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The “bag of frames” approach (BOF) to audio pattern recognition represents signals as the long-
term statistical distribution of their local spectral features. This approach has proved nearly
optimal for simulating the auditory perception of natural and human environments (or sound-
scapes), and is also the most predominent paradigm to extract high-level descriptions from music
signals. However, recent studies show that, contrary to its application to soundscape signals,
BOF only provides limited performance when applied to polyphonic music signals. This paper
proposes to explicitely examine the difference between urban soundscapes and polyphonic mu-
sic with respect to their modelling with the BOF approach. First, the application of the same
measure of acoustic similarity on both soundscape and music datasets confirms that the BOF
approach can model soundscapes to near-perfect precision, and exhibits none of the limitations
observed in the music dataset. Second, the modification of this measure by 2 custom homogeneity
transforms reveals critical differences in the temporal and statistical structure of the typical frame
distribution of each type of signals. Such differences may explain the uneven performance of BOF
algorithms on soundscapes and music signals, and suggest that their human perception rely on
cognitive processes of a different nature.
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I. INTRODUCTION

A. Soundscapes

In 1977, composer R. Murray Schafer coined the term
soundscape as an auditory equivalence to landscape1. He
proposed to consider soundscapes as musical composi-
tions, in which the sound sources are musical instru-
ments. Nowadays, the concept of soundscape is used as
a methodological and theoretical framework in the field
of rural or urban sound quality, notably for the assesse-
ment of noise annoyance2. Psycho-physic experiments on
the perception of soundscapes3–5 indicate that the cogni-
tive processes of recognition and similarity operate on the
basis of the identification of the physical sources. For in-
stance, a given soundscape can be classified as a “park”,
when specific and localized audio events such as “birds
singing”, or “children playing” are identified6. This also
holds for semantic categorization7, i.e. the subjective
“unpleasantness” of urban soundscapes increases when
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more mechanical sound sources (e.g. vehicles) are identi-
fied than natural sources (e.g. voices or birds). However,
recent research8 shows that people are also capable of
more holistic strategies for processing soundscapes, when
individual source identification is difficult in the pres-
ence of too many non-characteristic events (“background
noise”).

There have been various attempts to simulate human
perception of soundscapes with computer algorithms,
with methodologies that closely ressemble the two alter-
native cognitive strategies mentionned above. A majority
of contributions9–14 take the strategy to identify the con-
stituant sound sources individually. The typical imple-
mentation describes sound extracts with generic frame-
level features, such as MPEG-7 spectral descriptors11,
and use hidden Markov models15 to represent their sta-
tistical dynamics. Recent research14 proposes to enhance
this typical scheme by learning problem-specific features,
adapted to each sound class, with genetic programming.

However, another trend of works16–18 propose to di-
rectly recognize soundscapes as a whole, without the
prior identification of constituant sound sources. In
these works, soundscapes are modelled as the long-
term accumulative distribution of frame-based spectral
features. This approach has been nicknamed “bag-
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of-frames” (BOF), in analogy with the “bag-of-words”
(BOW) treatment of text data as a global distribution
of word occurrences without preserving their organisa-
tion in phrases, traditionally used in Text Classification
and Retrieval19. The signal is cut into short overlap-
ping frames (typically 50ms with a 50% overlap), and
for each frame, a feature vector is computed. Features
usually consists of a generic, all-purpose spectral repre-
sentation such as Mel Frequency cepstrum Coefficients15

(MFCC). The physical source of individual sound sam-
ples is not explicitely modelled: all feature vectors are fed
to a classifier (based e.g. on Gaussian Mixture Models20)
which models the global distributions of the features of
signals corresponding to each class (e.g. pedestrian street
or park). Global distributions for each class can the be
used to compute decision boundaries between classes. A
new, unobserved signal is classified by computing its fea-
ture vectors, finding the most probable class for each of
them, and taking the overall most represented class for
the whole signal.

The BOF approach has proved very effective for sound-
scapes. Ma et al.18 report 91% classification precision
on a database of 80 3-second sound extracts from 10 ev-
eryday soundscape classes (street, factory, football game,
etc.). Notably, such systems seem to perform better than
average human accuracy on the same task (35%), which
suggests that 3-second audio data provides enough infor-
mation for pattern recognition, but not for people. Sim-
ilarly, Peltonen et al.4 reports that the average recogni-
tion time for human subjects on a list of 34 soundscapes
is 20 seconds. This supports the cognitive strategy of
source identification, which typically imposes longer la-
tencies, depending on the temporal density of discrimi-
native sound events.

B. Music

For the analysis of polyphonic music signals also, the
BOF approach has led to some success and is by far the
most predominant paradigm. Table I shows an enumer-
ation of paper and poster contributions in the ISMIR
conference21 since its creation in 2000. Each year, about
a fourth of all papers, and on the whole 88 papers out of a
total 388, use the approach. Each contribution typically
instanciates the same basic architecture described above,
only with different algorithm variants and parameters.
Although they use the same underlying rationale of mod-
elling global timbre/sound in order to extract high-level
descriptions, the spectrum of the targetted descriptions
is rather large: genre22, mood23, singing language24 to
name but a few.

However, contrary to its application to soundscapes,
recent research25–27 on the issue of polyphonic timbre
similarity shows that BOF seems to be bounded to mod-
erate performance, most notably:

• Glass ceiling: Surprisingly, thorough exploration of
the space of typical algorithms and variants (such

TABLE I. Number of contributions using the bag-of-frames
paradigm in the past ISMIR symposiums

year BOF papers total papers percentage
2000 6 26 23%
2001 9 36 25%
2002 14 58 24%
2003 12 50 24%
2004 23 104 22%
2005 24 114 21%

total 88 388 23%

as different signal features, static or dynamic mod-
els, parametric or non-parametric estimation, etc.)
and exhaustive fine-tuning of the corresponding pa-
rameters fail to improve the precision above a em-
pirical glass-ceiling25, around 70% precision (al-
though this of course should be defined precisely
and depends on tasks, databases, etc.).

• Paradox of dynamics: Further, traditional means
to model data dynamics, such as delta-coefficients,
texture windows or Markov modelling, do not pro-
vide any improvement over the best static models
for real-world, complex polyphonic textures of sev-
eral seconds length26. This is a paradoxical ob-
servation, since static models consider all frame-
permutations of the same audio signal as identical,
while this has a critical influence on their percep-
tion. Moreover, psychophysical experiments28 have
established the importance of dynamics, notably
the attack time and fluctuations of the spectral en-
velope, in the perception of individual instrument
notes.

• Hubs: Finally, recent experiments27 show that the
BOF approach (when used on polyphonic music)
tends to create false positives which are mostly al-
ways the same songs regardless of the query. In
other words, there exist songs, which we have called
hubs, which are irrelevantly close to all other songs.
This phenomenon is reminiscent of other results in
different domains, such as Speaker Recognition29 or
Fingerprint Identification30, which intriguingly also
typically rely on the same BOF approach. This sug-
gests that this could be an important phenomenon
which generalizes over the specific problem of poly-
phonic music similarity, and indicates a general
structural property of the class of algorithms ex-
amined here, at least for a given class of signals to
be defined.

C. Objectives

This paper proposes to re-evaluate this situation and
to explicitely examine the difference between soundscape
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and polyphonic music signals with respect to their mod-
elling with the BOF approach.

We apply to a dataset of urban soundscapes an
algorithmic measure of acoustic similarity that we
introduced25 in the context of polyphonic music. The
measure is a typical instanciation of the BOF ap-
proach, namely comparing the long-term distributions
of MFCC vectors, using Kullback-Leibler divergence be-
tween Gaussian mixture models. For music, the mea-
sure approximates the perception of similar global tim-
bre, e.g. of songs that “sound the same”. As already
noted, the measure only achieves moderate precision on
music and shows notable discrepancies with human per-
ception. We find here that the same measure is nearly
optimal for modelling the perceptual similarity of urban
soundscapes. This confirms the situation found in the
literature that soundscape and polyphonic music signals
are not equal with respect to their modelling with the
BOF approach. Notably, the application of timbre simi-
larity to soundscapes does not seem to create hubs.

To explain these differences, we report on 2 experi-
ments in which we apply specially-designed homogeneity

transforms to each datasets:

• Temporal Homogeneity: which folds an original sig-
nal onto itself a number of times, so the resulting
signal only contains a fraction of the original data.

• Statistical Homogeneity: which only keeps frames
in the signal which are the most statistically pro-
totypical of the overall distribution.

We study the influence of each transform on the precision
of BOF modelling for both soundscapes and music, and
show very different behaviours. This notably establishes
that the distribution of frame-based spectral features is
very homogeneous for soundscapes, which makes their
BOF-modelling very robust to data transformations. i.e.
soundscapes can be compressed to only a small fraction
of their duration without much loss in terms of distribu-
tion modelling. Polyphonic music on the contrary seems
to require a large quantity of feature information in order
to be properly modelled and compared. Furthermore, it
appears that, contrary to environmental textures, not all
music frames are equally discriminative: minority frames
(the 5% less statistically significative ones) are extremely
important for music while they can be discarded to no-
table advantage for soundscapes. Moreover, it appears
that there exists, in typical polyphonic music distribu-
tions, a population of frames (in the range [60%-90%] of
statistical weight) which is detrimental to the modelling
of perceptual similarity.

II. ACOUSTIC SIMILARITY OF URBAN SOUNDSCAPES

AND POLYPHONIC MUSIC

A. Algorithm

We sum up here the timbre similarity algorithm pre-
sented in Aucouturier and Pachet(2004)25. The signal is
first cut into frames. For each frame, we estimate the
spectral envelope by computing a set of Mel Frequency
Cepstrum Coefficients (MFCCs). We then model the dis-
tribution of the MFCCs over all frames using a Gaussian
Mixture Model (GMM). A GMM estimates a probabil-
ity density as the weighted sum of M simpler Gaussian
densities, called components or states of the mixture:

p(xt) =
m=M∑
m=1

πmN (xt, µm,Σm) (1)

where xt is the feature vector observed at time t, N is
a Gaussian pdf with mean µm, covariance matrix Σm,
and πm is a mixture coefficient (also called state prior
probability). The parameters of the GMM are learned
with the classic E-M algorithm20.

We then compare the GMM models to match different
signals, which gives a similarity measure based on the
audio content of the items being compared. We use a
Monte Carlo approximation of the Kullback-Leibler (KL)
distance between each duple of models A and B. The
KL-distance between 2 GMM probability distributions
pA and pB (as defined in (1)) is defined by :

d(A,B) =

∫
pA(x) log

pB(x)

pA(x)
dx (2)

The KL distance can thus be approximated by the em-
pirical mean :

˜d(A,B) =
1

n

n∑
i=1

log
pB(xi)

pA(xi)
(3)

(where n is the number of samples xi drawn according to
pA) by virtue of the central limit theorem.

In this work, we use the optimal settings determined by
previous research in the context of polyphonic music25,
namely 20 MFCCs appended with 0th order coefficient,
50-component GMMs, compared with n = 2000 Monte-
Carlo draws.

B. Datasets

1. Urban soundscapes

For this study, we gathered a database of 106 3-minute
recordings of urban soundscapes, recorded in Paris using
a omni-directional microphone. The recordings are clus-
tered in 4 “general classes”:
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• Avenue: Recordings made on relatively busy thor-
oughfares, with predominant traffic noise, notably
buses and car horns.

• Neighborhood: Recordings made on calmer neigh-
borhood streets, with more diffuse traffic, notably
motorcycles, and pedestrian sounds.

• Street Market: Recordings made on street markets
in activity, with distant traffic noise and predom-
inant pedestrian sounds, conversation and auction
shouts.

• Park: Recordings made in urban parks, with
lower overall energy level, distant and diffuse traf-
fic noises, and predominant nature sounds, such as
water or bird songs.

Recordings are further labelled into 11 “detailed classes”,
which correspond to the place and date of recording of
a given environment. For instance, “Parc Montsouris
(Paris 14è)” is a subclass of the general “Park” class.
Some detailed classes also discriminate takes at iden-
tical locations and dates, but with some exceptional
salient difference. For instance, “Marché Richard Lenoir
(Paris 11è)” is a recordings made in a street market on
Boulevard Richard Lenoir in Paris, and “Marché Richard
Lenoir (music)” is a recording made on the same day of
the same environment, only with the additional sound of
a music band playing in the street. Table II shows the
details of the classes used, and the number of recordings
available in each class.

TABLE II. Composition of the urban soundscape database.

Class Detailed Class Size
Avenue Boulevard Arago 14
Avenue Boulevard du Trone 5
Avenue Boulevard des Marchaux 8
Street Rue de la Sant 7
Street Rue Reille day1 14
Street Rue Reille day2 7
Market Marché Glaciére 8
Market Marché R. Lenoir 22
Market Marché R. Lenoir (music) 9
Park Parc Montsouris Spring 20
Park Parc Montsouris Summer 8

2. Polyphonic Music

The polyphonic music dataset used in this study
contains 350 popular music titles, extracted from the
Cuidado database31. It is organized in 37 clusters
of songs by the same artist, encompassing very differ-
ent genres and instrumentations (from Beethoven piano
sonata to The Clash punk rock and Musette-style accor-
dion). Artists and songs were chosen in order to have

TABLE III. Comparison of similarity measure for urban
soundscapes and polyphonic music.

Database 5-Prec. 10-Prec. 15-Prec. R-Prec.
Music 0.73 0.70 0.65 0.65

Soundscapes General 0.94 0.87 0.77 0.66
Detailed 0.90 0.79 0.75 0.74

clusters that are “timbrally” consistent (all songs in each
cluster sound the same). Furthermore, we only select
songs that are timbrally homogeneous, i.e. there is no
big texture change within each song. The test database
is constructed so that nearest neighbors of a given song
should optimally belong to the same cluster as the seed
song. Details on the design and contents of this database
can be found in Aucouturier and Pachet (2004)25.

C. Evaluation metric

The algorithms are compared by computing their pre-
cision after 5, 10 and 15 documents are retrieved, and
their R-precision, i.e. their precision after all relevant
document are retrieved. Each value measures the ratio
of the number of relevant documents to the number of
retrieved documents. The set of relevant documents for
a given sound sample is the set of all samples of the same
category than the seed. This is identical to the method-
ology used e.g. in Aucouturier and Pachet (2004)25.

D. Results

1. Precision

Table III gives the precision of timbre similarity ap-
plied to both datasets. It appears that the results are
substantially better for urban soundscapes than for poly-
phonic music signals, nearing perfect precision in the first
5 nearest neighbors even for detailed classes. High pre-
cision using the general classes shows that the algorithm
is able to match recordings of different locations on the
basis of their sound level (avenues, streets), and sound
quality (pedestrian, birds). High precision on detailed
classes shows that the algorithm is also able to distin-
guish recordings of the same environment made at dif-
ferent times (Spring or Summer), or in different contexts
(with and without music band). This result has a natural
application to computer-based classification, e.g. using a
simple k-nearest neighbor strategy, and could prove use-
ful for context-recognition, for instance in the context of
wearable computing32.
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2. Hubs

As mentionned above, an intriguing property of the
application of the similarity measure to polyphonic music
signals is that it tends to create false positives which are
mostly always the same songs regardless of the query.
In other words, there exist songs, which we call hubs,
which are irrelevantly close to all other songs. We give a
detailed description of this phenomenon in Aucouturier
and Pachet (2007)27.

A natural measure of the hubness of a given song is the
number of times the song occurs in the first n nearest
neighbors of all the other songs in the database. An
important property of the number of n-occurrences Nn

of a song is that the sum of the values for all songs is
constant given a database. Each query only gives the
opportunity for n occurrences to the set of all the other
songs, such that the total number of n-occurrences in a
given N -size database is n ∗ N . Therefore, the mean n-
occurrence of a song is equal to n, independantly of the
database and the distance measure.

Table IV shows the 5 biggest hubs in the polyphonic
music database ranked by the number of times they
occur in the first 10 nearest neighbors over all queries
(N10). This illustrates the predominance of a few songs
that occur very frequently. For instance, the first song,
MITCHELL, Joni - Don Juan’s Reckless Daughter is
very close to 1 song out of 6 in the database (57 out of
350), which is more than 6 times more than the theoreti-
cal mean value (10). Among these occurrences, many are
likely to be false positives.

TABLE IV. 5 Most Frequent False Positives in the music
database.

Song N10

MITCHELL, Joni - Don Juan’s Reckless Daughter 57
MOORE, Gary - Separate Ways 35

RASTA BIGOUD - Tchatche est bonne 30
PUBLIC ENEMY - Cold Lampin With Flavor 27

GILBERTO, Joao - Tin tin por tin tin 25

Figure 1 shows the histogram of the number of 20-
occurrences N20 obtained with the above distance on the
database of urban soundscapes, compared with the same
measure on the test database of polyphonic music. It
appears that the distribution of number of occurrences
for soundscapes is more narrow around the mean value
of 20, and has a smaller tail than the distribution for
polyphonic music. Notably, there are four times as many
audio items with more than 40 20-occurrences in the mu-
sic dataset than in the urban soundscape dataset. This is
also confirmed by the manual examination of the similar-
ity results for the urban soundscapes: none of the (few)
false positives re-occur significantly more than random.

This establishes the fact that hubs are not an intrinsic
property of the class of algorithm used here, but rather
appear only for a certain classes of signals, among whom
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FIG. 1. Comparison of the histograms of number of 20-
occurrences for the same distance used on urban soundscapes
and polyphonic music.

polyphonic music, but not urban soundscapes.
On the whole, these results confirm that urban sound-

scapes and polyphonic music signals are not equal with
respect to their modelling with the BOF approach. To
explain these differences, we now report on 2 experiments
in which we apply specially-designed homogeneity trans-
forms to each datasets. We study the influence of each
transform on the precision of BOF modelling for both
soundscapes and music, and observe very different be-
haviours.

III. TEMPORAL HOMOGENEITY

A. Transform

We consider a temporal homogeneity transformation
of audio data which folds an original signal onto itself a
number of times (as seen in Figure 2). The output of
the 2-fold transform is 50%-sized random extract from
the original, repeated twice. Similarly, the 3-fold trans-
form is a 33%-sized extract of the original repeated three
times. All signals processed by n-folding from a given
signal have the same duration as the original, but con-
tain less “varied” material. Note that since the duration
of the fold (an integer division of the total duration) is
not a multiple of the frame duration in the general case,
n-folding doesn’t simply duplicates the MFCC frames of
the folded extract, but rather creates some limited jit-
ter. The fact that all n-folded signals have the same
number of frames as the original enables to use the same
modelling parameters, notably number of gaussian com-
ponents (else we would have had to account for the curse
of dimensionality).

We apply 9 n-folding transforms for
n ∈ [1, 2, 3, 4, 5, 10, 20, 30, 50] to the audio signals
of each dataset (soundscapes and music). Each trans-
formed signal is then processed with the algorithm
described above, namely GMM of MFCCs. This yields 9
types of GMM for each original signal in a given dataset,
and 9 similarity measures for each dataset.
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1-fold

4-fold

3-fold

2-fold

FIG. 2. Illustration of applying 3 successive temporal ho-
mogeneity transforms to an audio signal, by folding it twice
(“2-fold”), three times (“3-fold”) and four times (“4-fold”).
The transform creates increasingly homogeneous signals by
folding a reduced portion of the original signal. Note tha the
“1-fold” transform is the “identity” operator.

B. Influence on variance

Figure 3 shows the influence of n-folding on the mean
variance of the GMM of the transformed signals. The
variance of a GMM model can be defined by sampling a
large number of points from this model, measuring the
variance of these points in each dimension, and summing
the deviations together. This is equivalent to measuring
the norm of the covariance matrix of a single-component
GMM fitted to the distribution of points33.

The temporal homogeneity transform has a very differ-
ent influence on GMM variance when applied to urban
soundscapes and music signals. The GMM variance of
soundscape signals shows little dependency on temporal
homogenization for ratios as low as 10% of the original
signal duration. For extreme number of folds (greater
than 10), the GMM variance tends to decrease slightly.
This shows that the statistics of urban soundscape signals
are stationary on time scales of the order of 10 seconds.

On the contrary, temporal homogenization has a com-
plex influence on the GMM variance polyphonic music
signals. Folding audio extracts of the original signal with
durations down to 50% of the original signal’s tends to re-
duce GMM variance. However, when the number of folds
is greater than 2, the variance exponentially increases.
It reaches its original 100% value when folding 15% of
the signal’s original duration, and increases to more than
twice its original value for ratios lower than 5%. This
shows that extracts smaller than a half of the original
duration (i.e. of the order of 100 seconds) are typically
more heterogeneous than the overall signal in the case of
polyphonic music. This indicates a rather high density of
outlier frames, whose probability is over-estimated when
considering small extracts.
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FIG. 3. Influence of temporal homogeneity transform on the
mean variance of the GMMs of urban soundscapes and music
signals.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized P recision for varying degrees of temporal homogeneity
for soundscapes and musical signals

Normalized duration of the songs kept for folding (1= original duration)

R
a

ti
o

 
o
f 

th
e

 
p
re

c
is

io
n

 
o
f 

th
e

 
h

o
m

o
g

e
n

iz
e

d
 

d
a

ta
 

to
 

th
e

 
p

re
c
is

io
n
 

o
f 

th
e

 
o
ri
g

in
a

l 
d

a
ta

Soundscapes
Music

FIG. 4. Influence of temporal homogeneity transform on the
precision of the similarity measure for urban soundscapes and
music signals.

C. Influence on precision

Figure 4 shows the influence of folding on the similarity
R-precision for both classes of signals (where both pre-
cision curves are normalized with respect to their maxi-
mum). N-folding is detrimental to the precision for both
datasets. However, it appears that urban soundscapes
are typically twice more robust to folding than poly-
phonic signals. Considering only a tenth of the audio
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signals cuts down precision by 15% for soundscapes, and
by more than 35% for polyphonic music. In the extreme
case of folding only 3 seconds out of a 3-minutes sound
extract (50-folding), the precision loss is 20% for sound-
scapes, but more than 60% for polyphonic music.

This suggests that frame-based feature distributions
for urban soundscapes are statistically much more self-
similar than polyphonic music, i.e. they can be com-
pressed to only a small fraction of their duration without
much loss in terms of distribution modelling. If we au-
thorize a 10% precision loss, soundscapes can be reduced
to 10-second extracts. Polyphonic music on the contrary
seems to require a large quantity of feature information
in order to be properly modelled and compared: the same
10% tolerance requires more than 1 minute of data.

Note that the former is comparable to the human
performance4 on the task of recognizing everyday audi-
tory scenes (20 seconds). However, the latter (polyphonic
music) is many times less effective than humans, who
have been reported able to issue categorical judgements
with good precision using as little as 200ms of audio34.

IV. STATISTICAL HOMOGENEITY

A. Transform

We define a statistical homogeneity transform
hk : G 7→ G on the space G of all GMMs, where k ∈ [0, 1]
is a percentage value, as:

g2 = hk(g1)
(c1, . . . , cn) ← sort(components(g1), decreasing wc)

define S(i) =
∑i

j=1 weight(cj)

ik ← arg mini∈[1,n] {S(i) ≥ k}
g2 ← newGMM(ik)

define di =component(g2,i)

di ← ci, ∀i ∈ [1, ik]
weight(di) ← weight(ci)/S(ik), ∀i ∈ [1, ik]
return g2

end hk

From a GMM g trained on the total amount of frames
of a given song, the transform hk derives an homogenized
version of g which only contains its top k% components.
Frames are all the more so likely to be generated by a
given gaussian component c than the weight wc of the
component is high (wc is also called prior probability of
the component). Therefore, the homogenized GMM ac-
counts for only a subset of the original song’s frames:
those that amount to the k% most important statisti-
cal weight. For instance, h99%(g) creates a GMM which
doesn’t account for the 1% least representative frames in
the original song.

We apply 11 transforms hk for k ∈

[20, 40, 60, 80, 90, 92, 94, 96, 98, 99, 100] to the GMMs
used in the similarity measure described above. Each
transform is applied on each dataset, thus yielding two
sets of 11 similarity measures, the properties of which
we study below.
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FIG. 5. Influence of statistical homogeneity transform on the
variance of the GMMs of urban soundscapes and music sig-
nals.

B. Influence on variance

Figure 5 shows the influence of the statistical homoge-
nization transform on the variance of the resulting GMM
for both datasets. The variance of the model is evaluated
with the sampling procedure already described in Section
III.B.

Again, the transformation has a very distinct influence
on each type of audio signals. Removing the least impor-
tant 1% frames from urban soundscape signals drastically
reduces the GMM variance by more than 50%. However,
further statistical homogenization has little influence on
the overall variance. This indicates that soundscape sig-
nals are very homogeneous and redundant statistically,
except for a very small proportion of outlier frames (the
least significant 1%), which account for a half of the over-
all variance, and probably represent very different MFCC
frames than the ones composing the main mass of the
distribution. Such frames would typically represent very
improbable sound events which are not characteristic of
a given environment, such as the occasional plane flying
over a park.

When applied to polyphonic music signals, it appears
that the homogenization transform reduces the variance
of the models exponentially. Half of the original variance
is explained by the 10% least representative frames, and
more than 80% by the 40% least representative frames.
This indicates a greater heterogeneity than for sound-
scape signals, and a more diffuse notion of “outlier”
frames.

C. Influence on precision

Figure 6 shows the influence of statistical homoge-
nization on the precision of the resulting similarity mea-
sure, for both datasets. The precision for urban sound-
scapes is measured with the 10-precision using the de-

Bag-of-frames 7



tailed classes as ground truth, and with the R-precision
for polyphonic music. For both dataset the precision is
measured by reference to the baseline precision corre-
sponding to k = 100%, which is different for soundscapes
and music, as shown in Table III.

On both datasets, increased homogenization decreases
the precision of the similarity measure: homogenization
with k = 20% degrades the measure’s precision by 6%
(relative) for urban soundscapes, and by 17% (relative)
for polyphonic music. It seems reasonable to interpret
the decrease in precision when k decreases as a conse-
quence of reducing the amount of discriminative infor-
mation in the GMMs (e.g. from representing a given
song, down to a more global style of music, down to the
even simpler fact that it is music).

Apart from this general trend however, the transform
has a very different influence on the measure’s precision
depending on the class of audio signals.

In the case of urban soundscapes, 99% homogeniza-
tion is slightly beneficial to the precision. This suggests
that the 1% less significant frames, which were found in
Figure 5 to account for half of the overall variance, are
spurious frames which are worth smoothing out. Fur-
ther homogenization down to 60% has a moderate impact
on the precision, which is reduced by about 1% (abso-
lute). The decrease in precision from 99% down is mono-
tonic. This suggests that the frame distribution from
99% down is very homogeneous and redundant. Urban
soundscapes can be discriminated nearly optimally by
considering only the most significant 50% of the frames.

In the case of polyphonic music, the decrease in pre-
cision is not monotonic. Figure 6 clearly shows a very
important decrease in the precision in the first few per-
cent of homogenization. The severely degraded precision
observed for k = 30% is reached as early as k = 95%.
This is a strong observation: the precision of the measure
seems to be controlled by an extremelly small amount of
critical frames, which represent typically less than 5% of
whole distribution. Moreover, these frames are the least
statistically significant ones, i.e. are modelled by the least
important gaussian components in the GMMs. This in-
dicates that the majority (more than 90%) of the MFCC
frames of a given song are a very poor representation
of what discriminates this song from other songs. This
is the exact opposite behaviour to the one observed for
soundscape signals, where these least significant frames
can be removed to some advantage.

Moreover, Figure 6 shows that after the abrupt sink
when removing the first 5% frames in typical music distri-
butions, the precision tends to increase when k decreases
from 90% to 60%, and then decreases again for k smaller
than 60%. The maximum value reached between 60%
and 80% is only 6% (relative) lower than the original
value at k = 100%.

The behaviour in Figure 6 suggests that there is a pop-
ulation of frames in the range [60%, 95%] which is mainly
responsible for the bad precision of the measure on music
signals. While the precision of the measure increases as
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FIG. 6. Comparison of the influence of statistical homogene-
ity transform on the precision of the similarity measure for
urban soundscapes and music signals.

more frames are included when k increases from 20% to
60% (such frames are increasingly specific to the song be-
ing modelled), it suddenly decreases when k gets higher
than 60%, i.e. this new 30% information is detrimental
for the modelling and tend to diminish the discrimination
between songs. The continuous degradation from 60% to
95% is only eventually compensated by the inclusion of
the final 5% critical frames.

V. DISCUSSION

A. Physical specificities in each class of sounds

We observe critical differences in the temporal and
statistical structure of the typical frame distribution for
soundscapes and polyphonic music signals. The experi-
ments reported here show that frames in polyphonic mu-
sic signals are not equally discriminative / informative,
and that their contribution to the precision of a sim-
ulated perceptual similarity task is not proportional to
their statistical importance and long-term frequency (i.e.
the corresponding component’s prior probability wc):

• The very informative frames for the simulation of
the perception of polyphonic music (measured by
their effect of acoustic similarity) are the least sta-
tistically representative (the bottom 1%)

• A large population of frames (in the range
[60%, 95%]) is detrimental to the modelling. An-
other study by the authors27 shows that the inclu-
sion of these frames increase the hubness of a song,
i.e. their statistical weight masks important and
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discriminative details found elsewhere in statistical
minority.

Such structure cannot be observed in the frame distribu-
tion of typical urban soundscape signals.

B. A possible reason for the failure of BOF

Such differences in homogeneity for each class of signals
can be proposed to explain the uneven performance of
their respective modelling with the BOF approach. High
performance with BOF correlates with high homogene-
ity: BOF-based techniques are very efficient for sound-
scapes, with both high precision and absence of percep-
tive paradoxes like hubs, while they fail for polyphonic
music, which is more heterogeneous.

However, we do not give here any formal proof that
heterogeneity is the main factor in explaining the fail-
ure of BOf modelling for polyphonic music signals. More
complete evidence would come e.g. by synthesing arti-
ficial signals spanning a more complete range of homo-
geneity values, and by comparing algorithmic previsions
to human perceptive judgements.

C. Psychological relevance

The BOF approach to simulate the auditory percep-
tion of signals such as soundscapes and music makes
an implicit assumption about the preceptive relevance
of sound events. Distributions are compared (e.g. with
the Kullback Leibler distance) on the basis of their most
stereotypical frames. Therefore, with BOF algorithms,
frames contribute to the simulation of the auditory sen-
sation in proportion of their statistical predominance in
the global frame distribution. In other words, the per-

ceptive saliency35 of sound events is modelled as their
statistical typicality.

BOF is not intended (neither here nor in the pattern
recognition litterature) as a cognitive model, but rather
is an engineering technique to simulate and replicate the
outcome of the corresponding human processing. Never-
theless, it is useful to note that the above model of au-
ditory saliency would be a very crude cognitive model
indeed, both to model pre-attentive weighting (which
has been found a correlate of frequency and temporal
contrasts36, i.e. arguably the exact opposite of statisti-
cal typicality) and higher-level cognitive processes of se-
lective attention (which are partly under voluntary con-
trol, hence products of many factors such as context and
culture37).

The above results establish, as expected, that the
mechanism of auditory saliency implicitely assumed by
the BOF approach does not hold for polyphonic mu-
sic signals: for instance, frames in statistical minority
have a crucial importance in simulating perceptive judge-
ments. However, surprisingly, the crude saliency hypoth-
esis seems to be an efficient/sufficient representation in

the case of soundscapes: frames are found to contribute
to the precision of the simulated perceptive task in de-
grees correlated with their global statistical typicality,
and overall BOF provide near-perfect replication of hu-
man judgements.

The fact that such a simple model is sufficient to sim-
ulate the perception of soundscapes could suggest that
the cognitive processes involved in their human pro-
cessing are less “demanding” than for polyphonic mu-
sic. This finding is only based on algorithmic consider-
ations, and naturally would have to be validated with
proper psycho-sociological experimentations. Neverthe-
less, it seems at odds with a wealth of recent psycho-
logical evidence stressing that soundscapes judgements
doesn’t result of a low-level immediate perception, but
rather high-level cognitive reasoning which accounts for
the evidence found in the signal, but also depends on
cultural expectations, a-priori knowledge or context. For
instance, the subjective evaluation of urban soundscapes
has been found to depend as much on semantic features
than perceptual ones: soundscapes reflecting activities
with higher cultural values (e.g. human vs mechanical)
are systematically perceived as more pleasant5. Simi-
larly, cognitive categories have been found to be medi-
ated by associated behaviours and interaction with the
environment: a given soundscape can be described as e.g.
“too loud to talk”, but “quiet enough to sleep”38.

What our results could indicate is that, while there
are indeed important and undisputed high-level cognitive
processes in soundscape perception, these may be less
critical in shaping the overall perceptive categories than
for polyphonic music. Discarding such processes hurts
the perception of music more than that of soundscapes.

A possible reason for this is that there are important
specificities in the structure of polyphonic music, namely
very definite temporal units (e.g. notes) with both
internal (transient, steady-state) and external (phrase,
rhythm) organisation. For instance, a recent study39

in automatic instrument classification suggests that the
transient part of individual notes concentrates very dis-
criminative information for timbre identification, but
that its scarsity with respect to longer steady-state infor-
mation makes it difficult to exploit for machine learning
algorithms. This situation of trading too little good in-
formation against too much poor-quality information is
reminiscent of what we observe here. Human perception,
by its higher-level cognitive processing of the structure
of musical notes, gives increased saliency to frames that
are otherwise in statistical minority.

Such structural specificities in polyphonic music sig-
nals may require cognitive processes active on a more
symbolic and analytical level than what can be accounted
for by the BOF approach, which essentially builds an
amorphous and holistic description of the object being
modelled. These computational experiments open the
way for more careful psychological investigations of the
perceptive paradoxes proper to polyphonic music timbre,
in which listeners “hear” things that are not statistically
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significant in the actual signal, and that the low-level
models of timbre similarity studied in this work are in-
trinsically incapable of capturing.
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