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Abstract—Electronic Music Distribution isin need of robust and
automatically extracted music descriptors. An important attribute
of a piece of polyphonic music iswhat is commonly referred to as
“the way it sounds’. While there has been a large quantity of re-
search done to model the timbre of individual instruments, little
work hasbeen doneto analyze “real world” timbre mixtures such
astheonesfound in popular music. I n thispaper, wepresent our re-
search about such “polyphonic timbres’. We describe an effective
way to model thetexturesfound in a given music signal, and show
that such timbre models provide new solutionsto many issuestra-
ditionally encountered in music signal processing and music infor-
mation retrieval. Notably, we describetheir applicationsfor music
similarity, segmentation and pattern induction.

Index Terms—Feature extraction, information retrieval, multi-
media database, music, pattern recognition.

. INTRODUCTION

two-fold. First, although it is difficult to define precisely music
taste, it is quite obvious that music taste is often correlated with
timbre. Some sounds are pleasing to listeners, other are not.
Some timbres are specific to music periods (e.g., the sound of
Chick Corea playing on an electric piano), others to musical
configurations (e.g., the sound of a symphonic orchestra). The
second motivation is that timbre similarity is a very natural way
to build relations between music titles.

We therefore introduce here a technique to model how a given
music title “sounds”. More precisely, we do not attempt to label
a precise “timbre” in a taxonomy of timbres, e.g., we do not wish
to label a piece by Nick Drake as being “soft folk acoustic guitar
and a gentle male voice with a bit of cello”. However, we want
to build models which we are able to compare to one another,
in order to yield a measure of timbre similarity. For instance,
we may say that the piece by Nick Drake “sounds like” this

HE exploding field of Electronic Music Distribution other acoustic piece by Bob Dylan. We present our hypothesis
(EMD) is in need of powerful content-based managemeifitat timbre is an effective metric in music analysis and informa-
systems to help the end-users navigate huge music title cdian retrieval in the following manner. Section Il describes our

logues, much as they need search engines to find web pagegcific timbre model, based on Mel Frequency Cepstral Coeffi-
in the Internet. Not only do users want to find quickly musicients and Gaussian Mixture Models. Then Section Ill describes
titles they already know, but they also—and perhaps mooer proposal for comparing timbre models. Section 1V evalu-
importantly—need systems that help them find titles they ddes this approach in the context of a simple retrieval system.
not know yet but will probably like. Noting that our work does not seek the best timbre model (if

Many content-based techniques have been proposed recetiithi concept could be defined), merely one that works well, Sec-
to help users navigate around large music catalogues. Collaton V then focuses on using timbre models to segment indi-
rative filtering [1], for instance, is based on the analysis of larggdual songs, and subsequently, Section VI develops the prin-
numbers of user profiles. When patterns are discovered in usigle of “texture score” from Section V and describes its ap-
profiles, corresponding music recommendations are issuedptisation to music similarity issues and to the identification of
the users. Systems such as Amazon.com exploit these techntgpeating patterns in music.
gies with various degrees of success.

Other content-based management techniques attempt to ex-
tract informationldirectly from the music signal. In the cor}texl&' Previous Work About Timbre
of Mpeg7 in particular, many works have addressed the issues
of extracting automatically features from audio signals, such ag? lot of research in music signal processing has dealt with
tempo [2], rhythm, or melodies [3]. timbre. However most of ?t has focused on monophonic simplg

In this paper, we propose to go further in the direction of co$ound samples, notably in the context of Instrument Recogni-
tent-based extraction by describing music titles based on thé@n [4]. i.e., identifying if a note, say A4, is being played on

globaltimbre quality. The motivation for such an endeavour i€ trumpet or a clarinet. In the current state of art, it is gener-
ally considered that the timbre of a given instrument resides in

. . , the fine dynamics of some local signal features. A typical al-
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spectral centroid, spectral skewness, or spectral roll-off. The14 - |
to model the timbre of the instrument sample, one generallyus | |
dynamic statistical models such as Markov chains [5], recurre12{ ||
neural networks or hidden Markov models. These models a
relatively complex compared to static models. 10+

B. Long-Term Statistics Rather Than Local Dynamics 8}

On the contrary, here, we are concerned with full polyphoni
music and complex instrumental textures, for which we wantt ~ ||
extract aglobal timbre description. For instance, we are inter-
ested in modeling the “timbre” ofhe Beatles, Yesterday: soft
electric guitar, Paul McCartney’s medium-ranged soft, melar |
cholic voice, gentle brushes from Ringo Starr’s drum kit, violir
and cello joining on chorus, etc. State of the art source sepal

(0]

ol

- M

tion algorithms [6] cannot yet separate out individual source. 10 20 30 40 50 60 70
from such a whole polyphonic mix. This means that we cannlglt 1
use the usual framework to model timbre: the features that W,%'pm'ude against frequency in Hertz).
would extract would not represent one given instrument, and the

dynamics we would model would be a meaningless mix of the

Emergence of a global spectral shape for polyphonic textures (plot of

dynamics of all the individual sources, which are not synchr§PCT) instead of the inverse FFT: this guarantees that the
nised. output values are real and decorrelated. The low order MFCCs

While it is very hard to keep track of individual spectraficcount for the slowly changing spectral envelope, while the
shapes in the signal, a polyphonic signal still has a speciﬁtgh?r order' ones describe thg fast variations qf the spectrum.
spectral shape of its own. Fig. 1 shows the superposition 9ction IV gives complete details about the choice of an appro-
the spectrums of 500 adjacent 50-ms frames of a polyphofiate number of coefficients.
texture. One can see that these 25 seconds of music generate a
very definite spectral envelope, and not a constant amplitudi, Modeling
noise-like superposition as one cp_uld havg thought. Thi; glo'balWe model the distribution of each song’s MFCCs as a mix-
shape tums out to be quite specific to a given texture, just lifge of Gaussian distributions over the space of all MFCCs.
the spectral envelope of 2 s of trumpet in instrument recogi-Gaussian mixture model (GMM) [8] estimates a probability

tion systems, only on a larger scale (e.g., 1 min of sound). Byt ity as the weighted sum of M simpler Gaussian densities,
contrary to instrument recognition, we can only (or need onjyeq components or states of the mixture
to) use static models: we are trying to capture a global and

statistically emerging shape, not fine local dynamics.

The next two sections present the modeling algorithm. We M
proceed just like in Fig. 1. We cut the signal into frames, com- p(f) == Z TN, pomy ') ()
pute the spectral envelope of each frame, and “average” all the m=1

envelopes to describe the signal globally. In practice, we mode| . . . .
the distribution of the envelopes as a mixture of Gaussian d el_wereFt is the feature vector observed attime t, Nis a Gaussian

tributions, which is more precise and allows richer applicatio sDF .W.'th meay.,,, covarnance r_natnfm, a_n_d7rm IS amixture
. coefficient (also called state prior probability).
such as segmentation. L ) .
We initialize the GMM’s parameters by k-mean clustering,
C. Spectral Envelope Extraction and train the merI Wlt.h the classic E.—M glgorlthm [81. Fig. 2
) ) ] ) ) shows a three-dimensional (3-D) projection of a typical fea-
The musical signal is cutinto 2048 points frames (50 Ms), afigke space (which is originally dimension 8). The dots represent

for each frame, we compute the short-time spectrum. We thgfircCs and the ellipsoids are the projection of the Gaussian dis-
model its spectral envelope, i.e., the curve in the frequency-magputions in the trained GMM.

nitude space that “envelopes” the peaks of the short-time spec, Fig. 2, we use mixtures &ff = 3 Gaussian distributions.

trum, using Mel Frequency Cepstrum ([7]). The cepstrumiis thecomplete discussion about the choice of an appropriate M is
inverse Fourier transform of the log-spectrum after a nonlinegy pe found in Section IV.

frequency warping onto a psychoacoustic frequency scale (the

Mel scale)
_y [ll. COMPARING TIMBRE MODELS
Cp = L « / log (5(ejw>) O (1) In the previous section, we have presented how to model the
27 e global timbre of a piece of music. We present here a first applica-

tion, which is also a good way to evaluate the models: comparing
The ¢, are called Mel Frequency Cepstrum Coefficientthe timbre models of different songs to compute their “timbral
(MFCCs). In practice, we use the discrete cosine transfogimilarity”.
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(Db manager | Query. | Find by Similarity | Playlists. |
Seed Song = —— =
Janal.;Lamomulﬂav&fin m

Computation finished

& Jamal, Ahmad - Le moment de vérité - Jazz\ Modemn (0.0)

Mirabassi, Giovanni - Asi M Bonanga - Jazz \ New Orleans (0.00315545)
Schumann, Robert - Humoresque Op. 20 - Classical (0.00332563)
Schumann, Robert - Papillons Op. 2 - Classical (0.00437506)

ones, Hank - Blue and sentimental - Jazz (0.00450101)

Sheller, William - Vienne - Variety\ Song (0.00452157)

Chopin, Frederic - Nocturne Op. 9 N. 2 en Mib Maj - Classical | Romantic (0.00454389)
lBrahms, Johannes - Rhapsodie opus 119 no 4 en Mi Bemol Majeur - Classical (0.0046184)
§0ebussy, Claude - En Blanc et Noir- Classical (0.0047913)

Beethoven, Ludwig Van - Bagatelle Op. 126 - Classical \ Romantic (0.00486291)

Brahms, Johannes - Intermezzo opus 118 no 1 en La Mineur - Classical (0.00551143)

Chopin, Frederic - Impromptu opus 66 no 4 en C# Mineur - Classical \ Romantic (0.00561077)
Beethoven, Ludwig Van - Romance Cantabilte en Mi Min - Classical \ Romantic (0.00565988)
Beethoven, Ludwig Van - Sonate pour Piano & Violoncelle n.2 - Classical\ Romantic (0.005718.
Lupu, Radu - Sehr lebhaft - Classical (0.0058481)

Brahms, Johannes - Ballade opus 10 no 3 en Si Mineur - Classical (0.00593425)

Fig. 2. GMM modeling of a distribution of MFCCs (The Beatles—"“Let It
Be”). The axis correspond to the three first principal components from a s
of 12-dim MFCC vectors.

Fig. 3. Query by timbral similarity in the Cuidado music browser.
A. Sate of Art

Among related work in this domain, automatic genre classithere NS is the number of samples drawn from each distribu-
fication ([9]) tries to categorize music titles into genre classé®n. We have foundlS = 1500 to be a sufficient value to obtain
by looking at spectral or temporal signal features. In this ageod results. This gives a distance measure which is the prob-
proach, the tested song’s timbre is matched against pre-cability that song A be modeled by model B. Complete details
puted models of each possible genre. Each genre model aedgreut the algorithm can be found in [12].
ages the timbre of a large number of songs that are known tqn the context of the CUIDADO Music Browser ([13]), we
belong to this genre. There is no matching from one song to aiave set up a database of about 20 000 popular music titles, to-
other, but rather from one song to a group of songs. gether with metadata extracted automatically through different
Music title identification or audio fingerprinting ([10]) dealstechniques. Metadata include information about artists, genres,
with identifying the title and artist of an arbitrary music signaltlempo, energy, etc. and the herein discussed timbre models. The
This is done by comparing the unlabeled signal’s features taiger can notably access this database by asking the question: “|
database containing the features of all possible identified songé this song. Find me other songs that sound the same”. The
In this case, the matching is done from one song to another, bder selects one song “he likes” in a list, or by typing in some
the system only looks for exact matches, not for similarity. metadata of title, artist, etc. and the system finds out the n closest
Our approach borrows from both techniques, since it p&fongs by comparing their timbre models.
forms approximate matching of one song to another. Since oulkjg. 3 shows a screenshot of the application. The query was
original formulation of the problem in [11], timbre similarity « Anmad Jamal- L’ instant de Vérité¢—a jazz piano solo, and the
has seen a growing interest in the Music Information Retrievalsyt Jists contains songs of many genres, which all contain ro-
community. Each contribution often is yet another instantiatiqiantic-styled piano: New Orleans Jagz. Mirabass), Clas-
of the same basic pattern recognition architecture, only with difica| piano piecesSthumann, Chopin), and even a “Variety”

ferent algorithm variants and parameters. For a complete revigyhg iliam Sheller, a French singer and pianist who had a
and comparison of these variants, please refer to [12]. classical training).

_ The most interesting similarity results are often the most un-
B. Comparing Timbre Models expected ones: songs of different artists or genres, but also dif-

In order to compare the timbre models of two songs, we ulerent dates of production, different cultural backgrounds, etc.
a sampling method to approximate the likelihood of the featuf@" Instance:

vectors of one song A given the model of another song B. Wee  Solo piano: “Classical’Schumann—Horowitz—Kreisle-

sample a large number of poirffs' from model A, and compute riana, Op 16-5 (sehr langsam) and “Jazz"Bill Evans—
the likelihood of these samples given model B. We then make  |oves you Porgy.
the measure symmetric and normalize. « Orchestral textures: “ClassicalBeethoven—Romanze

fur Violine und Orchester Nr. 2 F-dur op. 50 and
“Pop” The Beatles—Eleanor Rigby or “Musicals” Gene
i=NS i=NS Kelly—Sngin' in the rain.

= . A e B
D(4, B) = ; log P (57%/4) + ; log P (57°/B) These surprising associations provoke an exciting feeling of

J=NS J=NS “discovery”. Such similarities, based on our approach of the

— Z log P (S/B) — Z log P (SP/4)  (3) global “sound” of a piece of music, are very interesting in the
context of Music Information Retrieval, because they cannot be

=1 i=1
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assessed by a nonsignal method, contrary to artistand genre s - E 10
ilarity. precision — m20
0,64+ II Ty =30
IV. EVALUATION 0.62 ] D40
Using timbre models to assess the timbre similarity betwee i |50
songs is a useful framework to evaluate the quality of the mor
eling itself. As we will see in the next sections, other applica
tions such as segmentation and structural analysis are diffic
to evaluate per se. However, as they are all based on the same
stantiation of “timbre”, we believe evidence on the “similarity”
application is also relevant for other related applications of th 10
same model.
nb mfcc

A. Test Database and Evaluation Metric 2 4
nb components N o

The question of evaluation is a problem that is hotly debate . -
n th? MIR commumty. The flrs,t step toward a unified, Staqfi?i. 4. Exhaustive evaluation of the model parameters showing the influence
dardized evaluation procedure is a common test corpus, Whighine number of MFCCs and the number of Gaussian components on the
the community has yet to produce, although recent initiativ&sprecision of the similarity measure.
are making this more of a reality [14].

Foro dur problem, a tefst data;lbase (')cj 3d50 (;nus;;: titles was C%@(’gloration of the associated two-dimensional (2-D) space, with
structed as an extract from the Cuidado database. It contaij. arying from 10 to 50 by steps of 10, and M from 10 to 100 by

songs from 37 artists, encompassing very different genres afdo<'o 109, These bounds result from preliminary tests showing
instrumentations. Artists and songs were chosen in order to h"ﬂ‘(&t the valueN = 8 andM = 3 used in [12] are not optimal
clusters that are “timbrally” consistent (all songs in each clustgf,j that the optimal (N, M) is well above (10,10). Fig. 4 shows
sound the same). We measure the quality of the measurey roqits of the complete exploration of the (N, M) space. We
counting the number of nearest neighbors belonging to the same <ae that too many MFCCs hurt the precision. When N in-
cl-uster as the seed song, for gach song. More pre_msely, foér@ases, we model finer spectral variations, which creates un-
given query on a song; belonging to a clustel’s; of sizeNi,  ante variability in the data. The best R-precisior 0.6358

the precision is given by is obtained folN = 20 andM = 50.
card (Si,/Cs, = Cs, A R(Sy) < IN;) While this 63% of precision may appear disappointing, it is
p(5i) = N, (4) important to note that our evaluation criteria necessarily under-
. _ estimates the quality of the measure, as it does not consider rele-
whereR(S}) is the rank of song, in the query onsond;.  vant matches that occur over different clusters (false negatives),

This value is referred to as the R-precision, and has been St@_@-_, Ahmad Jamal being close to Schumann, in the examp|e in
dardized within the text retrieval conference (TREC) ([15]). Itig. 3. Moreover, in Section Ill, we described how these false
is, in fact, the precision measured after R documents have beg@atives (“surprising matches”) can lead to exactly the sort of
retrieved, where R is the number of relevant documents. To giyghavior one wants from a MIR system—helping you find the
a global R-precision score for a given model, we average tfifing you did not know you wanted. For more evaluation results,

R-precision over all queries. see [12].
B. Results
We use this measure to study the influence of the algorithm’s V. SEGMENTING TIMBRES WITHIN ONE SONG

two main parameters. The query by timbre described in the previous sections uses

* The number of MFCCs (N) extracted from each frame ane timbre model for each song. As each model is a mixture
data. The more MFCCs the more precise the approximaf-possibly very different gaussian distributions, it can capture
tion of the signal’s spectrum, which also means more vageveral different textures for each song. For instafbe Bea-
ability on the data. As we are only interested in the spettes—Let it Be may be represented by one Gaussian for the tex-
tral envelopes, not in the finer details, a large number mayre “piano+voice” and another gaussian for the “electric guitar
not be appropriate. solo” in the middle of the song. It may not be logical to com-

e The number of Gaussian components (M) used in tlpare such composite models to one another. Indeed the most
GMM to model the MFCCs. The more components, thperfect match to “Let it Be” would be a song which has exactly
better precision on the model. However, depending on thiee same proportion of piano and guitar, and songs which only
dimensionality of the data (i.e., N) more precise modelsave a very similar “piano+voice” texture may be ruled further
may be underestimated. away by the system. Therefore, it would be very interesting to

N and M are not independent: there is an optimal to be fouheé able to analyze a given song and to segment it into sections

between high dimensionality and high precision of the mo@f homogeneous timbre (e.g., here extracting the guitar solo in
eling. To explore the influence of N and M, we make a completee middle). It is the problem we deal with in this section.
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2r ] a HMM for speech), and then by decoding the signal with
this set of models.

The segmentation algorithm we propose here as a direct ap-
r plication of our timbre models falls in this second-category of
algorithms. Foote in [20] also proposes a mixed novelty/model-
based scheme: segments are first produced in the first manner by
o— = - - looking at boundaries in the trajectory of MFCCs. Then each of

_ _ . o ~these segments is modeled with a gaussian distribution, com-
Fig. 5. Segmentation of Bourvil's song. State O is {silence}, state 1 is {Vo'f’%ared to the other segment models, and clustered together using
+ accordion + accompaniment}, and state 2 is {accordion + accompanimert}, L ’ , .

plotted against time. singular value decomposition. Contrary to Foote’s algorithm,
we do not rely on a first-pass boundary detector, but rather learn

the segments, as well as their models in a single process.

A. Sate of Art

In signal processing, segmenting a signal has the very bragdTimbre Model-Based Segmentation
meaning of identifying and labeling its different sections of

interest. In practice, there are different points of view dependi%%

g described in Section Il, the segmentation is simply achieved
on the scale of the analysis: from smallest to largest, music . . L
by o . labeling each frame with the component it is most probably
researchers have called “segmentation” the process of discrim-

L : nerated by.
inating notes and rests [16], transients and steady parts [1%ln fact wg can view the E-M algorithm used to fit several

mstryments [4], sources (e.g., dlfferent speakers, speech Vel&Utissian components to the trajectory of MFCCs as an iterative
music, etc.) [18], [19], or musical structures (verse/chorus

. vérsion of Foote’s algorithm: in the E-step, frames are labeled
movements. .) [20]. As regards the techniques used, we can. : .
. . d : ; with their most probable segment/model, and in the M-step, we,
identify two main types of segmentation algorithms. . . .

) inturn, use the frames in each segment to build segment models.
* Novelty-based algorithms: After a given number of iterations, we can use the learned model

These algorithms first compute a set of features frofg gecode the data, i.e., to label each frame with its most prob-
the signal cut into frames, and then detect the segmefyjo component index

boundaries by looking for abrupt changes in the trajectory

of features. The featgres can be generic MPEG7 featulres label(F;) = arg max (P (F,/C;)) (5)

[19] (spectral centroid, spectral skewness, zero-crossing j=1:M

rate, etc.) or specific constructs, e.g., in [16] in-har- _ _ _

monicity to segment transients and vibrato. The chang\@ereﬂ is a frame of data, and; is a Gaussian component
r

detection algorithms also vary from author to author: coft©™M the song’s timbre model. _ ,
stant threshold on the derivative [19], adaptive moving Fig. 5 shows the results of such an analysis on 20 s of music,

average [16], or correlation with a specially designe@l 1960's French song by Bourvil ([21]), modeled by a 3-state
kernel [20]. timbre model. Its instrumentation consists of a male singer ac-
Novelty-based algorithms have the disadvantage of rg@mpanied by an accordion, and a discrete rhythmic section. We

providing any “understanding” of the segmentation: The§/ee that the segmgntation is very accurate: we notice the back-
detect boundaries, but do not compare and label the ggpund accompaniment at the end of every sung phrase, some-

sulting segments. If after four changes, say, we enter a 338165 even between the sung words. The accordion introduction

ment (i.e., a note, atimbre, a phrase, an audio class, ptc 2PPears very clearly, as well as the periodicities of the verse.

that has already occurred before, it will not be identified )
as being the same. C. Evaluation and Further Improvement

* Model-based algorithms: While the evaluation of timbre models in the context of

This second class of algorithms allows such a labelirfgmbre similarity” (Section 1V) already gives confidence

of the segments, and thus a more “intelligent” segmentiar the results of the segmentation, it is possible to directly
tion of the signal. The data is first converted into adaptedeasure the accuracy of the segmentation by listening to the
features, just like before. Then, the trajectory of featurdeomogeneity of each of the found timbre clusters (i.e., modeled
is matched with a model of each possible type of se@py each component). In the case of the segmentation of the
ment, and each frame is labeled with the model (i.e., tiBourvil song above, each of the three clusters correspond to
type of segment) that best fits it. As far as we know, athe instruments being blanked out: one cluster has all frames
these model-based algorithms have relied so far on a sdi-voice, another has all frames of accordion, etc. Informal
pervised approach, where the different types of segmetitdening tests show that less than 20% of the clusters contain
that can occur are known a priori. Raphael in [16] sedrames from mixed sources. For instance, if we segment a jazz
ments notes in an acoustic performance using a hiddeong (“DD Bridgewater—What is this thing called love”) with
Markov model (HMM) [21] built from the score, which is a 50-component timbre model, 17 clusters account for voice
givena priori. Sugiyama in [18] segments audio classefsames, 11 clusters for piano frames, ten clusters for percussive
(music/speech.) by first learning HMMs on manually frames, three for double bass frames, and nine are clusters
labeled examples of each audio class (a HMM for musicpntaining mixed frames.

Once we have extracted the timbre model of a given song
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One concern that arises is the fact that physical sources m2[
be shared over several clusters (which may occur if we use mc |
components than the number of different timbre textures in tt |
song, e.g.M = 50 above). We propose two ways to solve]; B ] J
this issue. First, one can do a post-processing step where | {
cluster the high number of components by hierarchical clu: |
tering, until a certain cluster width is reached (this is notabl |
reminiscent of Foote’s algorithm). Individual Gaussian comg} . : SUR LS
ponents can be compared e.g., with the Kullback-Leibler di, "% = =2 =2 &% W 1w J=e oo =
tance. Another way of decreasing the sharing of timbres b
tween clusters, as well as potentially decreasing the number |
mixed clusters, is to investigate more refined models, such
hidden Markov models. A HMM can be viewed as the “dy-![
namic” extension of a GMM, where we also model the dynamic |
over the succession of Gaussian components. In [23], we he |
shown that such a dynamic modeling sometimes improves tj|- i
quality of the segmentation. However, a formal comparison be- ' ‘ ' ‘ ' '
tween GMM-timbre models and HMM-timbre models remainsig. 6. Comparison of the texture score representations of two different
to be done. interpretations of the same song.

In any case, the fact that some clusters may not represent
a meaningful “physical” sound source, either because sevegal
clusters account for the same source, or because a given clugter
gathers frames of mixed sources, is not necessarily a proble
We look here at a midlevel representation of music, which i
useful even if it is not perfectly correlated to human judgmentg.
In the next section, we will analyze the structure of the timbr
segmentation we obtain here and show thatit is useful for sevefal
interesting problems in Music Information Retrieval.

Fig. 7. Three occurrences of a pattern in Bourvil’s texture score.
VI. APPLICATIONS OF THETEXTURE SCORE

The segmentation obtained from our timbre models provides .' A L — .
a useful representation for music, just like a very simplified @% ] —H e =
score, a “texture score”. In this section, we use this symbolic Ce - wiit toutjuste a-pres la  gueme dns w
representation in a Music Information Retrieval perspective to !
match different performances of the same song, and to find r é 3 s

_ pe 9 ==y =" = !
peating patterns in a song. e - - #
A. Smilarity by Long-Term Structure D= f‘ f‘ = f‘ f‘ S =
e 3 1 1 1 1 I 1 1 I
I |

As we have remarked on Fig. 5, the texture score reveals muc:-
of the structure of the song: phrases succeed to phrases, common
patterns are repeated every verse and chorus, instrument solos
stand out clearly and echo the introduction and ending, etc.

One interesting property of the timbre representation is thatin have a different rhythm). Additionally, there is a provision
is based on spectrum, but is independent of what the spectrumsdeal with permutations: as the numeration of the textures by
really are: We only look at the succession of the textures, notthe segmentation stage is arbitrary, a texture which is referred to
the textures themselves. A simple “A-B-A” texture score coulds “1” in one song, could be referred to as “3” in another. The
correspond to {guitar}—{guitar + voice}—{guitar}, but could automatic reordering of the textures is dealt with by heuristics
also well be {cello}—{cello + violin}—{cello}, etc. on the statistical distribution of the labels: e.g., matching a long

In [24], we have used this property to match different interpreeries of “11. .1” (an instrument solo, for instance) in one song
tations of the same song (i.e., same long-term structure) whichthe same series of “33.3” in the other.
use different instrumentations (i.e., the spectral content of theFig. 6 shows the texture scores for the beginning of two ver-
textures is different). The matching between scores (considestains of the same song, with different instrumentation: the first
as strings of texture labels) is done with the classic edit-disne (Bourvil's song used earlier) is a male singer and an ac-
tance algorithm [25]. The edit distance intrinsically copes witbompaniment based on accordion; the second one has a female
noise (similar structures can differ quite a lot locally) and timsinger and violins. Since we have freed ourselves from these
warping (two different performances with the same structuspectral differences by using the texture scores, the algorithm

Fig. 8. Transcription of the first occurrence of the pattern.
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is able to notice that the two pieces show some similarity. De- * 4

tails about the results can be found in [24]: tested on a data o —— - e e e e e € o
: : “ ” o — @ g | I T
base of songs, the edit distance between “covers” or more gene querre e un gt bal quaait sou - fen o
ally songs with the same long-term structure (e.g., simple blue: s
music) is generally small, and the distance between differen; ¢
songs is big. N TN N
D) he e 'L ﬁ‘L [Z4
B. Finding Repeating Patterns
Rather than matching different songs by comparing their tex- m i -
ture score, the authors have proposed in [26] to use the tex i 1 . i 1 be {‘ f

ture score to find repeating patterns within one song. In order to [

discover patterns in the texture score string, one could use dy- Fig. 9. Transcription of the second occurrence of the pattern.
namic programming as above. In [26], we have also introduced _
a novel string matching algorithm inspired by an image-pro-

[ 3 I T 3 3 ]
cessing technique: the Hough Transform. Ho——= N— e e e e S —
The pattern analysis on the texture score of this paper’s fol- ¥ g Fe OBe .ﬂ. e de mi-
lowed example, Bourvil's song “C’était bien” [22] reveals a lot
of the structure of the tune. We present here an example of j—f : —— .
short pattern found by the system. Its length is relatively small, :@‘J 511‘.‘;9{ ’#‘{‘ra% ® 6{#
about 3 s. It occurs 15 times during the song, five times in eact
occurrence of the verse/chorus unit. Fig. 7 presents three of it J\
occurrences (the first three in the first chorus), and Figs. 8—1( ) i-:i F F E‘J f‘ f‘ a =
1 1 T

show a transcription of the corresponding music by the first au-
thor.

The state sequences shown in Fig. 7 have the same labeling  Fig. 10. Transcription of the third occurrence of the pattern.
than in Section IV: state 1 is silence, state 2 is {voice+accompa-

niment}, and state 3 is {accompaniment}. In the transcriptionslaying it entirely. One strategy to extract such a summary is
shown in Figs. 8- 10, the upper staff corresponds to the vogalselect the most recurring pattern in the song. This path has
score, and the two bottom staffs correspond to the accompaititably been followed by Peeters [27] and Bartsch [28]. Our re-

ment: accordion, and bass. The drum track has not been trgits show that texture scores can be a way to find such large
scribed, as it does not influence the segmentation very muchpatterns.

We can see from the transcriptions in Figs. 8—10 that these
three occurrences correspond to the same sequence of scale VIl. CONCLUSION

degrees (2-3-2-3-5-4-3-2), but diatonically transposed to three . o . .
levels, harmonized in Dm.C,Bb. Electronic Music Distribution is in need of automatic descrip-

Classic pattern induction algorithms would deal with suchtgrs of ;thg content of ?] p|becet ?f n|1usr|]c. I_n tt_hlsbpaee_r, Wi ha\ie
pitch similarity by using musical rules to account for transposﬁ)-rejertﬁ Olljrk;elsizarc (‘;’1,, O;J polyphonic ITtIreSI\/i'Lte” OWf 0
tion, or by just looking at musical contour. In our case, this si nodel the global 'sound” ot a given music title. Mixtures o

ilarity of the pitches cannot be assessed from the texture sca qussian distributions over a space of Cepstral coefficients are

since it hides all pitch information within the textures. The al" efficient way to model the tex'tures found N a given music
nal. Such timbre models provide new solutions to many is-

gorithm thus has discovered some similarity based somethifl traditionall tered i i sianal . q
else: structure. These occurrences have the same succession ot  co Honaly encountered in music sighal processing an

textures. Note that the variations between the occurrences, st inform_ation re_tri_evgl. First, they are directly applicable

as the duration of the textures, correspond to variations of timirtw Com%ﬁ't? ttrllmbre similarity bﬁt\’vl?en songtqs. Secondt, we havef

and expressivity on the same phrase. This is especially I8PV ta etgame :\ppro?c t?‘ O\évs us.t(r)] se?men a ?'?.Ce 0

aboutthe frames of silence (texture 1), which reveal short paug'élésm INto sections of constant timure, with a time resoiution

between sung words or in the accompaniment, as small as the dl_Jratlon of a note. The outpu_t of such a_t|mbre
It is remarkable that melodic phrases and texture timing Sggmentanon, which we call “texture score”, gives alot of infor-

so closely correlated, and this suggests that a pitch transcriptfgﬁt'on about the musical structure of the sangs. It can be used

may not be the only useful notation to understand music. In tf']% compute structural similarity between songs, and to extract

context of music processing, this opens the way for aIternativrQ,eanmngI recurring patterns within one song.
more abstract representations of polyphony, which are easier to
generate from raw data, without having to separate sources. The
texture score, using our research on timbre modeling, appears tdhis paper reports on research conducted in two research
be a good example of such a representation. groups over three years. Early work on segmentation with
One possible application of the pattern discovery algorithkdMM, structural similarity, and pattern induction was carried
described above is “Audio Thumbnailing”. The idea is to pran the Digital Music Lab at Queen Mary University of London,
vide the user with the main characteristics of a title withoutondon, U.K. (formerly in King’'s College London). Timbre
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