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Abstract—Electronic Music Distribution is in need of robust and
automatically extracted music descriptors. An important attribute
of a piece of polyphonic music is what is commonly referred to as
“the way it sounds”. While there has been a large quantity of re-
search done to model the timbre of individual instruments, little
work has been done to analyze “real world” timbre mixtures such
as the ones found in popular music. In this paper, we present our re-
search about such “polyphonic timbres”. We describe an effective
way to model the textures found in a given music signal, and show
that such timbre models provide new solutions to many issues tra-
ditionally encountered in music signal processing and music infor-
mation retrieval. Notably, we describe their applications for music
similarity, segmentation and pattern induction.

Index Terms—Feature extraction, information retrieval, multi-
media database, music, pattern recognition.

I. INTRODUCTION

THE exploding field of Electronic Music Distribution
(EMD) is in need of powerful content-based management

systems to help the end-users navigate huge music title cata-
logues, much as they need search engines to find web pages
in the Internet. Not only do users want to find quickly music
titles they already know, but they also—and perhaps more
importantly—need systems that help them find titles they do
not know yet but will probably like.

Many content-based techniques have been proposed recently
to help users navigate around large music catalogues. Collabo-
rative filtering [1], for instance, is based on the analysis of large
numbers of user profiles. When patterns are discovered in user
profiles, corresponding music recommendations are issued to
the users. Systems such as Amazon.com exploit these technolo-
gies with various degrees of success.

Other content-based management techniques attempt to ex-
tract information directly from the music signal. In the context
of Mpeg7 in particular, many works have addressed the issues
of extracting automatically features from audio signals, such as
tempo [2], rhythm, or melodies [3].

In this paper, we propose to go further in the direction of con-
tent-based extraction by describing music titles based on their
global timbre quality. The motivation for such an endeavour is
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two-fold. First, although it is difficult to define precisely music
taste, it is quite obvious that music taste is often correlated with
timbre. Some sounds are pleasing to listeners, other are not.
Some timbres are specific to music periods (e.g., the sound of
Chick Corea playing on an electric piano), others to musical
configurations (e.g., the sound of a symphonic orchestra). The
second motivation is that timbre similarity is a very natural way
to build relations between music titles.

We therefore introduce here a technique to model how a given
music title “sounds”. More precisely, we do not attempt to label
a precise “timbre” in a taxonomy of timbres, e.g., we do not wish
to label a piece by Nick Drake as being “soft folk acoustic guitar
and a gentle male voice with a bit of cello”. However, we want
to build models which we are able to compare to one another,
in order to yield a measure of timbre similarity. For instance,
we may say that the piece by Nick Drake “sounds like” this
other acoustic piece by Bob Dylan. We present our hypothesis
that timbre is an effective metric in music analysis and informa-
tion retrieval in the following manner. Section II describes our
specific timbre model, based on Mel Frequency Cepstral Coeffi-
cients and Gaussian Mixture Models. Then Section III describes
our proposal for comparing timbre models. Section IV evalu-
ates this approach in the context of a simple retrieval system.
Noting that our work does not seek the best timbre model (if
that concept could be defined), merely one that works well, Sec-
tion V then focuses on using timbre models to segment indi-
vidual songs, and subsequently, Section VI develops the prin-
ciple of “texture score” from Section V and describes its ap-
plication to music similarity issues and to the identification of
repeating patterns in music.

II. M ODELLING POLYPHONIC TIMBRE

A. Previous Work About Timbre

A lot of research in music signal processing has dealt with
timbre. However most of it has focused on monophonic simple
sound samples, notably in the context of Instrument Recogni-
tion [4], i.e., identifying if a note, say A4, is being played on
a trumpet or a clarinet. In the current state of art, it is gener-
ally considered that the timbre of a given instrument resides in
the fine dynamics of some local signal features. A typical al-
gorithm would be to cut the signal into short frames, and for
each of these frames, to compute a rather high-dimension fea-
ture vector describing the temporal and/or spectral character-
istics of the signal. Among possible temporal features are rise
time, decay, and vibrato,1 while spectral features can be, e.g.,

1Although vibrato is a frequency modulation, it is generally assessed in the
time domain since its variation is slow compared to the usual STFFT frame-rate.
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spectral centroid, spectral skewness, or spectral roll-off. Then,
to model the timbre of the instrument sample, one generally uses
dynamic statistical models such as Markov chains [5], recurrent
neural networks or hidden Markov models. These models are
relatively complex compared to static models.

B. Long-Term Statistics Rather Than Local Dynamics

On the contrary, here, we are concerned with full polyphonic
music and complex instrumental textures, for which we want to
extract aglobal timbre description. For instance, we are inter-
ested in modeling the “timbre” ofThe Beatles, Yesterday: soft
electric guitar, Paul McCartney’s medium-ranged soft, melan-
cholic voice, gentle brushes from Ringo Starr’s drum kit, violin
and cello joining on chorus, etc. State of the art source separa-
tion algorithms [6] cannot yet separate out individual sources
from such a whole polyphonic mix. This means that we cannot
use the usual framework to model timbre: the features that we
would extract would not represent one given instrument, and the
dynamics we would model would be a meaningless mix of the
dynamics of all the individual sources, which are not synchro-
nised.

While it is very hard to keep track of individual spectral
shapes in the signal, a polyphonic signal still has a specific
spectral shape of its own. Fig. 1 shows the superposition of
the spectrums of 500 adjacent 50-ms frames of a polyphonic
texture. One can see that these 25 seconds of music generate a
very definite spectral envelope, and not a constant amplitude,
noise-like superposition as one could have thought. This global
shape turns out to be quite specific to a given texture, just like
the spectral envelope of 2 s of trumpet in instrument recogni-
tion systems, only on a larger scale (e.g., 1 min of sound). But
contrary to instrument recognition, we can only (or need only
to) use static models: we are trying to capture a global and
statistically emerging shape, not fine local dynamics.

The next two sections present the modeling algorithm. We
proceed just like in Fig. 1. We cut the signal into frames, com-
pute the spectral envelope of each frame, and “average” all the
envelopes to describe the signal globally. In practice, we model
the distribution of the envelopes as a mixture of Gaussian dis-
tributions, which is more precise and allows richer applications
such as segmentation.

C. Spectral Envelope Extraction

The musical signal is cut into 2048 points frames (50 ms), and
for each frame, we compute the short-time spectrum. We then
model its spectral envelope, i.e., the curve in the frequency-mag-
nitude space that “envelopes” the peaks of the short-time spec-
trum, using Mel Frequency Cepstrum ([7]). The cepstrum is the
inverse Fourier transform of the log-spectrum after a nonlinear
frequency warping onto a psychoacoustic frequency scale (the
Mel scale)

(1)

The are called Mel Frequency Cepstrum Coefficients
(MFCCs). In practice, we use the discrete cosine transform

Fig. 1. Emergence of a global spectral shape for polyphonic textures (plot of
amplitude against frequency in Hertz).

(DCT) instead of the inverse FFT: this guarantees that the
output values are real and decorrelated. The low order MFCCs
account for the slowly changing spectral envelope, while the
higher order ones describe the fast variations of the spectrum.
Section IV gives complete details about the choice of an appro-
priate number of coefficients.

D. Modeling

We model the distribution of each song’s MFCCs as a mix-
ture of Gaussian distributions over the space of all MFCCs.
A Gaussian mixture model (GMM) [8] estimates a probability
density as the weighted sum of M simpler Gaussian densities,
called components or states of the mixture

(2)

where is the feature vector observed at time t, N is a Gaussian
PDF with mean , covariance matrix , and is a mixture
coefficient (also called state prior probability).

We initialize the GMM’s parameters by k-mean clustering,
and train the model with the classic E-M algorithm [8]. Fig. 2
shows a three-dimensional (3-D) projection of a typical fea-
ture space (which is originally dimension 8). The dots represent
MFCCs and the ellipsoids are the projection of the Gaussian dis-
tributions in the trained GMM.

In Fig. 2, we use mixtures of Gaussian distributions.
A complete discussion about the choice of an appropriate M is
to be found in Section IV.

III. COMPARING TIMBRE MODELS

In the previous section, we have presented how to model the
global timbre of a piece of music. We present here a first applica-
tion, which is also a good way to evaluate the models: comparing
the timbre models of different songs to compute their “timbral
similarity”.
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Fig. 2. GMM modeling of a distribution of MFCCs (The Beatles—“Let It
Be”). The axis correspond to the three first principal components from a set
of 12-dim MFCC vectors.

A. State of Art

Among related work in this domain, automatic genre classi-
fication ([9]) tries to categorize music titles into genre classes
by looking at spectral or temporal signal features. In this ap-
proach, the tested song’s timbre is matched against pre-com-
puted models of each possible genre. Each genre model aver-
ages the timbre of a large number of songs that are known to
belong to this genre. There is no matching from one song to an-
other, but rather from one song to a group of songs.

Music title identification or audio fingerprinting ([10]) deals
with identifying the title and artist of an arbitrary music signal.
This is done by comparing the unlabeled signal’s features to a
database containing the features of all possible identified songs.
In this case, the matching is done from one song to another, but
the system only looks for exact matches, not for similarity.

Our approach borrows from both techniques, since it per-
forms approximate matching of one song to another. Since our
original formulation of the problem in [11], timbre similarity
has seen a growing interest in the Music Information Retrieval
community. Each contribution often is yet another instantiation
of the same basic pattern recognition architecture, only with dif-
ferent algorithm variants and parameters. For a complete review
and comparison of these variants, please refer to [12].

B. Comparing Timbre Models

In order to compare the timbre models of two songs, we use
a sampling method to approximate the likelihood of the feature
vectors of one song A given the model of another song B. We
sample a large number of points from model A, and compute
the likelihood of these samples given model B. We then make
the measure symmetric and normalize.

(3)

Fig. 3. Query by timbral similarity in the Cuidado music browser.

where NS is the number of samples drawn from each distribu-
tion. We have found to be a sufficient value to obtain
good results. This gives a distance measure which is the prob-
ability that song A be modeled by model B. Complete details
about the algorithm can be found in [12].

In the context of the CUIDADO Music Browser ([13]), we
have set up a database of about 20 000 popular music titles, to-
gether with metadata extracted automatically through different
techniques. Metadata include information about artists, genres,
tempo, energy, etc. and the herein discussed timbre models. The
user can notably access this database by asking the question: “I
like this song. Find me other songs that sound the same”. The
user selects one song “he likes” in a list, or by typing in some
metadata of title, artist, etc. and the system finds out the n closest
songs by comparing their timbre models.

Fig. 3 shows a screenshot of the application. The query was
“Ahmad Jamal- L’instant de Vérité”—a jazz piano solo, and the
result lists contains songs of many genres, which all contain ro-
mantic-styled piano: New Orleans Jazz (G. Mirabassi), Clas-
sical piano pieces (Schumann, Chopin), and even a “Variety”
song (William Sheller, a French singer and pianist who had a
classical training).

The most interesting similarity results are often the most un-
expected ones: songs of different artists or genres, but also dif-
ferent dates of production, different cultural backgrounds, etc.
For instance:

• Solo piano: “Classical”Schumann—Horowitz—Kreisle-
riana, Op 16-5 (sehr langsam) and “Jazz”Bill Evans—I
loves you Porgy.

• Orchestral textures: “Classical”Beethoven—Romanze
fur Violine und Orchester Nr. 2 F-dur op. 50 and
“Pop” The Beatles—Eleanor Rigby or “Musicals” Gene
Kelly—Singin’ in the rain.

These surprising associations provoke an exciting feeling of
“discovery”. Such similarities, based on our approach of the
global “sound” of a piece of music, are very interesting in the
context of Music Information Retrieval, because they cannot be
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assessed by a nonsignal method, contrary to artist and genre sim-
ilarity.

IV. EVALUATION

Using timbre models to assess the timbre similarity between
songs is a useful framework to evaluate the quality of the mod-
eling itself. As we will see in the next sections, other applica-
tions such as segmentation and structural analysis are difficult
to evaluate per se. However, as they are all based on the same in-
stantiation of “timbre”, we believe evidence on the “similarity”
application is also relevant for other related applications of the
same model.

A. Test Database and Evaluation Metric

The question of evaluation is a problem that is hotly debated
in the MIR community. The first step toward a unified, stan-
dardized evaluation procedure is a common test corpus, which
the community has yet to produce, although recent initiatives
are making this more of a reality [14].

For our problem, a test database of 350 music titles was con-
structed as an extract from the Cuidado database. It contains
songs from 37 artists, encompassing very different genres and
instrumentations. Artists and songs were chosen in order to have
clusters that are “timbrally” consistent (all songs in each cluster
sound the same). We measure the quality of the measure by
counting the number of nearest neighbors belonging to the same
cluster as the seed song, for each song. More precisely, for a
given query on a song belonging to a cluster of size ,
the precision is given by

(4)

where is the rank of song in the query on song .
This value is referred to as the R-precision, and has been stan-

dardized within the text retrieval conference (TREC) ([15]). It
is, in fact, the precision measured after R documents have been
retrieved, where R is the number of relevant documents. To give
a global R-precision score for a given model, we average the
R-precision over all queries.

B. Results

We use this measure to study the influence of the algorithm’s
two main parameters.

• The number of MFCCs (N) extracted from each frame of
data. The more MFCCs the more precise the approxima-
tion of the signal’s spectrum, which also means more vari-
ability on the data. As we are only interested in the spec-
tral envelopes, not in the finer details, a large number may
not be appropriate.

• The number of Gaussian components (M) used in the
GMM to model the MFCCs. The more components, the
better precision on the model. However, depending on the
dimensionality of the data (i.e., N) more precise models
may be underestimated.

N and M are not independent: there is an optimal to be found
between high dimensionality and high precision of the mod-
eling. To explore the influence of N and M, we make a complete

Fig. 4. Exhaustive evaluation of the model parameters showing the influence
of the number of MFCCs and the number of Gaussian components on the
R-precision of the similarity measure.

exploration of the associated two-dimensional (2-D) space, with
N varying from 10 to 50 by steps of 10, and M from 10 to 100 by
steps of 10. These bounds result from preliminary tests showing
that the values and used in [12] are not optimal
and that the optimal (N, M) is well above (10,10). Fig. 4 shows
the results of the complete exploration of the (N, M) space. We
can see that too many MFCCs hurt the precision. When N in-
creases, we model finer spectral variations, which creates un-
wanted variability in the data. The best R-precision
is obtained for and .

While this 63% of precision may appear disappointing, it is
important to note that our evaluation criteria necessarily under-
estimates the quality of the measure, as it does not consider rele-
vant matches that occur over different clusters (false negatives),
e.g., Ahmad Jamal being close to Schumann, in the example in
Fig. 3. Moreover, in Section III, we described how these false
negatives (“surprising matches”) can lead to exactly the sort of
behavior one wants from a MIR system—helping you find the
thing you did not know you wanted. For more evaluation results,
see [12].

V. SEGMENTING TIMBRES WITHIN ONE SONG

The query by timbre described in the previous sections uses
one timbre model for each song. As each model is a mixture
of possibly very different gaussian distributions, it can capture
several different textures for each song. For instance,The Bea-
tles—Let it Be may be represented by one Gaussian for the tex-
ture “piano+voice” and another gaussian for the “electric guitar
solo” in the middle of the song. It may not be logical to com-
pare such composite models to one another. Indeed the most
perfect match to “Let it Be” would be a song which has exactly
the same proportion of piano and guitar, and songs which only
have a very similar “piano+voice” texture may be ruled further
away by the system. Therefore, it would be very interesting to
be able to analyze a given song and to segment it into sections
of homogeneous timbre (e.g., here extracting the guitar solo in
the middle). It is the problem we deal with in this section.
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Fig. 5. Segmentation of Bourvil’s song. State 0 is {silence}, state 1 is {voice
+ accordion + accompaniment}, and state 2 is {accordion + accompaniment},
plotted against time.

A. State of Art

In signal processing, segmenting a signal has the very broad
meaning of identifying and labeling its different sections of
interest. In practice, there are different points of view depending
on the scale of the analysis: from smallest to largest, music
researchers have called “segmentation” the process of discrim-
inating notes and rests [16], transients and steady parts [17],
instruments [4], sources (e.g., different speakers, speech versus
music, etc.) [18], [19], or musical structures (verse/chorus,
movements ) [20]. As regards the techniques used, we can
identify two main types of segmentation algorithms.

• Novelty-based algorithms:
These algorithms first compute a set of features from

the signal cut into frames, and then detect the segment
boundaries by looking for abrupt changes in the trajectory
of features. The features can be generic MPEG7 features
[19] (spectral centroid, spectral skewness, zero-crossing
rate, etc.) or specific constructs, e.g., in [16] in-har-
monicity to segment transients and vibrato. The change
detection algorithms also vary from author to author: con-
stant threshold on the derivative [19], adaptive moving
average [16], or correlation with a specially designed
kernel [20].

Novelty-based algorithms have the disadvantage of not
providing any “understanding” of the segmentation: They
detect boundaries, but do not compare and label the re-
sulting segments. If after four changes, say, we enter a seg-
ment (i.e., a note, a timbre, a phrase, an audio class, etc)
that has already occurred before, it will not be identified
as being the same.

• Model-based algorithms:
This second class of algorithms allows such a labeling

of the segments, and thus a more “intelligent” segmenta-
tion of the signal. The data is first converted into adapted
features, just like before. Then, the trajectory of features
is matched with a model of each possible type of seg-
ment, and each frame is labeled with the model (i.e., the
type of segment) that best fits it. As far as we know, all
these model-based algorithms have relied so far on a su-
pervised approach, where the different types of segments
that can occur are known a priori. Raphael in [16] seg-
ments notes in an acoustic performance using a hidden
Markov model (HMM) [21] built from the score, which is
givena priori. Sugiyama in [18] segments audio classes
(music/speech ) by first learning HMMs on manually
labeled examples of each audio class (a HMM for music,

a HMM for speech), and then by decoding the signal with
this set of models.

The segmentation algorithm we propose here as a direct ap-
plication of our timbre models falls in this second-category of
algorithms. Foote in [20] also proposes a mixed novelty/model-
based scheme: segments are first produced in the first manner by
looking at boundaries in the trajectory of MFCCs. Then each of
these segments is modeled with a gaussian distribution, com-
pared to the other segment models, and clustered together using
singular value decomposition. Contrary to Foote’s algorithm,
we do not rely on a first-pass boundary detector, but rather learn
the segments, as well as their models in a single process.

B. Timbre Model-Based Segmentation

Once we have extracted the timbre model of a given song
as described in Section II, the segmentation is simply achieved
by labeling each frame with the component it is most probably
generated by.

In fact, we can view the E-M algorithm used to fit several
Gaussian components to the trajectory of MFCCs as an iterative
version of Foote’s algorithm: in the E-step, frames are labeled
with their most probable segment/model, and in the M-step, we,
in turn, use the frames in each segment to build segment models.
After a given number of iterations, we can use the learned model
to decode the data, i.e., to label each frame with its most prob-
able component index

(5)

where is a frame of data, and is a Gaussian component
from the song’s timbre model.

Fig. 5 shows the results of such an analysis on 20 s of music,
a 1960’s French song by Bourvil ([21]), modeled by a 3-state
timbre model. Its instrumentation consists of a male singer ac-
companied by an accordion, and a discrete rhythmic section. We
see that the segmentation is very accurate: we notice the back-
ground accompaniment at the end of every sung phrase, some-
times even between the sung words. The accordion introduction
appears very clearly, as well as the periodicities of the verse.

C. Evaluation and Further Improvement

While the evaluation of timbre models in the context of
“timbre similarity” (Section IV) already gives confidence
in the results of the segmentation, it is possible to directly
measure the accuracy of the segmentation by listening to the
homogeneity of each of the found timbre clusters (i.e., modeled
by each component). In the case of the segmentation of the
Bourvil song above, each of the three clusters correspond to
the instruments being blanked out: one cluster has all frames
of voice, another has all frames of accordion, etc. Informal
listening tests show that less than 20% of the clusters contain
frames from mixed sources. For instance, if we segment a jazz
song (“DD Bridgewater—What is this thing called love”) with
a 50-component timbre model, 17 clusters account for voice
frames, 11 clusters for piano frames, ten clusters for percussive
frames, three for double bass frames, and nine are clusters
containing mixed frames.
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One concern that arises is the fact that physical sources may
be shared over several clusters (which may occur if we use more
components than the number of different timbre textures in the
song, e.g., above). We propose two ways to solve
this issue. First, one can do a post-processing step where we
cluster the high number of components by hierarchical clus-
tering, until a certain cluster width is reached (this is notably
reminiscent of Foote’s algorithm). Individual Gaussian com-
ponents can be compared e.g., with the Kullback–Leibler dis-
tance. Another way of decreasing the sharing of timbres be-
tween clusters, as well as potentially decreasing the number of
mixed clusters, is to investigate more refined models, such as
hidden Markov models. A HMM can be viewed as the “dy-
namic” extension of a GMM, where we also model the dynamics
over the succession of Gaussian components. In [23], we have
shown that such a dynamic modeling sometimes improves the
quality of the segmentation. However, a formal comparison be-
tween GMM-timbre models and HMM-timbre models remains
to be done.

In any case, the fact that some clusters may not represent
a meaningful “physical” sound source, either because several
clusters account for the same source, or because a given cluster
gathers frames of mixed sources, is not necessarily a problem.
We look here at a midlevel representation of music, which is
useful even if it is not perfectly correlated to human judgments.
In the next section, we will analyze the structure of the timbre
segmentation we obtain here and show that it is useful for several
interesting problems in Music Information Retrieval.

VI. A PPLICATIONS OF THETEXTURE SCORE

The segmentation obtained from our timbre models provides
a useful representation for music, just like a very simplified
score, a “texture score”. In this section, we use this symbolic
representation in a Music Information Retrieval perspective to
match different performances of the same song, and to find re-
peating patterns in a song.

A. Similarity by Long-Term Structure

As we have remarked on Fig. 5, the texture score reveals much
of the structure of the song: phrases succeed to phrases, common
patterns are repeated every verse and chorus, instrument solos
stand out clearly and echo the introduction and ending, etc.

One interesting property of the timbre representation is that it
is based on spectrum, but is independent of what the spectrums
really are: We only look at the succession of the textures, not at
the textures themselves. A simple “A-B-A” texture score could
correspond to {guitar}—{guitar + voice}—{guitar}, but could
also well be {cello}—{cello + violin}—{cello}, etc.

In [24], we have used this property to match different interpre-
tations of the same song (i.e., same long-term structure) which
use different instrumentations (i.e., the spectral content of the
textures is different). The matching between scores (considered
as strings of texture labels) is done with the classic edit-dis-
tance algorithm [25]. The edit distance intrinsically copes with
noise (similar structures can differ quite a lot locally) and time
warping (two different performances with the same structure

Fig. 6. Comparison of the texture score representations of two different
interpretations of the same song.

Fig. 7. Three occurrences of a pattern in Bourvil’s texture score.

Fig. 8. Transcription of the first occurrence of the pattern.

can have a different rhythm). Additionally, there is a provision
to deal with permutations: as the numeration of the textures by
the segmentation stage is arbitrary, a texture which is referred to
as “1” in one song, could be referred to as “3” in another. The
automatic reordering of the textures is dealt with by heuristics
on the statistical distribution of the labels: e.g., matching a long
series of “11 1” (an instrument solo, for instance) in one song
to the same series of “33 3” in the other.

Fig. 6 shows the texture scores for the beginning of two ver-
sions of the same song, with different instrumentation: the first
one (Bourvil’s song used earlier) is a male singer and an ac-
companiment based on accordion; the second one has a female
singer and violins. Since we have freed ourselves from these
spectral differences by using the texture scores, the algorithm
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is able to notice that the two pieces show some similarity. De-
tails about the results can be found in [24]: tested on a data-
base of songs, the edit distance between “covers” or more gener-
ally songs with the same long-term structure (e.g., simple blues
music) is generally small, and the distance between different
songs is big.

B. Finding Repeating Patterns

Rather than matching different songs by comparing their tex-
ture score, the authors have proposed in [26] to use the tex-
ture score to find repeating patterns within one song. In order to
discover patterns in the texture score string, one could use dy-
namic programming as above. In [26], we have also introduced
a novel string matching algorithm inspired by an image-pro-
cessing technique: the Hough Transform.

The pattern analysis on the texture score of this paper’s fol-
lowed example, Bourvil’s song “C’était bien” [22] reveals a lot
of the structure of the tune. We present here an example of a
short pattern found by the system. Its length is relatively small,
about 3 s. It occurs 15 times during the song, five times in each
occurrence of the verse/chorus unit. Fig. 7 presents three of its
occurrences (the first three in the first chorus), and Figs. 8–10
show a transcription of the corresponding music by the first au-
thor.

The state sequences shown in Fig. 7 have the same labeling
than in Section IV: state 1 is silence, state 2 is {voice+accompa-
niment}, and state 3 is {accompaniment}. In the transcriptions
shown in Figs. 8– 10, the upper staff corresponds to the vocal
score, and the two bottom staffs correspond to the accompani-
ment: accordion, and bass. The drum track has not been tran-
scribed, as it does not influence the segmentation very much.

We can see from the transcriptions in Figs. 8––10 that these
three occurrences correspond to the same sequence of scale
degrees (2-3-2-3-5-4-3-2), but diatonically transposed to three
levels, harmonized in Dm,C,Bb.

Classic pattern induction algorithms would deal with such a
pitch similarity by using musical rules to account for transposi-
tion, or by just looking at musical contour. In our case, this sim-
ilarity of the pitches cannot be assessed from the texture score,
since it hides all pitch information within the textures. The al-
gorithm thus has discovered some similarity based something
else: structure. These occurrences have the same succession of
textures. Note that the variations between the occurrences, such
as the duration of the textures, correspond to variations of timing
and expressivity on the same phrase. This is especially clear
about the frames of silence (texture 1), which reveal short pauses
between sung words or in the accompaniment.

It is remarkable that melodic phrases and texture timing be
so closely correlated, and this suggests that a pitch transcription
may not be the only useful notation to understand music. In the
context of music processing, this opens the way for alternative,
more abstract representations of polyphony, which are easier to
generate from raw data, without having to separate sources. The
texture score, using our research on timbre modeling, appears to
be a good example of such a representation.

One possible application of the pattern discovery algorithm
described above is “Audio Thumbnailing”. The idea is to pro-
vide the user with the main characteristics of a title without

Fig. 9. Transcription of the second occurrence of the pattern.

Fig. 10. Transcription of the third occurrence of the pattern.

playing it entirely. One strategy to extract such a summary is
to select the most recurring pattern in the song. This path has
notably been followed by Peeters [27] and Bartsch [28]. Our re-
sults show that texture scores can be a way to find such large
patterns.

VII. CONCLUSION

Electronic Music Distribution is in need of automatic descrip-
tors of the content of a piece of music. In this paper, we have
presented our research about “polyphonic timbres”, i.e., how to
model the global “sound” of a given music title. Mixtures of
Gaussian distributions over a space of Cepstral coefficients are
an efficient way to model the textures found in a given music
signal. Such timbre models provide new solutions to many is-
sues traditionally encountered in music signal processing and
music information retrieval. First, they are directly applicable
to compute timbre similarity between songs. Second, we have
shown that the same approach allows us to segment a piece of
music into sections of constant timbre, with a time resolution
as small as the duration of a note. The output of such a timbre
segmentation, which we call “texture score”, gives a lot of infor-
mation about the musical structure of the songs. It can be used
to compute structural similarity between songs, and to extract
meaningful recurring patterns within one song.
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