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Abstract

This letter addresses the problem of pattern recognition of polyphonic musical tim-
bre. Frame-level dynamics of audio features are particularly difficult to model, al-
though they have been identified as crucial perceptive dimensions of timbre per-
ception. Recent studies seem to indicate that traditional means to model data dy-
namics, such as delta-coefficients, texture windows or Markov modelling, do not
provide any improvement over the best static models for real-world, complex poly-
phonic textures of several seconds’ length. This contradicts experimental data on
the perception of individual instrument notes. This letter describes an experiment to
identify the cause of this contradiction. We propose that the difficulty of modelling
the dynamics of full songs results either from the complex structure of the temporal
succession of notes, or from the vertical polyphonic nature of individual notes. We
discriminate between both hypothesis by comparing the performance of static and
dynamical algorithms on several specially designed datasets, namely monophonic
individual notes, polyphonic individual notes, and polyphonic multiple-note tex-
tures. We conclude that the main cause of the difficulty of modelling dynamics of
real-world polyphonic musical textures is the polyphonic nature of the data.
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1 Introduction

1.1 Sound textures

Timbre is defined by the American Standards Association (ASA, 1960) as
“that attribute of sensation in terms of which a listener can judge that two
sounds having the same loudness and pitch are dissimilar”. It notably describes
the quality of a musical note which distinguishes different musical instruments.

The exploding field of Electronic Music Distribution (EMD) is in need of
powerful content-based management systems to help the end-users navigate
huge music title catalogues, much as they need search engines to find web pages
in the Internet. Not only do users want to find quickly music titles they already
know, but they alsoand perhaps more importantlyneed systems that help them
find titles they do not know yet but will probably like. The global “sound”
or timbre of a piece of music seems an important component of such Music
Information Retrieval (MIR) systems. Music listeners are sensitive to timbres
that specific to e.g. music periods (e.g. the sound of Chick Corea playing
on an electric piano), musical configurations (e.g. the sound of a symphonic
orchestra), or musical genres (e.g. heavily saturated electric guitar).

Most of the studies on musical instrument discrimination (Herrera-Boyer et al.,
2003) have focused on sound samples corresponding to clean recordings of a
unique note, played by a single instrument. However, this approach seems
little suited to the modelisation of real-world, complex polyphonic textures
of several seconds’ length, of which the music recommendation industry is in
demand. Psychoacoustic investigations on monophonic timbre discrimination
(Grey, 1977; Iverson and Krumhansl, 1993; McAdams et al., 1995) show that
precise time attributes, such as the attack time of a note, are crucial dimen-
sions of a meaningful perceptual timbre space. However, such descriptors are
practically impossible to compute from complex polyphonic textures, since the
different sound sources are typically not synchronized. A sound segment cor-
responding to a given note of a given instrument is likely to be superimposed
with other notes with various time offsets. For instance, the attack of a piano
note extracted from the recording of a jazz trio may superimpose with the
decay of a double-bass note, and its steady-state may be similarly corrupted
by several drum onsets.

1.2 Traditional modelling

The lack of psychophysical models for the timbre perception of polyphonic
textures has led researchers to take a pragmatic approach to build the much-
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needed automatic systems able to model and compare sound textures. The
signal is cut into short overlapping frames (typically 50ms with a 50% overlap),
and for each frame, a feature vector is computed. Features usually consist of a
generic, all-purpose spectral representation such as Mel Frequency cepstrum
Coefficients (MFCC), a particular encoding of the spectral envelope widely
used in the speech recognition community (Rabiner and Juang, 1993). The
features are then fed to a statistical model, such as a Gaussian Mixture Model
(GMM), which models their global distributions over the total length of the
extract. Global distributions can then be used to compute decision boundaries
between classes (to build e.g. a genre classification system such as Tzanetakis
and Cook (2002)) or directly compared to one another to yield a measure of
timbre similarity (Aucouturier and Pachet, 2004). Note that an alternative
approach to the problem of polyphony is the one taken by Essid et al. (2005),
which applies successive monophonic recognition algorithms to eliminate the
components of a texture.

1.3 The paradox of dynamics

The type of algorithm described above has led to some success but a previous
study of the authors on timbre similarity (Aucouturier and Pachet, 2004)
shows that it seems to be bounded to moderate performance. Most notably,
as we know report in this section, classical pattern recognition extensions that
take the data dynamics into account have surprisingly failed to improve the
precision of the models.

The prototypical algorithm described above (GMMs of MFCCs) does not take
any account of time scale greater than the frame size. Frames are modelled
without any account of their ordering in time 1 . It is a common strategy to
try and modify this prototypical algorithm so as to take the dynamics of the
data into account. Modifications may occur at the feature level, by e.g.

• Tapped delay line: consecutive feature vectors can be stacked into n-times
larger feature vectors, before sending them to the statistical model, thus
constructing a flat spatial embedding of the temporal sequence (see e.g.
Scaringella and Zoia (2005)).

• Derivation: Furui (1986) showed that speech recognition performance can
be greatly improved by adding time derivatives to the basic static features.
Delta Coefficients are computed using the following formula:

dt =

∑Θ
θ=1 θ(ft+θ − ft−θ)

2
∑Θ

θ=1 θ2
(1)

1 Note that we are discussing here the ordering in time of frames in a sequence,
not the reordering of the samples within each frame.
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where dt is a delta coefficient at time t, computed using a time window
Θ. The same formula can be applied to the delta coefficients to obtain
the acceleration coefficients. The resulting modified feature set contains, for
each frame, the static feature values and their local delta values.

• Texture windows: local static features (typically extracted every 50 ms)
can be averaged over larger-scale windows (typically several seconds), in
an attempt to capture the long-term nature of sound textures, while still
assuring that the features be computed on small stationary windows. Several
statistics can be used on such so-called texture windows, e.g. mean, standard
deviation, skewness, range, etc. (see e.g. Tzanetakis and Cook (2002))

• Modulation spectrum: Another strategy to characterize the dynamics of the
static features is to compute features on the signal constituted by the static
feature sequence (which is considered to be sampled at the original frame-
rate). For instance, a high-resolution STFT can be taken on large frames (of
several seconds’ duration), and the low-frequency variations of the features
(e.g. [1 − 50Hz]) are taken as features instead of the original ones (see e.g.
Peeters et al. (2002)).

Modifications can also occur at the modelling level, to account for the dynam-
ics of static features. Such dynamic models include recurrent neural networks
(R-NN), which are typically 2 layer networks with feedback from the first layer
output to the first layer input, and hidden Markov models, which can be de-
fined as a set of GMMs (also called states) linked to one another by a matrix
of transition probabilities.

Table 1 shows the type of performance achieved by some of such static and
dynamic approaches as measured in Aucouturier and Pachet (2004). It reports
on R-precision scores achieved by the best found static algorithm (GMMs with
50 gaussian components), as well as a number of extensions to this algorithm
aiming at better modelling the dynamics of the data (see Appendix A for more
details about the corresponding experimental methodology).

It appears that no precision is gained by computing first order derivatives
of the features (so called “delta coefficients”), computing mean and variance
of the features on intermediate-size “texture windows” or using dynamical
models such as hidden Markov models (HMM, see Rabiner (1989)). In Au-
couturier et al. (2006), we described a technique inspired by image texture
similarity which used co-occurrence matrices on a quantized space of MFCCs
to model the second-order statistics of timbre textures. Table 1 shows that,
identically, this is at best equivalent to simpler and static histograms. The
poor improvement, if any, achieved by state-of-art dynamical models has re-
cently been confirmed by Scaringella and Zoia (2005) on the related task of
musical genre classification.

This is a surprising observation. Static models consider all frame-permutations
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Table 1
R-precision scores achieved for the best algorithm as well as a number of extensions
aiming at better modelling the dynamics of the data. Results reproduced from
Aucouturier and Pachet (2004); Aucouturier et al. (2006). “Random” corresponds
to the chance-based strategy of drawing a random set of nearest neighbor for each
seed song. See Appendix A for details.

Algorithm R-Precision

Random 0.12

Best (20 MFCC + 50-state GMM) 0.65

Delta Θ = 10 0.60

Acceleration Θ = 10 0.610

Delta Θ = 2 0.62

Delta Θ = 5 0.62

Acceleration Θ = 5 0.62

Acceleration Θ = 1 0.63

Delta Θ = 1 0.63

Texture Window wt = 10 0.64

Texture Window wt = 20 0.65

HMM (5 states) 0.62

HMM (10 states) 0.63

HMM (20 states) 0.62

HMM (30 states) 0.44

Co-occurrence matrix 0.44

Histogram 0.50

of the same audio signal as identical, while this has a critical influence on their
perception. Moreover, as mentionned earlier, psychophysical experiments such
as (McAdams et al., 1995) have established the importance of dynamics, no-
tably the attack time and fluctuations of the spectral envelope, in the percep-
tion of individual instrument notes.

1.4 Hypothesis testing

There are 3 main hypothetic causes that explain the difficulty of modelling
dynamics in the case of polyphonic timbre textures:
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H1 Either the dynamics of timbre frames are impossible to capture at the
time-scale of an individual note, e.g. because there is too much timing vari-
ation from note to note. This is improbable, as success in doing so has been
reported notably in instrument note recognition (Dubnov and Fine, 1999;
Eronen, 2003).

H2 Either it is the dynamics of polyphonic timbre frames that is difficult
to model. We have already noted the problems of spectral masking and
asynchronicity of several concurrent sound sources, and how they defeat
näıve analysis generalized from the monophonic case.

H3 Or it is the dynamics of successive notes at the time-scale of a phrase or
a full song that are difficult to model. It is unclear e.g. whether a HMM at-
tempts to capture fine-grained dynamics such as the succession of transient
and steady-state inside individual notes or rather longer-term structure like
the succession of different instrument timbres.

In this letter, we propose to discriminate between these 3 hypotheses by testing
the performance of dynamical algorithms on two databases of individual sound
samples:

• one composed of clean, monophonic individual instrument notes (DB1)
• the other obtained from a polyphonic, real-world recording (DB2)

The comparison of the performance of dynamical modelling against static
modelling in both contexts has the potential to disprove some of the above hy-
potheses. Evidence that dynamical modelling performs constantly worse than
static modelling on both databases would support H1 (and be at odds with
previous findings from the literature). H2 will be supported should dynami-
cal modelling perform better than static on the monophonic dataset (DB1),
but not on the polyphonic one (DB2): this would mean that polyphony ru-
ins attempts at modelling dynamics even within the constrained time-scale
of individual notes. Finally, evidence that dynamical models overperforms
static models for both databases, but not for textures made of successive
notes (which is our starting-point observation), would indicate that the criti-
cal factor is the existence of the longer-term structure of e.g. phrase rhythm
and instrument changes (H3).

2 Methods

2.1 Databases

Table 2 and 3 describe the contents of both databases. DB1 was obtained
as an extract of the IRCAM “Studio On Line” database, made available in
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the context of the Cuidado European Project (Vinet et al., 2002). It contains
710 short sound samples, categorized in 16 classes corresponding to the in-
strument used for their recording. DB2 consists of sound samples obtained
from the automatic analysis of the song The Beatles - Let it be, using a seg-
mentation algorithm described below (Section 2.2). The process yielded 595
samples, which were manually clustered and categorized into 16 categories,
corresponding to the different mixtures of sound sources occurring in the song
(a few samples were discarded because they were either too short, or difficult
to categorize).

Table 2
Composition of DB1.

Class Size

Accordion 37

Alto violin 51

Bass 50

Bassoon 39

Cello 48

Clarinet 44

Flute 38

Guitar 66

Harp 40

Horn 78

Oboe 36

Sax 32

Trombone 38

Trumpet 32

Tuba 35

Violin 46

Total 710

Table 3
Composition of DB2.

Class Size

Drums 59

Electric Guitar 74

Electric Piano 13

Organ 27

Organ & Drums 16

Piano 95

Piano & Tchak 26

Tutti 1 70

Voice & Bass & Drums 35

Voice & Organ & Drums 11

Voice & Piano 58

Voice & Piano & Choir 6

Voice & Piano & Organ 5

Voice & Piano & Tchak 19

Voice & Tutti1 53

Voice & Tutti1 & Elec. Guitar 21

Total 588

We remark that both databases have the same number of classes, and roughly
the same size, which makes their comparison quite reliable. However, DB2
being obtained with automatic segmentation, samples from the same category
may have quite different durations. This may be detrimental to dynamical
algorithms, which may match samples of the same duration across different
categories. To control this effect, we create a third database, DB3, which con-
tains the same samples as DB2, but sub-categorizes the timbre categories
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according to the samples’ duration: samples that were categorized as e.g. Pi-

ano in DB2 are categorized in DB3 as one of {Piano 100, Piano 200, ...},
where {100,200,...} denotes the duration (in ms) of the sample (averaged to
the nearest multiple of 100ms). The typical sample duration being between
50ms and 1 sec., this creates up to 10 time-indexed sub-classes per original
instrument class in DB2.

2.2 Segmentation

We give here an overview of the segmentation algorithm used to populate
DB2. The algorithm is described in more details in Aucouturier et al. (2004).
The signal is cut into frames (2048 points at 44100Hz), on which we compute
the short-term spectrum. The spectrum itself is processed by a Mel filter
bank of 20 bands. Each band’s energy is weighted according to the frequency
response of the human ear (Schroeder et al., 1979). Finally, the energy is
summed across all bands. Change detection is done by smoothing the energy
profile by a zero-phase filtering by a Hanning window of size Sw, and looking
for all the local maxima of the smooth version. The segment boundaries are
the deepest valleys in the raw energy profile between 2 adjacent peaks in the
smooth profile. The size of the convolution window Sw can be adapted to the
local shape of the energy profile, by an analysis based on long-term Fourier
transform. This algorithm was used in Aucouturier et al. (2004) to build an
automatic synthesizer from an existing music recording, and a variant thereof
in Jehan (2004) to analyze the metrical structure of musical pieces.

2.3 Algorithms

17 algorithmic variants were implemented for each database and their results
compared. Table 4 describes the parameters of each variant.

The use of dynamic information is embodied by 3 algorithmic variants based
on Dynamic Programming (DP, see e.g. Crochemore and Rytter (1994)). DP
is typically used for aligning or computing the distance between 2 sequence
of symbols, such as text, protein or DNA sequences. It was also used e.g. in
Smith et al. (1998) for comparing sequences of musical notes. DP relies on
a symbol-distance, which measures the distance between duplets of symbols
in the alphabet (which may have infinite size), and an edit-operation cost,
which penalizes alignment changes in the sequence (e.g., deletion, insertion,
substitution). In our case, we compare sequences of MFCC frames, using the
euclidean distance as symbol distance, and compare 3 values for the edit cost
{10, 100, 1000}. The smaller the edit-cost, the more tolerant the measure is
to modifications of the time arrangement of successive MFCC frames. This
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Table 4
Description of the algorithms used to compare monophonic and polyphonic sample
similarity

DynProg MFCC (edit 10) Dynamic Programming Comparison of MFCC
frames (using an edit cost of 10)

DynProg MFCC (edit 100) Same as above with edit cost of 100

DynProg MFCC (edit 1000) Same as above with edit cost of 1000

MFCC MPEG-7 RMS 1G Monte-Carlo KL comparison of Gaussian Mix-
ture model (using 1 gaussian component) of
feature vectors composed of MFCCs (dim 20),
MPEG-7 Spectral descriptors (dim 7) and RMS
value (dim 1)

MFCC MPEG-7 RMS 2G Same as above with 2 gaussian components

MFCC MPEG-7 RMS 3G Same as above with 3 gaussian components

MFCC MPEG-7 RMS 4G Same as above with 4 gaussian components

MPEG-7 1G Monte-Carlo KL comparison of Gaussian Mix-
ture model (using 1 gaussian component) of fea-
ture vectors composed of MPEG-7 Spectral de-
scriptors (dim 7)

MPEG-7 2G Same as above with 2 gaussian components

MFCC MPEG-7 1G Monte-Carlo KL comparison of Gaussian Mix-
ture model (using 1 gaussian component) of fea-
ture vectors composed of MFCCs (dim 20) and
MPEG-7 Spectral descriptors (dim 7)

MFCC MPEG-7 2G Same as above with 2 gaussian components

MFCC RMS 1G Monte-Carlo KL comparison of Gaussian Mix-
ture model (using 1 gaussian component) of fea-
ture vectors composed of MFCCs (dim 20) and
RMS value (dim 1)

MFCC RMS 2G Same as above with 2 gaussian components

MFCC 1G Monte-Carlo KL comparison of Gaussian Mix-
ture model (using 1 gaussian component) of fea-
ture vectors composed of MFCCs (dim 20)

MFCC 2G Same as above with 2 gaussian components

Mean MFCC Euclidean Euclidean comparison of the mean of feature
vectors composed of MFCCs (dim 20)

Jehan Euclidean Euclidean comparison of the concatenation of
the mean of feature vectors composed of MFCCs
(dim 20), and a set of global temporal shape
descriptors (dim5)
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makes it possible to align close MFCC frames at different positions within
the samples, i.e. to match sound samples of the same timbre, but with very
different duration. However, this also increases the number of false positives.
DP can be viewed as a manual equivalent of decoding the sequence with an
a priori trained HMM. Note however that HMM-based similarity (as used
for full songs in Aucouturier and Pachet (2004)) was impossible to use in the
context of short samples, because of the lack of training data: a typical sample
has a duration of 200 ms, which amounts to 10 frames.

We compare these dynamical algorithms to a number of static algorithms,
based on combinations of features such as MFCC, energy (root-mean square)
or Spectral MPEG-7 descriptors (i.e. Spectral Centroid, Spread, Kurtosis,
Skewness, Flatness, Rolloff and Flux). Features are compared using simple
average comparison with euclidean distance, or Gaussian Mixture models (i.e.
average and variance) with up to 4 gaussian components. Note that simi-
larly to HMM-based processing, greater numbers of components (such as 50
as used for full songs) could not be tested because of the lack of training data
in individual samples.

Finally, a hybrid algorithm inspired by Jehan (2004), compares a feature vec-
tor composed of the average of the MFCCs and a set of global descriptors
describing the temporal shape of the samples: normalized loudness at onset
and at offset, maximum loudness and relative location of the maximum loud-
ness.

2.4 Evaluation Procedure

The algorithms are compared by computing their precision after 10 documents
are retrieved, and their R-precision, i.e. their precision after all relevant doc-
ument are retrieved. Each value measures the ratio of the number of relevant
documents to the number of retrieved documents. The set of relevant docu-
ments for a given sound sample is the set of all samples of the same category
than the seed (for instance, the precision of a query on a piano sample mea-
sures the number of piano samples in the set of its nearest neighbors). This is
identical to the methodology used e.g. in Aucouturier and Pachet (2004), and
for the results reported in Table 1.

3 Results

Table 5 shows the evaluation scores of the algorithms described above on both
databases DB1 and DB2. One can see that dynamic algorithms perform up
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Table 5
Comparison of similarity methods for monophonic and polyphonic samples. Best
scores for each dataset appear in bold. “Random” corresponds to the chance-based
strategy of drawing a random set of nearest neighbor for each seed song (See Ap-
pendix A for details).

DB1 DB2 DB3

Method P10 PR P10 PR P10 PR

Random 0.26 0.14 0.25 0.18 0.07 0.06

DynProg MFCC (edit 10) 0.76 0.46 0.44 0.34 0.24 0.22

DynProg MFCC (edit 100) 0.73 0.46 0.37 0.27 0.35 0.31

DynProg MFCC (edit 1000) 0.70 0.44 0.31 0.17 0.33 0.28

MFCC MPEG-7 RMS 4G 0.64 0.34 0.42 0.31 0.12 0.12

MFCC MPEG-7 RMS 3G 0.63 0.34 0.45 0.32 0.12 0.12

MFCC MPEG-7 RMS 2G 0.62 0.33 0.47 0.35 0.14 0.13

MFCC MPEG-7 RMS 1G 0.62 0.35 0.51 0.37 0.15 0.14

MPEG-7 1G 0.61 0.38 0.36 0.29 0.11 0.11

MFCC MPEG-7 1G 0.61 0.33 0.47 0.35 0.14 0.13

MPEG-7 2G 0.61 0.38 0.36 0.29 0.11 0.11

MFCC MPEG-7 2G 0.59 0.31 0.43 0.33 0.12 0.12

Mean MFCC Euclidean 0.58 0.33 0.50 0.39 0.14 0.13

Jehan Euclidean 0.56 0.32 0.49 0.38 0.21 0.19

MFCC RMS 2G 0.56 0.28 0.48 0.35 0.14 0.13

MFCC RMS 1G 0.55 0.27 0.50 0.37 0.15 0.14

MFCC 2G 0.51 0.26 0.46 0.32 0.14 0.13

MFCC 1G 0.50 0.26 0.47 0.33 0.15 0.13

to 10% better (absolute) than static algorithms on the monophonic database.
This establishes that the dynamic evolution of instantaneous features are an
important factor for timbre similarity. This confirms the findings of both psy-
chophysical experiments on the perception of instrument timbre, and a number
of automatic instrument classification systems. The best static performances
on DB1 are obtained with fairly involved variants, which typically rely on
concatenation of several features, and large Gaussian Mixture Models.

However, dynamic algorithms perform nearly 10% worse than their static
equivalent on the polyphonic database DB2. It also appears that the best

11



polyphonic performance is achieved with the most simple static algorithms,
such as euclidean comparison of the simple average of MFCCs. Notably, while
increasing the number of gaussian components for the MFCC MPEG-7 RMS family
of algorithms constantly increases the precision on the monophonic dataset
(from 0.62% to 0.64 % R-precision), the same operation degrades the precision
(from 0.51% to 0.42%) in the polyphonic case.

Results on the duration-indexed version of the polyphonic database (DB3)
confirm the fact that dynamical algorithms are helped by keeping the duration
constant within a class. Conversely, static algorithms that do not consider
duration are penalized by blindly returning samples which may be of the
correct DB2 class, but not in the correct DB3 class. However, the performance
of dynamical algorithms on DB3 remains more than 25% worse than the static
performance on DB2, which shows that, even at constant duration, dynamical
algorithms are poor at capturing essential feature dynamics.

4 Conclusions

The observation that dynamic algorithms overperform their static counter-
parts on DB1, but are ranked in inverse order on DB2 gives strong evidence
that polyphony ruins attempts at modelling dynamics even within the con-
strained time-scale of individual notes (H2). This conclusion therefore gener-
alizes all the more so to longer textures (i.e. sequences of notes), and explains
the poor performance of dynamical algorithms for the timbre similarity of full
songs.

Note that we are only concerned here about measures of timbre similarity, and
that we do not claim that our results extend to other types of music similarity
(e.g. structural (Dannenberg and Hu, 2003) or rhythmic (Gouyon and Dixon,
2005)) or the modelling of complex, multi-faceted descriptions like musical
genre (Aucouturier and Pachet, 2003), which may benefit from information
captured by dynamical techniques at the time-scales considered in this study.

Moreover, polyphony seem to make difficult the training of involved static
algorithms such as several-component GMMs. These perform less accurately
than simplistic euclidean comparison of the mean frame of each segment. As
polyphonic samples tend to be longer than monophonic samples, this is not
simply an effect of overfitting complex models to too little training data, but
a property of the data itself. Polyphony, and notably the quasi-random super-
position of asynchronous sources in a given sound sample, probably creates a
higher degree of variance from one sound sample to another than in the mono-
phonic case. This effect could probably be limited if more data were available,
e.g. in the context of classification where models are trained on a set of several
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songs, instead of individual songs as we do here for similarity.

As observed by Flexer et al. (2005), dynamical models tend to increase the
likelihood of the training data, without yet increasing the precision of the cor-
responding task (as we see here). This suggests that the dynamical techniques
considered here are able to model some additional statistical information in
the sequence of features, but that this information is mostly meaningless for
perception. One possible explanation is that human polyphonic listening in-
volves mechanisms of categorization and selective attention to specific sound
sources in a texture (e.g.“listening to the guitar part”). It is likely that the
dynamical factors identified by psychoacoustical research are only meaningful
within the stream of a categorized sound source, and not between arbitrary
adjacent sound events as modelled by the current frame-based approaches.

Overall, this suggests that the horizontal coding of frames of data, without
any account of source separation and selective attention, is a very inefficient
representation of polyphonic musical data, and not cognitively plausible. On
that respect, more brain-plausible processings such as sparse representations
(Georgiev et al., 2005; Daudet, 2006) may provide a fruitful direction for
further research.
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A Appendix: Experimental Methodology for Table 1

The data reported in Table 1 is reproduced from previous work by the authors
(Aucouturier and Pachet, 2004; Aucouturier et al., 2006). We give here some
details about the corresponding experimental methodology. Please refer to the
original papers for complete details.
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A.1 Task:

The evaluated task is to use the tested algorithms to build a timbre similarity
measure between music titles. For each choice of feature and model (e.g. HMMs
of MFCCs), we build a measure of the timbre similarity of songs by comparing
timbre models to one another with an appropriate metric (see below for specific
details). We then measure the quality of the similarity algorithm by comparing
the set of nearest neighbors obtained for each song to a groundtruth, described
below.

A.2 Algorithms:

Except when mentionned, all tested features are modelled with a 50-state
GMM, which we found was an optimal number of components in the case
of MFCCs. Delta and acceleration coefficients are computed on 20-coefficient
MFCC vectors. The reported Θ values are in number of frames, as in Equation
1. For texture windows of size wt frames, we compute the mean and variance
of the 20-coefficient MFCCs on running windows overlapping by wt−1 frames.
GMMs and HMMs are compared to one another by a Monte-Carlo approxima-
tion of the Kullback-Leibler distance, using 2000 samples in the case of GMMs
and 200 sequences of 100 samples in the case of HMMs. The co-occurrence
matrices and histograms, described in Aucouturier et al. (2006), are compared
by euclidean distance.

A.3 Ground Truth:

The test database contains 350 song items, extracted from the 15,460-files
Cuidado database (Vinet et al., 2002). It is composed of 37 clusters of songs
by the same artist, which were refined by hand to satisfy 3 additional criteria:

• First, clusters are chosen so they are as distant as possible from one another.
• Second, artists and songs are chosen in order to have clusters that are “tim-

brally” consistent (all songs in each cluster sound the same).
• Finally, we only select songs that are timbrally homogeneous, i.e. there is

no big texture change within each song.

The database is constructed so that nearest neighbors of a given song should
optimally belong to the same cluster as the seed song.
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A.4 Evaluation Metric:

We measure the quality of the measure by counting the number of nearest
neighbors belonging to the same cluster as the seed song, for each song. More
precisely, for a given query on a song Si belonging to a cluster CSi

of size Ni,
the precision is given by :

p(Si) =
card(Sk/CSk

= CSi
andR(Sk) ≤ Ni)

Ni

(A.1)

where R(Sk) is the rank of song Sk in the query on song Si.

The value we compute is referred to as the R-precision, and has been stan-
dardized within the Text Retrieval Community (Voorhes and Harman, 1999).
It is in fact the precision measured after R documents have been retrieved,
where R is the number of relevant documents (i.e. precision at recall 1). To
give a global R-precision score for a given model, we average the R-precision
over all queries (i.e. 350, which is the number of songs in the test database).

Further experiments reported in Aucouturier and Pachet (2004) show that,
with the similarity measures examined here, the precision decreases linearly
with the recall rate. This suggests that the R-precision value is a meaningful
metric to compare algorithms to one another. Moreover, the small typical size
of the song clusters used as groundtruth makes R-precision a good indication
of how the algorithms behave in realistic applications contexts (e.g. “give me
the 5 nearest neighbors of this song”).

A.5 Baseline performance

The precision of the chance-based strategy of drawing a random set of nearest
neighbor for each seed song depends on the groundtruth. For a query on a song
Si belonging to a cluster CSi

of size Ni, the probability to observe n matches
(e.g. songs in CSi

) in a random set of p songs (from a database of size Ntot) is
given by

p(n) =

(

Ni

n

)(

Ntot

p−n

)

(

Ntot

p

) (A.2)

and therefore the expected value ñ in [1, p] is given by

ñ =

∑p
n=1 np(n)

∑p
n=1 p(n)

(A.3)

15



and the corresponding precision by

p(ñ) =
ñ

min(p,Ni)
(A.4)

This precision can then be averaged over all possible queries in the database.
The R-precision is obtained in the above when p = Ni.
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