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Abstract
Typical signal-based approaches to extract musical descrip-
tions from audio signals only have limited precision. A pos-
sible explanation is that they do not exploit take any account
of context, which provide important cues in human cogni-
tive processing of music: e.g. electric guitar is unlikely in
1930s music, children choirs rarely perform heavy metal,
etc. We propose an architecture to train a large set of bi-
nary classifiers simultaneously, for many different musical
metadata (genre, instrument, mood, etc.), in such a way that
correlations between metadata are used to reinforce each in-
dividual classifier. The system is iterative: it uses classifica-
tion decisions it made on some metadata problems as new
features for new, harder classification problems; and hybrid:
it uses a signal classifier based on timbre similarity to boot-
strap symbolic reasoning with decision trees. While further
work is needed, the approach seems to outperform signal-
only algorithms by 5% precision on average, and sometimes
up to 15% for traditionally difficult problems such as cul-
tural and subjective categories.

Keywords: Classification, context, timbre similarity, deci-
sion trees, correlation

1. Introduction: Bootstrapping symbolic
reasoning with acoustic analysis
People routinely use many varied high-level descriptions to
talk and think about music. Songs are commonly said to be
“energetic”, to make us “sad” or ”nostalgic”, to sound “like
film music” and to be perfect to “drive a car on the high-
way” among a possible infinity of similar metaphors. The
Electronic Music Distribution industry is in demand of ro-
bust computational techniques to extract such descriptions
from musical audio signals. The majority of existing sys-
tems to this aim rely on a common model of the signal
as the long-term accumulative distribution of frame-based
spectral features. Musical audio signals are typically cut
into short overlapping frames (typically 50ms with a 50%
overlap), and for each frame, a feature vector is computed.
Features usually consists of a generic, all-purpose spectral
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representation such as Mel Frequency cepstrum Coefficients
(MFCCs), but can also be e.g. rhythmic features [1]. The
features are then fed to a statistical model, such as a Gaus-
sian Mixture Model (GMM), which models their global dis-
tributions over the total length of the extract. Global dis-
tributions can then be used to compute decision boundaries
between classes (to build e.g. a genre classification system
such as [2]) or directly compared to one another to yield a
measure of acoustic similarity [3].

While such signal-based approaches are by far the most
dominant paradigm currently, recent research increasingly
suggest they are plagued with important intrinsic limita-
tions [3, 5]. One possible explanation is that they take an
auditory-only approach to music classification. However,
many of our musical judgements are not low-level imme-
diate perceptions, but rather high-level cognitive reasoning
which accounts for the evidence found in the signal, but
also depends on cultural expectations, a priori knowledge,
interestingness and “remarkability” of an event, etc. Typi-
cal musical descriptions only have a weak and ambiguous
mapping to intrinsic acoustic properties of the signal. In [6],
subjects are asked to rate the similarity between pairs of 60
sounds and 60 words. The study concludes that there is no
immediately obvious correspondence between single acous-
tic attributes and single semantic dimensions, and go as far
as suggesting that the sound/word similarity judgment is a
forced comparison (“to what extent would a sound sponta-
neously evoke the concepts that it is judged to be similar
to?”). Similarly, we studied in [4] the performance of a
typical classifier on a heterogeneous set of more than 800
high-level musical symbols, manually annotated for more
than 4,000 songs. We observed that surprisingly few of
such descriptions can be mapped with reasonable precision
to acoustic properties of the corresponding signals. Only
6% of the attributes in the database are estimated with more
than 80% precision, and more than a half of the database’s
attributes are estimated with less that 65% precision (which
hardly better than a binary random choice, i.e. 50%). The
technique provides very precise estimates for attributes such
as homogeneous genre categories or extreme moods like
“aggressive” or “warm”, but typically fails on more cultural
or subjective attributes which bear little correlation with the
actual sound of the music being described, such as “Lyric
Content”, or complex moods or genres (such as “Mysteri-
ous” or “Electronica”).



Table 1. Selected pairs of musical metadata with theirΦ score (χ2 normalized to the size of the population), between 0 (corresponding
to statistical independence between the variables) and 1 (complete deteministic association). Data analysed on a a set of 800 metadata
values manually annotated for more than 4,000 songs, used in previous study [4]

Attribute1 Attribute2 Φ

Music-independant

Textcategory Christmas Genre Special Occasions 0.89
Mood strong Character powerful 0.68

Mood harmonious Character well-balanced 0.60
Character robotic Mood technical 0.55
Mood negative Character mean 0.51

Music-dependant

Main Instruments Spoken Vocals Style Rap 0.75
Style Reggae Country Jamaica 0.62

Musical Setup Rock Band Main Instruments Guitar (distortion) 0.54
Character Mean Style Metal 0.53

Musical Setup Big Band Aera/Epoch 1940-1950 0.52
Main Instruments transverse flute Character Warm 0.51

This does not mean human musical judgements are be-
yond computational approximation, naturally. The study
in [4] shows that there are large amounts of correlation
between musical descriptions at the symbolic level. Ta-
ble 1 shows a selection of pairs of musical metadata items
(from a large manually-annotated set), which were found
to particularly fail a Pearson’sχ2-test ([7]) of statistical in-
dependence.χ2 tests the hypothesis that the relative fre-
quencies of occurrence of observed events follow a flat ran-
dom distribution (e.g. that hard rock songs are not signifi-
cantly more likely to talk about violence than non hard-rock
songs). On the one hand, we observe considerable correla-
tive relations between metadata, which have little to do with
the actual musical usage of the words. For instance, the
analysis reveals common-sense relations such as “Christ-
mas” and “Special occasions”, “Well-known” and “Popu-
lar”, “Strong” and “Powerfull”. This illustrates that the pro-
cess of categorizing music is consistent with psycholinguis-
tics evidences of semantic associations, and that the specific
usage of words that describe music is largely consistent with
their generic usage: it is difficult to think of music that is
both strong and not powerful. On the other hand, we also
find important correlations which are not intrinsic proper-
ties of the words used to describe music, but rather extrin-
sic properties of the music domain being described. Some
of these relations capture historical (“ragtime is music from
the 1930’s”) or cultural knowledge (“rock uses guitars”), but
also more subjective aspects linked to perception of timbre
(“flute sounds warm”, “heavy metal sounds mean”).

Hence, we are facing a situation where:

1. Traditional signal-based approaches (e.g. nearest-
neighbor classification with timbre similarity) work
for only a few well-defined categories, which have a
clear and unambiguous sound signature (e.g. Heavy

metal).

2. Correlations at the symbolic level are potentially use-
ful for many categories, and can be easily exploited by
machine learning techniques such as Decision Trees
[8]. However, these requires the availability of values
for non-categorical attributes, to be used as features
for prediction: we have to first know that “this has
distorted guitar”, to infer that “it’s probably rock”.

This paper quite logically proposes to use the former
to bootstrap the latter. First, we use a timbre-based clas-
sifier to estimate the values of a few timbre-correlated at-
tributes. Then we use decision trees to make further pre-
dictions of cultural attributes on the basis of the pool of
timbre-correlated attributes. This results in an iterative sys-
tem which tries to solve simultaneously aset of classifica-
tion problems, by using classification decisions it made on
some problems as new features for new, harder problems.

2. Algorithm
This section describes the hybrid classification algorithm,
starting with its 2 sub-components: an acoustic classifier
based on timbre similarity, and a decision-tree classifier to
exploit symbolic-level correlations between metadata. In
the following, metadata items are notated asattributes Ai,
which take boolean valuesAi(S) for a given songS (e.g.
hasguitar(S) ∈ {true, false}).

2.1. Sub-component1: Signal-based classifier

The acoustic component of the system is a nearest neighbor
classifier based on timbre similarity. We use the timbre sim-
ilarity algorithm described in [3]: 20-coefficient MFCCs,
modelled with 50-state GMMs, compared with Monte-Carlo



approximation of the Kullback-Leibler distance. The classi-
fier infers the value of a given attributeA for a given song
S by looking at the values ofA for songs that are timbrally
similar toS. For instance, if 9 out of the 10 nearest neigh-
bors of a given song are “Hard Rock” songs, then it is very
likely that the seed song be a “Hard Rock” song itself.

More precisely, we define as our observationOA(S) the
number of songs among the setNS of the 10 nearest neigh-
bors ofS for whichA is true, i.e.

OA(S) = card{Si \ Si ∈ NS ∧ A(Si)} (1)

We make a maximum-likelihood decision (with flat prior)
on the value of the attributeA based onOA(S):

A(S) = p(OA(S)/A(S)) > p(OA(S)/A(S)) (2)

wherep(OA(S)/A(S)) is probability to observe a number
OA(S) of true values in the set of nearest neighbors ofS,
given thatA is true, andp(OA(S)/A(S)) is the probabil-
ity to make the same observation given thatA is false. The
likelihood distributionp(OA(S)/A(S)) is estimated on a
training database by the histogram of the empirical frequen-
cies of the number of positive neighbors for all songs having
A(S) = true (similarly for P (A(S)/OA(S))).

2.2. Sub-component2: Decision-tree classifier

The symbolic component in our system is a decision-tree
classifier [8]. It predicts the value of a given attribute (the
category attribute) on the basis of the values of somenon-
category attributes, in a hierarchical manner. For instance, a
typical tree could classify a song as “natural/acoustic”

• if it is not aggressive

• if it is from the 50’s (where little amplification was
used)

• if it’s a folk or a jazz band that performs it,

• if not, then if it doesn’t use guitar with distortion, etc.

Decision rules are learned on a training database with the
implementation of C4.5 provided by the Weka library [8].
As mentionned above, a decision tree for a given attribute is
only able to predict its value for a given song if we have ac-
cess to all the values of the other non-categorical attributes
for that same song. Therefore, this is of little use as such.
The algorithm described in the next section uses timbre sim-
ilarity inference to bootstrap the automatic categorization
with estimates of a few timbre-grounded attributes, and then
use these estimates in decision trees to predict non-timbre
correlated attributes.
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Figure 1. The algorithm constructs successive classifiers for the
attributes Ak. At each iteration, the features of the new classi-
fiers is the set of the previous classifiers (in the set of{Al}l 6=k)
with precision greater than threshold θ. At each iteration, for
each attribute, only the best estimate so far is stored for future
use. TheAi

k are estimated by timbre inference fori = 1, and
by decision trees fori ≥ 2

2.3. Training procedure
The algorithm is a training procedure to generate a set of
classifiers forN attributes{Ak; k ∈ [1, N ]}. Training is
iterative, and requires a database of musical signals with an-
notated values for allAk. At each iterationi, we produce

a set of classifiers{˜Ak
i; k ∈ [1, N ]}, which each estimate

the attributeAk at iterationi. Each classifier is associated

with a precisionp(˜Ak
i). At each iterationi, we define as

best(˜Ak
i) the best classifier ofAk so far, i.e.

best(˜Ak
i) = Ãk

m,m = arg max
j≤i

p(˜Ak
j) (3)

More precisely, at each iterationi, each of the newly-built
classifiers takes as input (aka features) the output of classi-
fiers from the previous generations, based on their precision.
Hence, each iteration in this overall training procedure re-
quires some training (to build the classifiers) and some test-
ing (to select the input of the next iteration’s classifiers).

• i = 1: Bootstrap with timbre inference

Classifiers: The classifiers˜Ak
1 are based on timbre

inference, as described in Section 2.1. Each of these
classifiers estimates the value of an attributeAk for
a songS based on the audio signal only, and doesn’t
require any attribute value in input.
Training: Timbre inference requires training to eval-
uate the likelihood distributionsp(OAk

(S)/A‖(S)),
and hence a training setL1(Ak) for each attributeAk

Testing: Each˜Ak
1 is tested on a testing setT 1(Ak).

For each songS ∈ T 1(Ak), estimates˜Ak
1(S) are

compared to groundtruthAk(S), to yield a precision

valuep(˜Ak
1).

• ∀i ≥ 2: Iterative improvement by decision trees

Classifiers: The classifiers˜Ak
i are decision trees, as

described in Section 2.2. Each of them estimates the
value of an attributeAk based on the output of the best



classifiers from previous generations. More precisely,
the non-category attributes (aka features) used in the
˜Ak

i are the attribute estimates generated by a subset

Fk
i of all previous classifiers{˜Al

j ; l ∈ [1, N ], j <
i}, defined as:

Fk
i = {best( ˜Al

i−1); l 6= k, p(best( ˜Al
i−1)) ≥ θ}

(4)
where0 ≤ θ ≤ 1 is a precision threshold.Fk

i con-
tains the estimate generated by the best classifier so
far (up to iterationi− 1) for every attribute other than
Ak, provided that its precision be greater thanθ. This
is illustrated in Figure 1.
Training: Decision trees require training to build and
trim decision rules, and hence a training setLi(Ak)
for each category attributeAk and each iterationi ≥
2: new trees have to be trained for every new set
of features attributesFk

i, which are selected based
on their precision at previous iterations. Trees are
trained using thetrue values (groundtruth) of the non-
categorical attributes (but they will be tested usinges-
timated values for these same attributes, see below).

Testing: Each˜Ak
i is tested on a testing setT i(Ak).

For each songS ∈ T i(Ak), estimates˜Ak
i(S) are

computed using theestimated valuesbest( ˜Al
i−1)(S)

of the non-categorical attributesAl, i.e. values com-
puted by the corresponding best classifier, and com-
pared to thetrue value Ak(S), to yield a precision

valuep(˜Ak
i).

• Stop condition: The training procedure terminates
when there is no more improvement of precision be-
tween successive classifiers for any attribute, i.e. the

set of allbest(˜Ak
i) reaches a fixed point.

2.4. Output
The output of the above training procedure is a final set of
classifiers, containing the best classifiers for eachAk, i.e.

{best( ˜Ak
if ), k ∈ [1, N ]}, whereif is the iteration where

stop condition is reached. For a given attributeAk, the final
classifier is a set of1 ≤ n ≤ N.if component classifiers, ar-
ranged in a tree where parent classifiers use results of their
children. The top-level node is a decision tree forAk

1 , the
intermediate nodes are decision trees forAk but also part of
the other attributesAl, l ∈ [1, N ], and the leaves are timbre
classifiers also for part of theAl, l ∈ [1, N ]. Each compo-
nent classifier has fixed parameters (likelihood distributions
for timbre classifiers and rules for decision trees) and fixed
features (theFk

i), as determined by the above training pro-
cess. Therefore, there are stand-alone algorithms which take
as input an audio signalS, and outputs an estimatẽAk(S).

1 or a timbre classifier forAk if if = 1

Figure 2. An example scenario of iterative attribute estimation

Figure 2 illustrates a possible outcome scenario of the
above process, using a set of attributes including “Style
Metal”, “Character Warm”, “Style Rap” (which are at-
tributes well correlated with timbre) and “TextCategory
Love” and “Setup Female Singer”, which are poor timbre
estimates (the former being arguably “too cultural”, and the
latter apparently too complex to be precisely described by

timbre). The first set of classifiers˜SA
0 is built using tim-

bre inference, and logically performs well for the timbre-
correlated attributes, and poorly for the others. Classifiers
at iteration 2 estimate each of the attributes using a deci-
sion tree on the output of the timbre classifiers (only keep-
ing classifiers aboveθ = 0.75, which appear in gray). For
instance, the classifier for “Style Metal” uses a decision tree
on the output of the classifiers for “Character Warm” and
“Style Rap”, and achieves poorer classification precision
that the original timbre classifier. Similarly, the classifier
for “Setup Female Singer” uses a decision tree on “Style
Metal”, “Character Warm” and “Style Rap”, which results
on better precision than the original timbre classifier. At
the next iteration, the just-produced classifier for “SetupFe-
male Singer” (which happens to be above thresholdθ) is
used in a decision tree to give a good estimate of “TextCat-
egory Love” (as e.g. the knowledge of whether the singer
is a female may give some information about the lyric con-
tents of the song). At the next iteration, all best classifiers
so far may be used in a decision tree to yield a classifier of
“Style Metal” which is even better than the original timbre
classifier (as it uses some additional cultural information).

3. Preliminary Results
3.1. Database

We report here on preliminary results of the above algo-
rithm, using a database human-made judgments of high-
level musical descriptions, collected for a large quantity
of commercial music pieces. The data is proprietary, and
made available to the authors by research partnerships. The
database contains 4936 songs, each described by a set of 801



boolean attributes (e.g. “Mood happy”=true). These at-
tributes are grouped in 18 categories, some of which being
correlated with some acoustic aspect of the sound (“Main
Instrument”,“Dynamics”), while others seem to result from
a more cultural take on the music object (“Genre”, “Mood”,
“Situation2 ”). Attribute values were filled in manually by
human listeners, under a process related to Collaborative
Tagging, in a business initiative comparable to the Pandora
project3 .

3.2. About the isolation between training and testing
As seen above, there are several distinct training and testing
stages in the training procedure described here. For a joint
optimisation ofN attributes overif iterations, as many as
N.if training setsLi(Ak) and testing setsT i(Ak) have to
be constructed dynamically. Additionaly, for the purpose
of evaluation when this training procedure is finished, final
algorithms for allAk have to be tested on separate testing
setsW(Ak).

The construction of these various datasets has to respect
several constraints to ensure isolation between training and
testing data.

• No overlap betweenT i(Ak) andLi(Ak)

• No overlap betweenT i(Ak) and ∪j<i,∀lL
j(Al)

(since the classifier˜Ak
i uses component classifiers

from previous iterations, for possibly all attributes)

• No overlap betweenW(Ak) and all other training and
testing sets, i.e.{Li(Al); 1 ≤ i ≤ if , 1 ≤ l ≤ N} ∪
{T i(Al); 1 ≤ i ≤ if , 1 ≤ l ≤ N}.

In practice, these set constraints are very difficult to en-
force when one requires balanced datasets (roughly as many
positive and negative examples for all attributes in all train-
ing and testing sets): it is a complex combinatorial prob-
lem, all the more so as the number of attributesN increases
(which is a desirable feature as seen in Section 3.3). Un-
balanced datasets create additional learning problems which
we found were also difficult to handle in the current iterative
framework, notably because cross-validation cannot be con-
ducted at every iteration [9].

Therefore, we opted for an approximation strategy where
datasets were taken as:

• All T i(Ak) equal∀i; all Li(Ak) equal∀i

• T i(Ak) and Li(Ak) contain as many positive and
negative examples forAk

• No overlap betweenW(Ak) and {Li(Ak)} ∪
{T i(Ak)}.

2 i.e. in which everyday situation would the user like to listen to a given
song, e.g. “this is music for a birthday party”

3 http://www.pandora.com/
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Figure 3. Influence of the number of attributes considered for
joint optimization on the average improvement of precision

Such datasets cannot guarantee complete isolation between
training (L) and testing (T ) data during the training pro-
cedure. This doesn’t affect the reliability of the final test-
ing stage, as theW sets are properly independent from the
L andT data used during training. However, interactions
between the sets used for training probably leads to over-
estimations of the performance on training data (L andT
sets), as well as the high variance observed on test perfor-
mance (W sets) (see below). On the whole, this is a con-
sequence of the rather unconventional learning architecture
investigated here, and is clearly subjected to further work
and clarification.

3.3. Evaluation
Table 2 shows the test performance of the above algorithm
on a set of 45 randomly chosen attributes, usingθ = 0.7. 30
out of the 45 attributes see their classification precision im-
proved by the iterative process (the remaining 15 do not ap-
pear in the table). We observe that, for 10 classifiers, the pre-
cision improves by more than 10% (absolute), and that 15
classifiers have a final precision greater than 70%. Cultural
attributes such as “Situation Sailing” or “Situation Love”
can be estimated with reasonable precision, whereas their
initial timbre estimate was poor. It also appears that two
“Main Instrument” attributes (guitar and choir), that were
surprinsingly bad timbre correlates, have been refined using
correlations between cultural attributes. This is consistent
with the example scenario in Figure 2.

Figure 3 shows the influence of the number of attributes
considered for joint classification on the average improve-
ment of precision. It appears that using more attributes leads
to larger improvements of (testing) precision over purely
signal-based approaches: this allows the decision trees to
exploit stronger correlations than in smaller sets. Largersets
also improves the stability of the results: the performanceon
small sets depends critically on the quality of the original
timbre-correlated estimates, which are used for bootstrap.

On the whole, it appears that the approach can improve
precision over simple signal-based approaches by as much
as 5% on average, when considering sets of several hundreds
of attributes.



Table 2. Set Optimization of 45 attribute estimates

Attribute p(˜Ak
0) p( ˜Ak

if ) if ∆(p)

Situation Sailing 0.48 0.71 10 0.23
Situation Flying 0.49 0.64 3 0.15
Situation Rain 0.50 0.64 9 0.14
Instrument Guitar 0.60 0.69 4 0.09
Situation Sex 0.59 0.68 11 0.09
Situation Love 0.63 0.70 3 0.07
Lyrics Love 0.61 0.67 11 0.06
Situation Party 0.60 0.66 6 0.06
Tempo medium 0.59 0.64 4 0.05
Character slick 0.65 0.69 11 0.04
Aera/Epoch 90s 0.71 0.75 13 0.04
Character harmony 0.62 0.66 6 0.04
Rhythmics rhythmic 0.64 0.68 4 0.04
Genre Dancemusic 0.65 0.68 12 0.03
Mood dreamy 0.64 0.67 2 0.03
Style Pop 0.71 0.74 6 0.03
Mood positive 0.58 0.61 6 0.03
Mood harmonious 0.62 0.65 4 0.03
Instrument Choir 0.60 0.63 13 0.03
Dynamics up+down 0.61 0.63 5 0.02
Lyrics Associations 0.57 0.59 10 0.02
Variant expressive 0.62 0.64 2 0.02
Setup Pop Band 0.72 0.74 7 0.02
Lyrics Poetry 0.57 0.59 10 0.02
Character friendly 0.65 0.67 6 0.02
Character repeating 0.63 0.64 9 0.01
Rhythmics groovy 0.63 0.64 4 0.01
Mood romantic 0.69 0.70 9 0.01
Lyrics Wisdom 0.58 0.59 4 0.01
Lyrics Romantics 0.65 0.66 14 0.01

Figure 4 shows the influence of the precision threshold
parameter, used at each iteration to select classifiers from
previous iterations to be used as features. The parameter is
a tradeoff between quantity and quality of the correlations
to be exploited in decision trees. The curve has an intuitive
inverted-U shape: smallθ values lead to selecting too many
bad classifiers, whereas largeθ values constrain the system
to use only high-quality features, which are ultimately too
few to boostrap correlation analysis. The optimal value is
found around 70% precision, which is consistent with the
empirical upper-bound found with signal-only approaches
(so-called “glass ceiling”) [3]

4. Conclusion
We have described an iterative procedure to train simultane-
ously a set of classifiers for high-level music metadata. The
system exploits correlations between metadata, using deci-
sion trees, to reinforce each individual classifier. The ap-
proach outperforms signal-only algorithms by 5% precision
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Figure 4. Influence of precision thresholdθ on the average im-
provement of precision

on average when a sufficient number of metadata are consid-
ered jointly. It provides reasonable solutions to traditionally
difficult problems, such as complex genres or “situations in
which one would like to play the song”. However, the con-
current training and testing of very many classification algo-
rithms makes the task of constructing well-behaved training
and testing datasets unusually difficult. Some solutions re-
main to be found, either in the direction of algorithms to re-
sample balanced datasets (e.g. combinatorial optimisation)
or alternative formulations of the learning architecture (e.g.
Bayesian belief networks).
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