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Abstract

The “bag-of-frames” approach (BOF) to audio pattern recognition models signals as the long-term statistical distribution of their local spectral
features, a prototypical implementation of which being Gaussian Mixture Models of Mel-Frequency Cepstrum Coefficients. This approach
is the most predominant paradigm to extract high-level descriptions from music signals, such as their instrument, genre or mood, and can
also be used to compute direct timbre similarity between songs. However, a recent study by the authors shows that this class of algorithms
when applied to music tends to create false positives which are mostly always the same songs regardless of the query. In other words, with
such models, there exist songs—which we call hubs—which are irrelevantly close to very many songs. This paper reports on a number of
experiments, using implementations on large music databases, aiming at better understanding the nature and causes of such hub songs. We
introduce two measures of “hubness”, the number of n-occurrences and the mean neighbor angle. We find that in typical music databases,
hubs are distributed along a scale-free distribution: non-hub songs are extremely common, and large hubs are extremely rare—but they exist.
Moreover, we establish that hubs are not a property of a given modelling strategy (i.e. static vs dynamic, parametric vs non-parametric, etc.)
but rather tend to occur with any type of model, however only for data with a given amount of “heterogeneity” (to be defined). This suggests
that the existence of hubs could be an important phenomenon which generalizes over the specific problem of music modelling, and indicates
a general structural property of an important class of pattern recognition algorithms.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The majority of systems extracting high-level music descrip-
tions from audio signals rely on a common, implicit model
of the global “sound” or “timbre” of a musical signal. This
model represents timbre as the long-term accumulative distri-
bution of frame-based spectral features. This approach has been
nicknamed “bag-of-frames” (BOF), in analogy with the “bag-
of-words” (BOW) treatment of text data as a global distribu-
tion of word occurrences, used in Text Classification [1]. The
signal is cut into short overlapping frames (typically 50 ms with
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a 50% overlap), and for each frame, a feature vector is
computed. Features usually consist of a generic, all-purpose
spectral representation such as Mel-Frequency Cepstrum Coef-
ficients (MFCCs) [2]. The physical source of individual sound
samples is not explicitly modelled: the features are fed to a sta-
tistical model, such as a Gaussian Mixture Model (GMM) [3],
which models their global distribution over the total length of
the extract. Global distributions can then be used to compute
decision boundaries between classes (to build, e.g. a genre
classification system such as [4]) or directly compared to one
another to yield a measure of timbre similarity [5].

1.1. Existence of hubs

The above approach has led to some success, but recent
research [6] on the issue of polyphonic timbre similarity shows
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that BOF seems to be bounded to moderate performance.
Notably, thorough exploration of the space of typical algo-
rithms and variants (such as different signal features, static
or dynamic models, parametric or non-parametric estima-
tion, etc.) and exhaustive fine-tuning of the corresponding
parameters fail to improve the precision above an empirical
glass-ceiling, around 70% precision (although this of course
should be defined precisely and depends on tasks, databases,
etc.). Further, traditional means to model data dynamics, such
as delta-coefficients, texture windows or Markov modelling,
do not provide any improvement over the best static models
for polyphonic textures of several seconds length. This is a
paradoxical observation, as psychophysical experiments [7]
have established the importance of dynamics in the perception
of individual instrument notes.

However, the most intriguing finding of Ref. [6] is that
the class of algorithms described above tends to create false
positives1 which are mostly always the same songs regardless
of the query. In other words, there exist songs, which we call
hubs, which are irrelevantly close to all other songs.

This paper reports on a number of experiments aiming at
better understanding the nature and causes of such hubs. We
give a detailed description of this phenomenon, as well as a
methodological basis to its study by introducing two measures
of “hubness”, the number of n-occurrences and the mean neigh-
bor angle. We find that in typical music databases, hubs are
distributed along a scale-free distribution: non-hub songs are
extremely common, and large hubs are extremely rare—but
they exist. Moreover, we establish that hubs are not a property
of a given modelling strategy (i.e. static vs dynamic, paramet-
ric vs non-parametric, etc.) but rather tend to occur with any
type of model, however only for data with a given amount of
“heterogeneity” (to be defined). We find that the hubness of a
given song is not an emerging global property of the distribu-
tion of its frames, but rather can be localized to certain parts of
the distribution, defined by their statistical weight.

1.2. Why this may be an important problem

The phenomenon of hubs is reminiscent of other isolated
reports in other domains than music. Biometric verification
systems, such as fingerprints, but also speech and speaker
recognition systems typically exhibit striking performance in-
homogeneities among users within a population. The statistical
significance of such critical classes of users, in the context of
Speaker Verification, was formally shown in Ref. [8], by ana-
lyzing population statistics based on the test data used for the
NIST 1998 speaker recognition evaluation. The paper estab-
lished a speaker taxonomy in terms of animal names, notably
goats (users that are very difficult to recognize), lambs (users
that are particularly easy to impersonate) and wolves (users
who are particularly successful at imitating other speakers).

A complete analogy with this taxonomy would call a wolf
a song which is constantly closer to a random song S than

1 We describe an evaluation framework to practically decide such false
positives in Section 2.1.

S is to itself. However, the Speaker Recognition menagerie
is essentially pointing out the same phenomenon as the hubs
observed with our timbre similarity measure: that high false
positive rates are not uniformly distributed in the database, but
manifests only in a small critical population.

The reason for the appearance of such classes is generally
thought to be an intrinsic property of human users. However,
a recent study [9] in the context of fingerprint recognition sug-
gests that these properties of wolfiness, goatness, etc., are rather
properties of the algorithms themselves. The observation that
we make here of the existence of “wolf songs”, in the different
context of music pieces, seem to corroborate this hypothesis.
This is especially interesting as the techniques used for tim-
bre similarity (namely variations on the GMMs of MFCCs) are
typically similar to the ones employed in speaker/fingerprint
recognition systems. We will show in the remaining of this
paper that hubs occur for many different algorithms but that
the hubness of a given song is algorithmic-dependent.

2. Definition and measures

This section gives a detailed description of the phenomenon
of hubs, as well as the algorithms for which these were ob-
served. Notably, we describe two metrics we designed to quan-
tify the “hubness” of a song, which will be used in the experi-
ments in the remaining of the paper.

2.1. Algorithms, databases and groundtruth

We sum up here the timbre similarity algorithm presented in
Ref. [6]. The signal is first cut into frames. For each frame, we
estimate the spectral envelope by computing a set of MFCCs.
We then model the distribution of the MFCCs over all frames
using a GMM. A GMM estimates a probability density as the
weighted sum of M simpler Gaussian densities, called compo-
nents or states of the mixture:

p(xt )=
m=M∑
m=1

�mN(xt , �m, �m), (1)

where xt is the feature vector observed at time t, N is a Gaus-
sian pdf with mean �m, covariance matrix �m, and �m is a
mixture coefficient (also called component prior probability).
The parameters of the GMM are learned with the classic E-M
algorithm [3].

We then compare the GMM models to match different
signals, which gives a similarity measure based on the audio
content of the items being compared. We use a Monte Carlo
approximation of the Kullback–Leibler (KL) distance between
each duple of models A and B. The KL distance between two
GMM probability distributions pA and pB (as defined in Eq.
(1)) is defined by

d(A, B)=
∫

pA(x) log
pB(x)

pA(x)
dx. (2)
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The KL distance can thus be approximated by the empirical
mean

d(Ã, B)= 1

n

n∑
i=1

log
pB(xi)

pA(xi)
(3)

(where n is the number of samples xi drawn according to pA)
by virtue of the central limit theorem.

In this study, we will consider several variations on the above
algorithm, inspired by the study in Ref. [6]. These variations
were chosen to be representative of several typical modelling
strategies in pattern recognition (as classified, e.g. in Ref. [3]),
namely:

• Static parametric model: 20 MFCCs (incl. 0th coefficient),
50-component GMM, compared with n=2000 Monte Carlo
draws.
• Static non-parametric model: 20 MFCCs (incl. 0th co-

efficient), vector-quantized to 200 codebook vectors using
LVQ [10], modelled by histograms compared by Euclidean
distance.
• Static parametric modelling of first-order dynamics: 20

MFCCs (incl. 0th coefficient), appended with 20 delta-
coefficients [11], 50-component GMM, compared by Monte
Carlo.
• Static parametric modelling of second-order dynamics: 20

MFCCs (incl. 0th coefficient), appended with 20 first-order
delta-coefficients and 20 second-order acceleration coeffi-
cients, 50-component GMM, compared by Monte Carlo.
• Dynamic modelling with parametric model: 20 MFCCs (incl.

0th coefficient), modelled with 12-state HMM [12], using
four Gaussian components per state, compared by Monte
Carlo.

In all of the above, the specific algorithm settings such as num-
ber of GMM components correspond to optimally performing
values found in previous research [6].

This study uses two music databases:

• a large set of 15,460 popular music titles, assembled for the
purpose of the Cuidado European IST project [13] (referred
to as the “Cuidado database”).
• a subset of this database, containing 350 titles, used for the

evaluation study in Ref. [6]. It is organized in 37 clusters
of songs by the same artist, encompassing very different
genres and instrumentations (from Beethoven piano sonata
to The Clash punk rock and Musette-style accordion). In the
following, we refer to this database as the “test database”.

When relevant, we will measure the precision of the above
algorithms on the test database by computing their R-precision.
It measures the ratio of the number of relevant documents to the
number of retrieved documents, when all relevant documents
have been retrieved (i.e. precision at recall = 1). The set of
relevant documents for a given music title is the set of all titles
of the same artist cluster than the seed. This is identical to the
methodology used in Ref. [6]. In this framework, we call a

“false positive” to a seed song S a song T which is found in the
nearest neighbors of S, but not in the cluster of S.

In the following, we will argue that hub songs are close to
many songs (according to the algorithmic measure) to which
they have “no perceptual similarity”. This is judged on the
basis of the groundtruth described above, and not on any psy-
chological evaluation using actual human similarity ratings.
Note, however, that recent research [14] has found that typical
human ratings are indeed in accordance with groundtruths that
are similar to the one used here. Moreover, the fact that cer-
tain hubs are found close algorithmic matches to more than a
fourth of the very heterogeneous Cuidado database (as seen in
Section 3) strongly indicates that similarity measures involving
hubs have little perceptual grounding if any.

2.2. Definition of a hub

In this paper, we call hub a song which occurs frequently as
a false positive according to a given similarity measure. This
both implies that

(1) a hub appears in the nearest neighbors of many songs in
the database;

(2) most of these occurrences do not correspond to any mean-
ingful perceptual similarity.

Each condition in itself is not sufficient to characterize a hub:

(1) A given song may occur very many times in the nearest
neighbors of other songs, but this may not be a false positive
(as defined by the evaluation procedure described above).
Depending on the composition of a given database, some
songs may well approximate the perceptual center-of-mass
of the database. For instance, it may be found that A Hard
Day’s Night by The Beatles is a song that bears close tim-
bre similarity to most of 1960s pop music, and therefore
could be found to occur very frequently as a nearest neigh-
bor to many songs in a database composed by a majority
of Rock and Pop songs. However, in a classical music
database, the same song would not be such a common
neighbor.

(2) A given song may be a false positive for a given seed song,
i.e. be in the first nearest neighbors of the seed without
any actual perceptual similarity. However, different songs
may have different false positives. For instance, a given
Beethoven piano sonata may be mismatched to an acous-
tic guitar piece, but not necessarily mismatched to other
songs. A hub is a piece than is irrelevantly close to very
many songs, i.e. a bug which is not local to only a few
queries.

2.3. Measures of hubness

We propose here two measures to quantify the “hubness” of
a given song.
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Table 1
Ten most frequent false positives

Song N10

MITCHELL, Joni—Dom Juan’s Reckless Daughter 57
MOORE, Gary—Separate Ways 35
RASTA BIGOUD—Tchatche est bonne 30
BRIDGEWATER, DD—What Is This Thing Called Love 30
PUBLIC ENEMY—Cold Lampin With Flavor 27
MOORE, Gary—Cold Day In Hell 27
MARDI GRAS BIG BAND—Funkin’Up Your Mardi Gras 25
GILBERTO, João—Tin tin por tin tin 25
MITCHELL, Joni—Talk To Me 22
CABREL, Francis—La cabane du pêcheur 22

2.3.1. Number of occurrences
A natural measure of the hubness of a given song is the

number of times the song occurs in the first n nearest neighbors
of all the other songs in the database. As discussed in Appendix
A, the measure of the number of n-occurrences Nn of a song
has the property that the sum of the values for all songs is
constant given a database.

Table 1 shows the 10 songs in the test database having the
largest number of occurrences in the first 10 nearest neighbors
over all queries (N10). This illustrates the predominance of a
few songs that occur very frequently. For instance, the first song,
MITCHELL, Joni—Don Juan’s Reckless Daughter
is very close to 1 song out of 6 in the database (57 out of 350),
which is more than six times more than the theoretical mean
value [10]. Among these occurrences, many are likely to be
false positives.

2.3.2. Neighbor angle
An operational definition of a hub is that it is a song H which

is found to be “close” (though not perceptually) to duplets
of songs A and B which themselves are (perceptually) distant
from one another. Therefore, the hubness of song H can be
estimated by comparing its distances to its neighbors d(H, A)

and d(H, B) on the one hand, and the distance between the
neighbors d(A, B) on the other hand. Equivalently, one can
measure the angle �H formed by the segments [H, A] and
[H, B]

cos �H = d(A, B)2 − d(H, A)2 − d(H, B)2

2d(H, A)d(H, B)
. (4)

This is computed for a given song H by drawing a large num-
ber of successive duplets of neighbors (A, B) (such that A �=
B �= H ), and computing the mean value of �H . We use 1000
successive random draws.

An important property of the neighbor-angle value is that,
like the number of n-occurrences Nn of a song, the sum of
the values for all songs is constant given a database size (see
Appendix A for more details).

3. Hubs form a scale-free distribution

Fig. 1-left shows the distribution of songs in the Cuidado
database (15,460 titles) according to their number of
100-occurrences for the optimal GMM-based distance. One
can observe that while most songs only have around a few
hundred occurrences (more than 6000 songs have between 150
and 160 occurrences), a few songs get upward of 2000 occur-
rences. This latter songs can reasonably be described as hubs.
Moreover, hubness appears to be a continuous variable (with
a continuum of intermediate values), rather than a discrete
Boolean property.

Table 2 shows the five biggest hubs in the Cuidado database
ranked by their number of 100-occurrences for the baseline
GMM-distance. The first song, from French alternative rock
band Noir Désir, is a close neighbor to more than a fourth of
the database. The fifth biggest hub, a folk song by Joni Mitchell
was the biggest hub of the much smaller test database, as seen
previously in Table 1.

Fig. 1-right shows the same plot than Fig. 1-left, but on a
log–log scale the same distribution shows itself to be linear.
This is the characteristic signature of a power-law distribution
P [X = x] = x−�. The nearly linear relationship extends over
4 decades ([1–104]) songs, which is why such distributions
have been called “scale-free”, or lacking a “characteristic length
scale”.

Many man-made and naturally occurring phenomena, includ-
ing city sizes, word frequencies, number of links to a web page,
are distributed according to a power-law distribution [15,16].
Similarly, scale-free distributions have been observed in musi-
cal data, notably in networks of artists that co-occur in playlists
from specialized websites [17].

For all these reasons, the scale-free distribution of networks
of timbrally similar songs is a remarkable, but not utterly sur-
prising phenomenon. If all timbre distances were perceptually
relevant (“no bugs”), then it would be an acceptable conclu-
sion that some songs be more “prototypical” than others, thus
translating the distribution of musical and social influences
and communities inherent to possibly every human activity.
However, as already noted, what we observe here is a distri-
bution of algorithmic bugs rather than the self-organization
of an ideal music space: The most connected songs (extreme
hub songs that are close matches to more than a fourth of a
given database) typically appear as the nearest neighbors of
songs to which they do not bear any perceptual similarity. It is
yet unclear whether the scale-free distribution that we observe
here is

• the result of a scale-free organization of an ideal perceptual
distance measure, which is being polluted by measurement
errors;
• the result of a non-remarkable ideal distribution, polluted by

a scale-free distribution of false-positives;
• or both.

The influence of measurement errors on scale-free distri-
butions could be studied, e.g. in the light of recent results on
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Fig. 1. Distribution of the songs according to their number of 100-occurrences in the Cuidado 15,460-song database, with a GMM-based distance. Left: using
a linear scale. Right: using a log–log scale. In this second scale, the distribution is approximately linear, which indicates a power law.

Table 2
Five most frequent false positives in the Cuidado database

Song N100

NOIR DESIR—En Route Pour la Joie 4090
VANNELI, GINO—Stay With Me 3552
OSWALD, JOHN—Explo 3533
ABC—When Smokey Sings 3256
MITCHELL, Joni—Dom Juan’s Reckless Daughter 3255

the robustness of experimental topological analysis of protein
interaction networks [18].

4. Hubs are a consequence of the agglomerative modelling
of the features, not of the features themselves

4.1. Hypothesis

In this section, we investigate whether hubs are a conse-
quence of poor featural representation of the frames of au-
dio data. We test the hypothesis that hubs exist on full songs,
because hubs also exist on individual MFCC frames, i.e. that
there are specific segments of audio data which are close non-
perceptive matches to every other possible frames.

4.2. Experiment

We build a database of individual 2048-point hamming-
windowed frames of audio data, obtained from the uniform
segmentation of a few different songs. The database is made
to contain 15,460 frames, so results can be quantitatively
compared to the full-song behavior in the Cuidado database.
Each frame is modelled by 20 MFCCs (incl. 0th order coeffi-
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Fig. 2. Distribution of the MFCC frames according to their number of
100-occurrences in a 15,460-frame database, based on normalized Euclidean
distance.

cient), which is the feature space used in the best performing
full-song measure. A distance measure is implemented using
Euclidean distance, each dimension being normalized to be
between 0 and 1, using the 5% and 95% percentile values. This
distance measure was chosen to yield a behavior similar to
MFCCs comparison in GMM probability estimation (Euclidean
comparison with mean vector, rescaled by variance coefficients
in each dimension). We compute the 100 nearest neighbors
of each frame in the database, store them, and compute the
number of 100-occurrences of each frame in the database.
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Fig. 3. Distribution of the number of 100-occurrences of songs in the test database for several distance algorithms.

4.3. Results

Fig. 2 shows the distribution of the MFCC frames accord-
ing to their number of 100-occurrences. The distribution is
exponentially decreasing, with a maximum N100 value around
500. Such small numbers do not indicate the presence of hubs,
which is confirmed by manual inspection of the neighbors of
the most re-occurring frames. These frames typically corre-
spond to sounds that are common to many different songs,

such as noise or silence, and thus have more neighbors than
more specific frames (harmonic sounds) that tend to be close
to frames of the same song only. The maximum N100 value
of 500 is more than eight times smaller than the maximum
value obtained for full songs in the Cuidado database. This in-
dicates that the hub phenomenon is not a direct consequence
of poor featural representation, but rather an effect of the mod-
elling of the agglomeration of the very many frames in full
songs.
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Table 3
Comparison of number of songs exhibiting high number of occurrences in the test database, for several distance algorithms

Measure GMM HMM Delta Acceleration Histogram

N100 > 200 16 48 49 45 69
N20 > 40 34 41 39 39 42

5. Hubs appear for all algorithms

5.1. Hypothesis

In this section, we investigate whether hubs are a conse-
quence of a specific algorithmic strategy for modelling the ag-
glomeration of frames in full songs. We test the hypothesis that
hubs appear only (or in majority) for a given algorithm.

5.2. Experiment

We compare several measures of hubness on our test database
for the five algorithms described in Section 2.1, chosen to
be representative of the principal modelling strategies (GMM,
Delta, Acceleration, HMM, Histograms).

5.3. Results

Fig. 3 shows the distribution of the number of 100-
occurrences of songs in the test database, for the five algorith-
mic variants. Since the number of occurrences is a constant-sum
measure (see Appendix A), all five distributions are centered
on the same mean value of 100. However, it appears that the
choice of the algorithm has an influence on the shape of the dis-
tribution of occurrences. While all algorithms produce extreme
hubs having high number of occurrences (e.g. N100 > 300),
hubs tend to be smaller for the GMM-based distance than for
both the dynamic-based and the histogram-based ones. Due to
the constant-sum effect, algorithms that produce more high-
occurrence songs also produce more low-occurrence songs.
This results in a skewed distribution (where very many low-
occurrence songs compensate a few high-occurrence songs)
in the case of the dynamic-based distances, and a bi-modal
distribution for the histogram-based distance, for which very
few songs actually take the mean occurrence value.

This behavior is confirmed by Table 3, which shows the num-
ber of songs in the test database that exhibit high values for both
number of 100-occurrences and number of 20-occurrences. The
five similarity measures exhibit different proportions of hubs:
GMM-based distances produce the fewest, while histogram-
based distance produce five times as many. The proportion of
hubs produced by each algorithm is in agreement with the pre-
cision reported in previous research [6]: GMM-based distances
perform better than (or equivalent to) dynamics, which perform
better than histograms.

Nevertheless, it is difficult to conclude that hubs are a specific
property of a given algorithmic strategy to model the MFCC
frames. All algorithms create hubs. Moreover, static modelling

create more hubs than dynamics in the case of histograms and
HMMs, but not in the case of GMM and HMMs. If anything, it
seems that non-parametric (histograms) create more hubs than
parametrics approaches (GMMs, HMMs). This notably rules
out possible convergence problems of parametric estimation
(local minima) as a source of bugs.

6. Hubness is not intrinsic to songs

6.1. Hypothesis

In this section, we investigate whether hubs are an intrinsic
property of given songs, which will act as hubs independently
of the algorithm used to model them. We test the hypothesis that
hub songs are strongly correlated between different algorithmic
measures.

6.2. Experiment

We compute the correlation between hubness measures for
songs modelled with the same five algorithms as above, using
the test database.

6.3. Results

Table 4 reports the correlation of the hubness of all songs
between various algorithmic models, using two measures of
hubness (number of 100-occurrences and the neighbor angle).

Both measures reveal the same structure:

• Hubs appearing with GMMs are moderately correlated to
HMMs, delta and acceleration.
• Hubs appearing with HMMs, delta and acceleration are very

strongly correlated.
• Hubs appearing with histograms are strongly decorrelated to

those appearing with the other algorithms.

In more detail, Tables 5 and 6 compare the most frequent
hubs for two GMM- and histogram-based distances, here mea-
sured with their number of 20-occurrences. It appears that
some songs act as hubs for both measures, e.g. MITCHELL,
Joni—Dom Juan’s Reckless Daughter. However, a
vast majority of the hubs are different. Notably, certain songs
are important hubs for one measure and perfectly standard
songs for the other. For instance, SUGAR RAY—Fly is a hub
for the GMM-based distance, but not for the one based on
histograms. Similarly, CABREL, Francis—Samedi soir
sur la Terre is only a hub for the histogram distance.
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Table 4
Correlation of the hubness of all songs between various algorithmic models

GMM HMM Delta Acceleration Histogram

GMM 1.0 0.78 (0.67) 0.79 (0.69) 0.79 (0.71) 0.42 (0.17)
HMM — 1.0 0.95 (0.96) 0.90 (0.96) 0.47 (0.17)
Delta — — 1.0 0.97 (0.99) 0.46 (0.15)
Acceleration — — — 1.0 0.43 (0.14)
Histogram — — — — 1.0

The hubness of songs is measured both by the number of 100-occurrences and the neighbor angle (the latter in parenthesis).

Table 5
Most frequent false positives for parametric approach with GMMs

Hubs with {MFCC,GMM} N20 (card(CS))

MITCHELL, Joni—Dom Juan’s Reckless Daughter 98(9)
BRIDGEWATER, DD—What A Little Moonlight Can do 79(12)
RASTA BIGOUD—Tchatche est bonne 79(7)
MOORE, Gary—Separate Ways 77(9)
SUGAR RAY—Fly 75(13)
.
.
.

CABREL, Francis—Samedi soir sur la Terre 29 (7)

Table 6
Most frequent false positives for non-parametric approach with histograms

Hubs with {VQ,CM} N20 (card(CS))

VOCAL SAMPLING—Radio Reloj 153 (13)
MOORE, Gary—The Hurt inside 126 (9)
CABREL, Francis—Samedi soir su la Terre 122 (7)
CABREL, Francis—Corrida 105
MITCHELL, Joni—Dom Juan’s Reckless Daughter 95 (9)
.
.
.

SUGAR RAY—Fly 23(13)

Therefore, we can conclude that:

• The hubness of a given song is not an intrinsic property of
the song, but rather a property of a given algorithm.
• Dynamics, both via static modelling of dynamical features

(delta, acceleration) or via dynamic modelling (HMMs)
seems to have an influence of the songs that act as hubs. All
three algorithms tend to create the same hubs.
• Parametric modelling tend to create very distinct hubs from

non-parametric modelling, so the dynamical/static aspect is
not the only involved factor in the appearance of hubs.

7. Hubs do not appear for any dataset

7.1. Hypothesis

Section 6 establishes that hubness is not an intrinsic prop-
erty of a given song, but rather is dependent on the modelling

algorithm. In this section, we investigate whether hubs are a
structural property of pattern recognition-based similarity mea-
sures, and that they can be observed in any dataset. This is a
relevant question knowing as remarked earlier that hubs have
been observed in this study on timbre similarity, but also in the
domain of speaker and fingerprint identification.

7.2. Experiment

We apply the same modelling technique (GMMs of MFCCs)
to compute the perceptual similarity of another class of au-
dio signals, namely ecological sound textures. We gathered a
database of one hundred and six 3-min urban sound ambiances,
recorded in Paris using an omni-directional microphone.2 The
recordings are clustered in 4 “general classes” (Boulevard,
Neighborhood Street, Street Market, Park) and 11 “detailed
classes”, which correspond to the place and date of recording
of a given environment. For instance, “Parc Montsouris, Paris
14e” is a subclass of the general “Park” class.

Each audio recording is modelled with 50-ms frames,
20-MFCCs and 50-component GMMs. Models are com-
pared to one another with Monte Carlo distance using 2000
samples.

7.3. Results

Fig. 4 shows the histogram of the number of 20-occurrences
obtained with the above distance on the database of ecological
sound ambiances, compared with the same measure on the test
database of polyphonic music. It appears that the distribution
of number of occurrences for ambiance sounds is more nar-
row around the mean value of 20, and has a smaller tail than
the distribution for polyphonic music. Notably, there are four
times as many audio items with more than forty 20-occurrences
in the music dataset than in the ambiance dataset. This is also
confirmed by the manual examination of the similarity results
for the ecological ambiances: none of the (few) false positives
re-occur significantly more than random. As we discuss else-
where [19], this is also revealed when analyzing the precision
of the measures, which is significantly better for soundscapes
than music.

2 This material was collected and kindly made available by Boris De-
freville from LASA.
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Fig. 4. Comparison of the histograms of number of 20-occurrences for the same distance used on ecological sound ambiances and polyphonic music.

This indicates that hubs are not an intrinsic property of the
class of algorithm used here, but rather appear only for a cer-
tain classes of signals, among whom polyphonic music, but
not ecological sound ambiances. As we will see now, the two
classes of signals can notably be distinguished in terms of their
homogeneity.

8. Hubness can be localized to certain frames

8.1. Hypothesis

This section investigates whether the hubness of a given song
is an emerging global property of the distribution of its frames,
or rather can be localized, e.g. to certain frames that are less
discriminant than others.

We have already shown that MFCC frames intrinsically do
not exhibit hub behaviors, i.e. one cannot find a specific frame
of audio which is close to any other frame, in an Euclidean
framework. However, this does not make any statement about
the discriminative power of MFCC frames: it is well possible
that most MFCC frames be globally close to one another, which
has notably been observed in the domain of speech sounds in
Ref. [20]. It is therefore possible to imagine that a large part of
the distribution of MFCCs is composed of non-discriminative
frames, and that what is perceptually salient for a human listener
may not be statistically predominant when comparing models
of the frame distribution.

8.2. Experiment

We describe here an experiment to assess whether there exists
such a small portion of the frame distribution which is responsi-
ble in majority for the discrimination between non-perceptually
close songs. We propose to explore the distribution of MFCC
frames by ranking them by statistical importance. We define a
statistical homogeneity transform hk :G �→ G on the space G

of all GMMs, where k ∈ [0, 1] is a percentage value, as:

g2 = hk(g1)

(c1, . . . , cn)← sort(components(g1),
decreasing wc)

define S(i)=∑i
j=1 weight(cj )

ik ← arg mini∈[1,n]{S(i)�k}
g2 ← newGMM(ik)

define di=component(g2,i)
di ← ci , ∀i ∈ [1, ik]
weight(di)← weight(ci)/S(ik),∀i ∈ [1, ik]
return g2

end hk

From a GMM g trained on the total amount of frames of a
given song, the transform hk derives an homogenized version
of g which only contains its top k% components. Frames are
all the more so likely to be generated by a given Gaussian
component c than the weight wc of the component is high (wc is
also called prior probability of the component). Therefore, the
homogenized GMM accounts for only a subset of the original
song’s frames: those that amount to the k% most important
statistical weight. For instance, h99%(g) creates a GMM which
does not account for the 1% least representative frames in the
original song.

We apply 11 transforms hk for k ∈ [20, 40, 60, 80, 90, 92,

94, 96, 98, 99, 100] to the GMMs corresponding to the optimal
measure described above. Each transform is applied to two
datasets, the test database containing polyphonic music and the
database of urban soundscapes used in Section 7. This yields
11 similarity measures per dataset, the properties of which we
study below.

8.3. Influence on hubs

Figs. 5 and 6 show the influence of the homogenization
transform on the number of hubs in the database of polyphonic
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music. The database of soundscapes is not used in this com-
parison, as we found in Section 7 that soundscapes did not en-
gender hubs. Hubness is measured in the case of Fig. 5 by the
number of songs in the test database having a number of 100-
occurrences greater than 200, and in the case of Fig. 6, by the
number of songs with a mean neighbor angle greater than 65◦.

Both metrics indicate that GMM homogenization critically
increases the number of big hubs in the music database:
homogenization with k=30% creates more than twice as many
hubs with more than 200 occurrences, and more than five times
as many hubs with angles greater than 65◦. It seems reason-
able to interpret the increase of hubness when k decreases as a
consequence of reducing the amount of discriminative infor-

mation in the GMMs (i.e. from representing a given song,
down to a more global style of music, down to the even simpler
fact that it is music).

However, the increase in hubness is not monotonic. Both
figures clearly show a very important increase in the number of
hubs in the first few percent of homogenization. The extreme
number of hubs obtained with k = 30% is reached as early as
k = 92% in the case of the occurrence metric and k = 96% in
the case of the mean angle metric. This is a strong observa-
tion: the hubness (or rather non-hubness) of a song seems to be
controlled by an extremely small amount of critical frames,
which represent typically less than 5% of whole distribution.
Moreover, these frames are the least statistically significant
ones, i.e. are modelled by the least important Gaussian com-
ponents in the GMMs. This indicates that the majority (more
than 90%) of the MFCC frames of a given song are a poor rep-
resentation of what discriminates this song from other songs.

Moreover, Fig. 6 shows that after the extremely rapid peak
of hubs when removing the first 5% frames, the number of hub
songs tend to decrease when k decreases from 90% to 60%,
and then increases again for k smaller than 60%. The minimum
value reached at k = 60% is equivalent to the original value
at k = 100%. A similar decreasing behavior is observable to
a smaller extent with the other metric in Fig. 5 (with a local
minimum at k = 80%), although it is difficult to establish that
this is a statistically significant trend.

The behavior in Fig. 6 suggests that there is a population of
frames in the range [60%, 95%] which is mainly responsible
for the hub behavior. While the hubness of songs diminishes
as more frames are included when k increases from 20% to
60% (such frames are increasingly specific to the song being
modelled), it suddenly increases when k gets higher than 60%,
i.e. this new 30% information is detrimental for the modelling
and tend to diminish the discrimination between songs. The
continuous degradation from 60% to 95% is only eventually
compensated by the inclusion of the final 5% critical frames.

8.4. Influence on precision

Fig. 7 shows the influence of homogenization on the pre-
cision of the resulting similarity measure, for both datasets.
The precision for urban soundscapes is measured with the
10-precision using the detailed classes as groundtruth, and with
the R-precision for polyphonic music. For both dataset the pre-
cision is measured by reference to the baseline precision cor-
responding to k = 100%, which is different for environmental
and music, as we discuss in Ref. [19].

For polyphonic music, the figure closely mimics the (inverse)
behavior seen in Fig. 6, with precision plummeting when k de-
creases from 100% to 92%, and then reaching a local maximum
again between 60% and 80%. This gives further support to the
observation that not all frames are equally discriminative, and
that there exists a population of frames in the range [60%,95%]
which is detrimental to the modelling of perceptual similarity.

We notice a very different behavior in the case of urban
soundscape signals. It appears that 99% homogenization is



282 J.-J. Aucouturier, F. Pachet / Pattern Recognition 41 (2007) 272–284

20 30 40 50 60 70 80 90 100

0.82

0.84

0.86

0.88

0.92

0.94

0.96

0.98

1

1.02

Influence of statistical homogenization on the precision of the similarity of 

urban soundscapes and polyphonic music

P
re

c
is

io
n

 o
f 

s
im

ila
ri
ty

 (
n

o
rm

a
liz

e
d

 b
y
 i
ts

  

v
a

lu
e

 a
t 

1
0

0
%

 h
o

m
o

g
e

n
e

it
y
)

ecological
music

0.9

GMM Homogenization (%)

Fig. 7. Comparison of the influence of the homogeneity transform on the precision of the similarity measure for soundscape and music signals.

slightly beneficial to the precision. This suggests that the 1%
less significant frames are spurious frames which are worth
smoothing out. Further homogenization down to 60% has a
moderate impact on the precision, which is reduced by about
1% (absolute). This suggests that the frame distribution is
very homogeneous, and does not exhibit critical populations
of frames which are either extremely discriminative (such
as the [95%,100%] region for polyphonic music), or non-
discriminative (such as the [60%,95%] region for polyphonic
music). Ecological ambiances can be discriminated nearly op-
timally by considering only the most significant 50% of the
frames.

The greater heterogeneity of polyphonic music data for pat-
tern recognition purposes may explain the appearance of hubs,
and their non-existence for other, more homogeneous classes
of signals. It would be worth investigating the feature homo-
geneity of other hub-prone classes of signals, such as speaker
data or fingerprints, to give further support to this hypothesis.

Note that a possible further experiment to validate the exis-
tence of a critical region in [60%, 95%] would be to study the
properties of models built using only these frames on the one
hand, and models using all frames except these ones on the
other hand. Models of the latter type would be expected to not
generate as many hubs as the standard type. This will form the
basis of future work.

9. Conclusion

This study shows that the class of algorithms predominantly
used to extract high-level music descriptions from music signals

tends to create false positives which are mostly always the same
songs regardless of the query. In other words, there exist songs,
which we call hubs, which are irrelevantly close to all other
songs.

We studied the nature and properties of such hub songs in a
series of experiments, and established that:

• Hubs are distributed according to a scale-free distribution.
• Hubs are not a consequence of poor feature representation of

each individual frame, but rather an effect of the modelling
of the agglomeration of the many frames of a sound texture.
• Hubs are not a property of a given modelling strategy (i.e.

static vs dynamic, parametric vs non-parametric, etc.) but
rather tend to occur with any type of model.
• Hubs are not an intrinsic property of certain songs, but that

different algorithms distribute the hubs differently on the
whole database.
• Hubs are not a property of the class of algorithms studied

here which appears regardless of the data being modelled, but
only for data with a given amount of heterogeneity, e.g. for
polyphonic music, but not for ecological sound ambiances.
• The hubness of a given song is not an emerging global

property of the distribution of its frames, but rather can be
localized to certain parts of the distribution, notably a pop-
ulation of non-discriminative frames corresponding to the
[60%,95%] region of statistical weight.

This phenomenon of hubs is reminiscent of other isolated
reports in different domains, such as speaker recognition or
fingerprint identification, which intriguingly also typically rely
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on the same features and pattern recognition algorithms. This
suggests that this could be an important phenomenon which
generalizes over the specific problem of timbre similarity, and
indicates a general structural property of the class of algorithms
examined here, for a class of signals which is probably defined
by the heterogeneity of their feature distribution. This of course
would require further investigation, for which this study pro-
vides a methodological basis, notably by introducing metrics
to quantify hubness. Therefore, this paper can be thought as a
“witness call” to the community to identify similar effects in
different application contexts.

The phenomenon of hubs, and notably the evidence of its
important sensibility to certain critical frames, illustrates one
deep discrepancy between human perception of timbre and
all its computation models. Namely, that all frames are not
of equal importance, and that these weights does not merely
result of their long-term frequencies (i.e. the corresponding
component’s prior probability �m). Some timbres (i.e. here sets
of frames) are more salient than others: for instance, the first
thing than one may notice while listening to a given singer’s mu-
sic is his/her particular timbre of voice, independently of the in-
strumental background (guitar, synthesizer, etc.). This saliency
may depend on the context or the knowledge of the listener
and is obviously involved in the assessment of similarity. These
experiments open the way for more careful investigations of
the perceptive paradoxes proper to polyphonic music timbre,
in which listeners “hear” things that are not statistically signif-
icant in the actual signal, and that the low-level models of tim-
bre similarity studied in this work are intrinsically incapable of
capturing.
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Appendix A. Some properties of hubness measures

A.1. n-Occurrence is constant-sum

An important property of the number of n-occurrences Nn of
a song is that the sum of the values for all songs is constant given
a database. A query for n neighbors only gives the opportunity
for n occurrences to the set of all the other songs, such that the
total number of n-occurrences in a given N-size database is
n ∗N. Therefore, the mean n-occurrence of a song is equal to
n, independently of the database and the distance measure.

A.2. Neighbor angle is constant-sum

An important property of the neighbor-angle value is that,
like the number of n-occurrences Nn of a song, the sum of
the values for all songs is constant given a database size. This

directly derives from the fact that the angles of a triangle
sum to 2� radians (in an Euclidean geometry—which is only
approximated here in the general case). Given a set of N points,
the number of angles whose vertex is a given point X, and are
formed by the lines from X to the N− 1 other points, is equal
to the number of combinations of two points within N−1, i.e.
C2
N−1. There are N possible vertices X for such angles, thus

there are a total of NC2
N−1=n(n−1)(n−2)/2 angles formed

between the N points. It is easy to see that n(n − 1)(n − 2)

is divisible by 3 ∀n. Hence, these angles can be clustered by
triplets, so that their supporting lines form a triangle, and thus
sum to 2�. Therefore, the sum of all angles formed between
N points equals (2�/3)NC2

N−1.

A.3. Neighbor angle is distance-dependent

The neighbor angle is dependent on the discrimination ca-
pacity of the distance, i.e. the typical distance ratio between
what can be considered a close distance, and what can be con-
sidered a large distance. Therefore it cannot be used to compare
different algorithms, but to compare the hubness of different
songs within the same distance measure.

A.4. Correlation between measures

Further studies show that there is a nearly logarithmic depen-
dency between the number of occurrences of a given song and
its mean neighbor angle. This logarithmic behavior is observed
independently of the modelling algorithm (GMMs, HMMs, his-
tograms, etc.). In all cases, it appears that hub songs tend to
be associated to higher values of neighbor angle. However, the
logarithmic dependency makes it difficult to distinguish songs
with number of occurrences in the range 100–200 using their
value of neighbor angle. Therefore, in this paper, the former
measure is preferred when comparing different settings in the
same database.
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