi) and p(Xi+1),

i.e. 1

M

∑M−2

i=0
|p(Xi)− p(Xi+1)|2

In practice, the cost functions are implemented more
efficiently, by passing the lastly modified variable as
argument to the cost functions. This information is used to
compute only the differential cost, instead of the whole cost.

For instance, the cost function of the distance constraint
can be defined in such a differential way :

DistanceCt.cost(Variable v)
Returns 1

M
(oldcost ∗ (M − 1) + |p(Xn)− pt|2)

This saves M − 1 database accesses to compute the p(Xi),
and M −1 substractions and multiplications. Such optimiza-
tions are crucially important, as the cost function of each
constraint is called N times at each iteration, where N is
the size of the current variable’s domain.

D. A note on continuous metadata

Note that the formulation of constraints as cost function
is a natural way to handle continuous metadata such as the
energy of a piece of audio, without any need for quanti-
zation. Each constraint computes a floating-point “cost”
which describes how badly they are satisfied for a given
instanciation of the problem’s variables. A distance con-
straint such that a variable should have an energy of 0.1
will be perfectly realised for an audio segment with energy
0.1 (cost = 0), slightly less for a segment with energy 0.12
(cost |0.1−0.12|2 = 0.0004), and even less for energy 0.125 (cost
0.0006). Cost functions are optionally rescaled between 0
and 100 using minimum and maximum bounds on metadata
values, so that constraints can be compared and weighted
(see Section V.C.5).

E. Object-Oriented Implementation

The previous algorithm is implemented in a Java frame-
work for constraint-satisfaction, which reifies such objects
as variable, constraint, problem and solver. The implemen-
tation capitalizes on several object-oriented constraint sat-
isfaction frameworks previously built in our research team,
such as BackTalk and BackJava ([19], [18].

E.1 Variable

A variable is represented by a Variable object, which con-
tains a domain (a Collection of values, generically Java Ob-
jects) and a value (a Java object). The value of the variable
is chosen among the values in its domain, by the solver.
Typical objects found in a variable’s domain encapsulate mul-
timedia items in a database, which can query the database
to access their metadata values. In [11], we have described
a Java framework, MCM, which offers such functionalities,
notably a sophisticated query language where metadata can
be described by a path from the object (i.e. an audio sam-
ple), e.g. sample.song.artist.name designates the metadata
corresponding to the name of the artist of the song from
which is extracted a given audio sample.

E.2 Constraint

The constraint object contains a list of variables on which
it holds, a weight (a double precision floating-point number)
and implements a cost function able to compute the cost
of the constrained variables based on their current values.
To decouple these abstractions from their implementation
so both can vary independently and be re-used as building
blocks in several constraints, we apply the Bridge design
pattern [6], and reify two adapters :

• CostAdapter: implements the computeCost(Constraint c)
method. Several adapters were implemented, such as
AllDifferent, Cardinality, Distance, or Continuity.

• VariableAdapter: implements the method
selectVariables(Constraint c), which returns the
set of constrained variables for a given constraint at a
given iteration. This set of variables need not be static.
A constraint may hold on the variables which match
a given criteria at a given iteration, e.g. “All piano
samples should be different” uses the AllDifferent cost
adapter and a dynamic variable adapter selecting the
samples which match the property “sample.timbre =
piano”. Moreover, a constraint’s VariableAdapter can
use the output of another constraint’s CostAdapter,
i.e. at any iteration, constraint C2 holds on all the
variables that have a bad cost according to constraint
C1.

E.3 Problem

CSP problems themselves are represented by instances
of class Problem. The class defines two instance fields:
variables, holding the set of variables and constraints, the
set of constraints. The main method of the Problem class is
the solve(Solver solver) method, which uses an instance of
the Solver class described below. The Problem class imple-
ments a number of advanced features, such as a scheduler
that carefully chooses the order in which constraints are
treated at each iteration, based on their possible hierarchi-
cal dependencies described above. Reifying CSP problems
offers a number of design advantages already described in
[19]. Additionally, this provides a unified interface for mod-
ifying the problem’s structure (variables, variables domains,
constraints, constraint’s variables, constraint’s weights), as
we will become clear in Section III.E.

E.4 Solver

Finally, a number of variants around the adaptive
search algorithm presented above are implemented as sub-
classes of the Solver class, again an application of the
Bridge design pattern. The main method in the Solver
class is the solve(Problem p) method, which is called by
Problem.solve(Solver s). Other types of CSP algorithms,
like filtering based on arc-consistency or back-tracking
methods (see [19] for a review) could be implemented in
this framework. However, we have shown on the exam-
ple of constraint-based playlist generation ([1], [15]) that
local-search approaches such as adaptive search generally
allow a scale-up of the domain sizes (up to several tens of
thousand values) unreachable by traditional complete CSP
algorithms.

III. REAL-TIME CSP

This section examines the extension of the previous
framework to handle the continuous building of a sequence
of audio samples. We introduce the notion of Incremen-
tal CSP, and describe the communication between the CSP
and a player thread, which is responsible for rendering the
concatenation of the successive best solutions found by the
CSP solver.

A. Incremental CSP

We represent the audio track being generated by a grow-
ing sequence of variables, with a finite memory M . At any
time, the next sample to be selected as well as the M latest
past samples (M arbitrary, can be as large as n the total
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Fig. 4. An incremental CSP with 3 variables and 4 con-
straints. V3 is the current variable, and V1, V2 are the past
variables.

Fig. 5. The same incremental CSP than in Figure 4, after
the increment operation.

number of samples played so far) constitute a sequence of
variables Vn−M , Vn−M+1, ..., Vn−1, Vn, each with their do-
main. We call the variable Vn corresponding to the next
sample to be selected the current variable, and the Vn−i for
i = 1..M the past variables.

The problem is to successively assign values to each vari-
able so that the resulting sequence satisfies a set of con-
straints defined by the user. The constraints may change
at any time, in an asynchronous manner. Obviously, at any
time, the problem can only set the value of the current vari-
able : once a variable is played, its value cannot be changed
(“one can’t modify the past”). However, the choice of the
next sample is influenced by the past choices, as constraints
holding on the current variable may also hold on the past
variables.

To model the passing of time, we introduce the notion
of increment operation. Each time a value is assigned to
the current variable, the problem is incremented, i.e. a
new variable is added to the problem. The former current
variable becomes a past variable, and the new variable rep-
resents the next current variable.

Figures 4 and 5 explicates the structure of the problem,
and illustrate the increment operation. In Figure 4, the
CSP at a given iteration i includes M = 3 variables, one
current and 2 past, with some constraints (the G and L

circles) holding on them. A value is selected for V3, and the
corresponding audio is scheduled to be played. At the next
iteration i + 1, the CSP is incremented, i.e. a new variable
V4 is added, which becomes the new current variable. Note
that the scope of the constraints is automatically modified
to also hold on the newly added variable. We will make
explicit two strategies for such a mechanism in Subsection
C below.

B. Incremental Adaptive Search

In this context, since only one variable can be modified
at a time (the current variable), there is no combinatorial
explosion of the search space. A complete enumeration of
all possible values for the current variable is only the size of
the sample database. Adaptive search is mainly targeted at
off-line problems where all values must be assigned simul-
taneously, and a complete NM enumeration is intractable,
e.g. in playlist generation [1]. However, adaptive search’s
formulation of constraints as simple cost functions is still
well suited for our problem, notably to handle contradic-
tory numeric constraints, as will be seen below. The al-
gorithm described in Section II is applied as is, with the
simple modification that at each increment operation, the
past variables are labeled as “tabu”, so that their value

Fig. 6. The real-time implementation of the system, using
4 concurrent threads. See main text for explanation of steps
1 to 5.

can’t be modified. Note that it would also be possible to
consider a set of several current variables, in which case the
full power of adaptive search would be used. For instance,
the current variable corresponding to the next measure to
be played could be further divided into -say- 4 variables
corresponding to a beat each.

C. Local and Global Constraints

In the context of incremental CSP, and for the clarity of
further discussions, we distinguish 2 types of constraints :

• Local Constraints only hold on the current variable.
They influence the selection of the next sample by only
looking at its intrinsic properties, without taking past
values into account. Typically, a distance constraint as
defined in Section II.C is a local constraint.

• Global Constraints hold on the current variable plus
some or all of the past variables. They influence the
selection of the best drum sample by also accounting
for the values of the past variables. Typically, a con-
tinuity constraint as defined in Section II.C is a global
constraint, trying to select new values so that they are
continuous with the past, already selected values.

Upon increment of the CSP, local and global constraints
have a different behavior. All local constraints update their
scope by removing the previous current variable (now vn−1),
and adding the new current variable vn. All global con-
straints simply add the newly added variable to their scope.
This mechanism is illustrated in Figures 4 and 5: before
the increment, the global constraints G1 and G2 hold on
{V1, V2, V3} and the local constraints L1 and L2 hold only
on V3, which is the current variable. After increment, G1

and G2 modify their scope to also include the new current
variable V4, while L1 and L2 now only hold on V4.

D. Real-time Implementation

The audio track built by the system corresponds to the
concatenation of the values of the successive current vari-
ables. This requires a careful synchronization between the
Incremental CSP component and an audio player, which is
in charge of the continuous playback of the track. The im-
plementation of this scheme uses a scheduler thread, which
iteratively queries the solver for the best solution so far and
schedules the corresponding audio for playback by the audio
thread.

Figure 6 explicits the interactions between the 3 threads
corresponding to the CSP solver, the audio thread and the
scheduler. At any time, the audio corresponding to the
latest selected sample is playing, and a new value must be
scheduled to immediately start after it finishes at endtime
ti.
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1. At time ti −∆, the scheduler wakes up, and asks the
solver for the best value it has found so far for the
current variable, given all the current constraints and
the values of the past variables. The solver replies and
increments immediately to start looking for the next
sample.

2. The scheduler retrieves the audio corresponding to the
sample found at step1. In the current implementation,
this includes reading and decoding a .mp3 file between
a start and end date through a local network, which
may take a variable time δi.

3. At time ti −∆ + δi, the scheduler thread schedules the
decoded audio for the current sample for playback at
the exact ending time ti of the latest sample, which
is currently being played. The choice of ∆ is made a
priori, to ensure that ti −∆ + δi < ti, i.e. ∆ > δi,∀i. In
our current implementation, we chose ∆ = 500ms.

4. The scheduler sleeps until ti+1−∆, having ti+1 = ti +di,
where di is the duration of the audio just scheduled.
This mainly gives the priority back to the solver, which
keeps scouring the database for the next value to be
scheduled at ti+1.

E. Asynchronous CSP problem alteration

As can be seen in Figure 6 with the arrows labeled “5”,
one or several control threads may modify the CSP problem,
at any time. This in turn modifies the values found by the
solver, which enables the real-time high-level control of the
output of the concatenation engine. Such changes can be
done manually by a user via a GUI, be scheduled a priori, or
be the result of the analysis of an interaction, as proposed
below in Section IV. We describe here the mechanisms that
allow such asynchronous changes to the CSP problem.

Several types of changes can be done on the CSP Prob-
lem, including:

• Adding a variable: This is the case in the increment
operation, which, while not requested by the control
thread, may nevertheless occur at any time, since it
depends on the timing of the player thread, and the
duration of the audio samples.

• Changing the domain of the current variable: For in-
stance, the sequence should now be composed of sam-
ples from “The Beatles - Yesterday”, and not any
longer from “Let it be” as was the case until now. The
change is made on the current variable, and all future
current variables created by the next increment oper-
ations will use the same domain.

• Adding/Removing a constraint: The constraint may be
either a local constraint (e.g. the next drum sample
should be a high energy sample, and not low energy as
was the case until now) or a global constraint (e.g. from
now on, the samples should have a continuous energy).

• Changing the variables on which a constraint hold:
This is also a notable consequence of the increment op-
eration, where global constraints are modified to in-
clude the new current variable, and local constraints
to only hold on the new current variable.

• Changing the weight of a constraint: It will be shown in
Section V that the ratio between the weights of local
and global constraints influences the whole system’s
behaviour, which we may wish to modulate in real-
time.

Any of these changes, if done in an unsynchronized man-
ner during CSP solving, has a potential for yielding unex-
pected behaviours. For instance, a typical solver implemen-
tation will process the problem’s constraints sequentially,
hence adding or removing a constraint during this process
will create havoc. Also, we have described that an effective
way to bookkeep the costs of the variables when very many
values are tried successively is to update them incremen-
tally. However, if the weight of a given constraint changes
from one value evaluation to the next, the whole chain of
differential costs will break down. In full generality, it is
dangerous to alter the structure of the CSP problem dur-
ing each iteration of the solving phase.
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Fig. 7. Cumulated costs of two contradictory linear cost
functions, for different combinations of their respective
weights wg and wl. The solid curve with square markers
corresponds to the cost function of the global continuity
constraint (i.e. (wl,wg) = (0,1)). The solid curve with up-
ward pointing triangles correspond to the cost function of
the local distance constraint (i.e. (wl,wg) = (1,0)). The dot-
ted curves correspond to intermediate weight ratios. Circle
markers on the dotted curves represent local cost minima on
the [xp,xt] interval. See main text for explanation of labels
1 to 4.

Therefore, synchronization is enforced by logging any in-
coming change request that occurs during a given iteration
into a FIFO stack (the to-do list), which is then committed
(i.e. each request is processed in the order of arrival) at the
beginning of the next iteration. If no control event is sent
to the CSP problem while searching for the next sample
to play, each iteration will yield the same best value result
(and thus indeed only one iteration is needed after each in-
crement). However, if a series of control events are sent to
the CSP during a given iteration i, these changes are first
stored in wait for the current iteration to finish, and then
committed before the next iteration i + 1. In this case, it is
likely that the best values found by iterations i and i+1 will
be different, since they simply don’t correspond to the same
problem. The more control events are sent to the CSP, the
more iterations are needed to find the best solution between
each increment operation.

F. Case of contradictory constraints

We give here an illustrative example of an incremental
CSP with 2 typical constraints:

• a global continuity constraint on a numeric metadata
x, stating that successive samples should have x values
that are as close as possible

• a local distance constraint that states that the next sam-
ple’s x value should be as close as possible to a given
target value xt

Additionally, we assume that the latest past variable had a
xp value, and that there are weights wg and wl on the global
and local constraint respectively.

Clearly, these 2 constraints are contradictory: if xp is low
and xt is high, high x values will have a low cost according to
the local distance constraint (being close to xt), but a high
cost according to the global continuity constraint (being far
from xp). One can manipulate the total cost of a given
sample xi by changing the weights on the local and global
constraints:

cost(xi) = wl.costlocal(xi) + wg .costglobal(xi) (1)

Figure 7 shows the total cost profile for all values between
xp and xt in the case where both costs are implemented as
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Fig. 8. Cumulated costs of two contradictory parabolic
cost functions, for different combinations of their respec-
tive weights wg and wl, using the same conventions than in
Figure 7. See main text for explanations.

linear functions, i.e.

costlocal(x) = α.|x − xt| (2)

and
costglobal(x) = β.|x − xp| (3)

In Figure 7, the solid curve with square markers correspond
to the cost of the global continuity constraint (using β =
1), which is zero at x = xp (label 1). The solid curve with
upward-pointing triangles correspond to the cost of the local
distance constraint (using α = 1), which is zero at x = xt

(label 4). The dotted curves correspond to the cumulated
cost in equation 1, for different ratios between wl and wg.
We observe that the cumulated cost is also linear on [xp,xt],
with a slope depending on the weight ratio, and therefore
the behaviour is winner-take-all. When wg is higher than
wl, the best cost value for x is xp (label 2), while if wl > wg,
the best value for x is xt (label3). Intermediary values are
never reached.

In many cases, we may wish a middle-point behaviour
in which the sequence will gradually increase from xp to
xt, with a rate depending on the weight ratio. While this
cannot be achieved using linear costs, Figure 8 shows that
it can with parabolic cost functions, such as

costlocal(x) = |x − xt|
2 (4)

and
costglobal(x) = |x − xp|

2 (5)

We observe that the cumulated costs (in dotted line) have
local minima (marked as a circle on the dotted curve) on
the interval [xp,xt], which are all the more so close to xt as
the ratio

wl

wg
increases. For a small weight ratio, the best x1

value will be close from xp. At the next increment step, the
next selected value x2 will be slightly higher than the new
xp = x1, and so on until x reaches the target value xt. If the
ratio of the weights is higher, the speed of convergence to
xt will be higher. Labels 2 and 3 illustrate that since the
domain is made of discrete values, the speed of convergence
from xp to xt may not be uniform, but may reach a tempo-
rary potential barrier, where several successive exact cost
minima are approximated by the same domain value.

IV. CONTROLLERS AND INTERACTION

In this section, we present several possible ways to inter-
act with the concatenation engine, and describes a set of
controller components that were designed in this purpose.

A controller component is an abstract thread with a start()
and a stop method. As represented in Figure 2, a controller
is a listener of both the CSP problem’s state (e.g. have the
constraints changed, what is the cost of the best solution so
far, etc.) and the player’s state (e.g. what is the current
sample being played).

A. One-shot Controller

The simplest type of controller is the one that immedi-
ately puts a new constraint on the problem when started,
and removes it when stopped. A possible example of such a
controller is the Consecutivity controller that enforces that
successive samples be extracted from the same song, and
that the original end position of a given sample be as close
as possible to the original start position of the next sample.
A concatenation engine controlled with this only controller
will play samples song by song in their original order (start-
ing at a random position).

B. Scheduled Controller

Another useful type of controller is the
ScheduledController, with which CSP problem modifi-
cations can be scheduled to occur at given dates. For
instance, the constraints put on the CSP problem by
the above mentioned Consecutivity controller could be
scheduled to be sent to the solver after 3 minutes of
interaction. A more typical example of ScheduledController
is the WeightRamp controller which puts a new constraint
on the CSP problem at a given start date, and increases
(or decreases) its weight linearly until a given end date.
This could be used e.g. to force the selected samples to
increasingly belong to the end of a given song, using a
Distance constraint on the start position of the samples.
When the constraint is first positioned, its low cost will
only slightly bias the CSP solver towards selecting ending
samples. As its weight increases however, the selected
samples will converge to the end of the song, while still
trying to respect the other constraints put on the CSP
problem (e.g. it will converge to the end of the song by
only using “piano” samples that are on the way).

C. Detector Controller

A Detector controller will issue a request for problem mod-
ification (typically add a new constraint) when a given prop-
erty is matched either on the state of the CSP problem, or
on the state of the Player. One example of this is the Stopper
controller, which stops the concatenation engine when its
detects that the last sample of a song has just been played.

D. Capture

A controller may analyse and react to information from
an incoming stream of data, e.g. a MIDI or audio real-
time acquisition from a human player. Figure 9 illustrates
a possible scenario where a human musician plays music on a
MIDI keyboard. The MIDI acquisition thread forwards any
meaningful events (typically note-on and note-off events)
to the controller thread (1). Such events can occur at a
rapid rate and may not be meaningful individually, e.g. a
chord will trigger several quasi simultaneous events, which
need to be aggregated by post-processing on their onset
date. Therefore, some buffering will typically happen in
the controller (2). At given times, either after sufficient
data has been received from the MIDI capture, or at a given
fixed rate, the controller will analyse the buffer of data, and
send a modification request on the CSP problem (3).

Several types of analysis can be done on MIDI data, no-
tably

• energy : the mean velocity of the note-on MIDI mes-
sages, computed over 500 ms windows.

• onset density : the number of note-on MIDI messages
received over 500 ms windows.

• pitch : the mean MIDI pitch of the note-on MIDI mes-
sages, computed over 500 ms windows.
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Fig. 9. Illustration of a controller analysing a MIDI capture

A wealth of other MIDI descriptors potentially useful for
music interaction systems can be found e.g. in [17]. Simi-
larly, audio capture can be analysed in real-time, with the
added advantage the metadata extracted from the samples
used by the CSP can usually be extracted with the same
algorithms from the incoming audio buffers.

Several mappings of the analysed capture metadata to
the samples’ metadata can be used, among which:

• Direct control: the incoming metadata values from the
captured are directly matched to the sample metadata
using distance constraints. For instance, each time a
new energy value is captured from the MIDI data, a
new constraint is put on the energy of the samples,
and any previous constraint holding on their energy is
removed.

• Event-driven control: like a Detector controller, the
Capture controller can wait until a given event occurs on
the captured metadata, e.g. the energy grows higher
than 0.5, to trigger a CSP problem change.

Arbitrary converters can be plugged in the Capture con-
troller objects to e.g. adapt the range of the input to the
output, or change the default linear mapping to any con-
trol curve. This can be used to build an Inverter controller
which forces the selected samples to be of low energy when
high energy is captured, and reciprocally.

In the next section, we notably describe an automatic
drumming machine that uses a MIDI capture controller to
detect parameters from a MIDI keyboard performance, and
match them to specifically designed drum sounds parame-
ters.

V. EXAMPLES

This section gives a few usage examples of the system,
notably a real-time drumming machine able to interact with
a human performer.

A. Rebuilding a normal player

An illustrative example of the system, if not particularly
useful, is to recreate a simple song player, using constraints
on the song’s samples. Three controllers are needed for the
player to have the following properties:

• The song starts at the beginning: This can be enforced
by a WeightRamp controller putting a (local) distance con-
straint on the samples so that their original start posi-
tion be close to 0.0. The constraint starts with weight
10, and quickly decreases to 0 in the first few seconds.

• The song is played in the original order: This is re-
alized by a simple OneShot controller that puts in a
(global) Consecutivity constraint on the sequence when
it starts. This enforces that successively selected sam-
ples be from the same song, and that they correspond
to successive samples in the original song.

• The song stops at the end: This is realized with a
Detector controller monitoring the player component
of the concatenation engine, which stops the concate-
nation engine when its detects that the last sample of
a song has just been played.

It is possible to choose the song to be played by setting the
variables’ domain to only contain samples from the song.
Additionally, it is possible to “speed up” the playback of
the song by adding an additional WeightRamp controller that
forces the samples to increasingly belong to the end of the
song (using a distance constraint on the original start po-
sition of the samples, and an increasing weight from 0 to
10). The controller can be scheduled to start at a given
start date, say 1 minute from the start. The song will play
normally for the first minute, and then successively skip to
samples that are increasingly near the end.

B. Concurrent playback strategies

The previous strategy can be combined with a concurrent
strategy, e.g. ordering the successive samples by increasing
energy. By manipulating the weight ratio between both
(sets of) constraints (wt the weight of the time-order con-
straints, and we the weight of the energy-order constraints),
different playback strategies can be combined. If wt >> we,
the song will playback normally, from begin to end. If
we >> wt, the song will be played in order of increasing en-
ergy. For intermediate weight ratios, the song can be made
e.g. to skip to the next high energy section, then proceed in
normal time-order to a low energy section, and then rewind
to a previous section of similar energy, etc. We are cur-
rently experimenting with such multi-criteria browsing into
songs, notably as a means to explore different instrumental
sections using distance constraints on timbre descriptors.

C. Interactive Drumming Machine

We now describe an advanced example of interactive con-
catenative synthesis: an automatic drumming machine able
to interact with a human musician playing on a MIDI instru-
ment. The system, nicknamed “RingoMatic”1, uses drum
samples automatically extracted from existing music titles
to build an interactive drum track, using specifically de-
signed drum sound descriptors. A complete description
of the system, notably metadata extraction details can be
found in [2]. Figure 10 shows a screenshot of the system,
which is integrated as a plugin of the MusicBrowser, our
content-based EMD system [11]. We summarize here the
different steps.

C.1 Drum Solo Detection

In order to extract drum samples from an arbitrary
song, we first need the ability to detect drum solo parts,
i.e. sections in music where only a drumkit is playing. This
is typically a drum solo in the middle of a jazz piece or
shorter drum breaks in a rock or funk song. We model
the problem as a 2 class classification problem, and build a
labeled database of 100 5-second music extracts, the first
50 being pure drum solo, and the other 50 various extracts
of popular music, encompassing many different genres
(jazz, rock, heavy metal, classical, folk, electronic), with or
without drums. We use EDS ([25]), a genetic-programming
scheme for extracting arbitrary high-level audio descriptors
from audio signals, to produce a classifier (see [2] for more
details). The best feature found by EDS is a correlate of
the SpectralKurtosis MP7 descriptor:

min (spectralKurtosis (hann (split (bartlett (bpFilter
(triangle (square (normalize(x))),223,2456)),134))))

The best classifier found by EDS is a k-nn classifier using 2
inverse-distance weighted nearest neighbors, which achieves
0.99 precision on the training database. We apply the drum
detector on sliding 3-second windows on full songs to seg-
ment drum solo parts. For robustness, we only look for
segments corresponding to at least 3 successive windows
classified as drums.

1 “an automatic Ringo Starr”
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Fig. 10. Screenshot of the RingoMatic system. An arbi-
trary song is selected using queries on its metadata (1). All
sections of drum solo are automatically detected (2), seg-
mented (3) and indexed with automatically extracted drum
sound descriptors such as energy or presence of cymbals.
These samples are then used as variable domains in an inter-
active concatenation engine, which is controlled with meta-
data extracted from a live MIDI performance(4). The map-
pings between the input MIDI metadata and the metadata
of the drum samples can be modified in real-time (5).

C.2 Segmentation

Once large sections of music which only includes drum
solo are identified, we segment them in 4-beat drum samples
using a stripped-down version of the method described in
[20]. Since beat tracking on drumtracks is usually a lot eas-
ier than on arbitrarily complex polyphonic audio, we only
consider one frequency band [0-400 Hz]. A first pass is done
to compute the bpm on 3-second buffers, and a second pass
is done with a beat-tracker tuned on the most represented
tempo found during the first pass in order to localize the
beats. Then, a 4-beat-long drum sample is extracted every
beat (under the assumption that the music signature is 4/4).

C.3 Metadata Extraction

Once a database of drum samples has been gathered, we
index each sample with perceptually-meaningful metadata.
Again, we use the EDS system to find good specific signal
processing features, and to optimize machine learning
algorithms that use these features. We describe here 4
descriptors relevant for drum samples that we modeled
with EDS. For each, we give the best feature found by EDS,
and the classification results using 10-fold cross validation.
Again, see [2] for more details.

• Energy : the perceptive energy of the drum sample,
independent of the RMS volume (all drum samples are
RMS-normalized). The best feature found by EDS

mean(log(var(split(deriv(square(X)), 1s)))) (6)

is related not with the absolute energy of the signal,
but rather with the amplitude of its variations. This
yields a precision of 0.89.

• Onset Density : the sensation of stroke density in the
drum sample. Drum rolls typically include very many
strokes, while some fills may include just a few kicks
and crashes. The best feature found by EDS

length(peaks(rms(hamming(split(X, 4096))))) (7)

can be interpreted as a rough count of peaks of energy.
The precision of the associated knn classifier is 0.92

Fig. 11. Energy of the MIDI performance (solid line) and
energy of the drum samples selected by the solver (dashed
line) over time.

• Presence of drums : the importance of tom and bass
drum strokes as opposed to cymbals and snare drums.
Jazz drummers typically use toms to give a ethnic
groove to a song, rather than cymbals and ride which
are typically used for swing. The best feature found by
EDS

SpectralDecrease(deriv(square(norm(X)))) (8)

gives a classification precision of 0.84
• Presence of cymbals : the importance of high-frequency

sounds like cymbals and ride. The best feature found
with EDS

division(rms(lpfilter(X, 500, 44100)), rms(X)) (9)

is simply the ratio of high frequency energy over the
total energy of the signal. This achieves 0.82 precision.

C.4 MIDI interaction

The resulting database of drum samples is used as the
domain in a CSP problem, in order to generate a continuous
drumtrack. We then control the high-level properties of the
drumtrack using constraints holding on the metadata of the
successive drum samples. We use a Capture controller as
described in Section IV to analyse the MIDI performance
of the human player in real-time and extract its energy,
onset density and pitch.

The three streams of MIDI metadata are converted us-
ing a transfer function, and the controller sends new local
distance constraints to the CSP problem accordingly. The
concatenation engine thus generates a drumtrack by sat-
isfying constraints created by analysing the MIDI perfor-
mance. For instance, a new MIDI energy value modifies
a local distance constraint holding on the drum samples’
energy metadata, i.e. which forces the energy of the newly
selected samples to be as close as possible to the input MIDI
energy. Similarly, low MIDI pitch can be inverse converted,
and mapped to a local constraint holding on the presence
of cymbal metadata, so that melodies played on the lower
octaves of the MIDI instrument trigger drum track that use
a lot of high pitched sounds, and conversely, high pitched
melodies trigger a lot of bass drum and tom sounds. Map-
pings between MIDI performance data and audio drumtrack
metadata/constraints can be arbitrary complex and can be
modified in real-time. This issue of mapping between MIDI
performance and Machine generated music parameters is
discussed at length in [16].
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Fig. 12. System behaviour with different ratio r of local to
global weight. (A) r = ∞ : the drumming machine reacts
immediately. (B) r = 2. (C) r = 1. (D) r = 1

2
. (E) r = 0:

complete autonomy of the system.

Figure 11 shows both the energy of the MIDI perfor-
mance and the energy of the drumtrack generated by the
system over time. We observe that the CSP solver is able
to follow the energy of the performance very finely, with
very small latency (typically the duration of one drum sam-
ple), and a precision which depends on the available energy
values in the database.

C.5 Autonomy/Reactivity Trade-off

While technically satisfying, such fully reactive behaviour
is often not suitable in a music interaction context, in which
one wants the interacting agent to have both musical real-
ism and autonomy2. For instance, it may be unrealistic to
instantly switch from very low to very high energy. Simi-
larly to the example given in Section III.F, we use global
continuity constraints to counter-balance the immediate re-
activity created by the local distance constraints. If the per-
formance energy suddenly increases, highly energetic drum
samples will have a low cost according to the local distance
constraint, but a high cost according to the global conti-
nuity constraint. One can manipulate the total cost of a
drum sample by putting weights wl and wg on the local and
global constraints respectively. A variety of behaviours can
be achieved ranging between complete reactivity (wg = 0)
and complete autonomy (wl = 0). Figure 12 shows the be-
haviour of the drummer subjected to a typical MIDI energy
input, using different ratio between wl and wg. For wg = 0,
the behaviour is then same than in Figure 11. For wl = 0,
the system does not take any account of the MIDI inter-
action, and only obeys to the continuity constraint. With
intermediate settings, the drumming machine follows the
input energy while still preserving continuity, thus yielding
a more musical output.

D. Comparison with mapping-based systems

Most of the algorithmic elements provided by individual
controllers and constraints (e.g. adapt the energy of
the selected segments to the energy of the incoming
performance) can be realized by standard direct mapping

2 we define here “autonomy” not as an intrinsic self-
motivation of the system - which lacks any kind of emerging
behaviour -, but as its ability to preserve a predefined set
of global constraints.

without utilizing the CSP formulation (as seen e.g. in [16]).
However, the architecture proposed in this paper pro-
vides a number of advantages over this traditional approach.

• Common framework for local mappings and global con-
sistency: Typical interactive systems use a mapping
formulation for coding reactive behaviours, and some
hard-coded, unmodular rules for enforcing long-term
consistency. The CSP formulation provides a common
framework for specifying both types of behaviour, as
local and global constraints. This ensures a greater
modularity and clearer formulation of the properties
of each system.

• Local and global weights: The fact that both local
mappings and global behaviours be both represented
by identical objects enables their balancing with the
weight mecanism described in Section C.5.

• Expressive power: While “mapping” constraints (i.e.
distance constraints as defined in Section II.C) clearly
are important and natural elements of interactive sys-
tems, constraints can represent a variety of global prop-
erties which cannot easily be represented by mappings
between input and output, like cardinality or distribu-
tion constraints (e.g. 2 piano segments should not oc-
cur in a row). Their representation as simple cost func-
tions allows constraints to implement arbitrary com-
plicated behaviours, such as database queries or his-
togram matching.

• Change in real-time: The modularity of both local and
global constraints enables to switch them on and off
in real-time, and to change their scope or parameters.
In mapping-base systems, this is also possible for re-
active behaviours (“rewiring”), however rarely possi-
ble for global behaviours. Such real-time modification
of free-code interactive behaviours would otherwise re-
quire advanced concurrent programming architectures,
as recently proposed in [23].

VI. Conclusion

We have presented a real-time concatenative system,
which uses a constraint-satisfaction algorithm to control the
high-level properties of the generated audio track, such as
its energy or its continuity. We described several extensions
of traditional fixed-length sequence CSP to handle incre-
mental sequences of variables, and presented a mechanism
to change the constraints in real-time. Such a concatenation
engine can be used to build real-time interactive systems,
where constraints are controlled by the analysis of an incom-
ing MIDI or audio stream from a human musician. The ex-
ample of the “Ringomatic” system demonstrates that com-
petitive local/global constraint satisfaction is both an effec-
tive and elegant way to control the autonomy/reactivity of
the system, which is a core issue when building interesting
interactive systems.

VII. Acknowledgements

This work gratefully inherits ideas, bits and pieces about
adaptive search from Philippe Codognet, musaicing from
Aymeric Zils & Anthony Beurivé and Object-Oriented CSP
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