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ABSTRACT

Feature generation has been proposed recently to generate
feature sets automatically, as opposed to human-designed
feature sets. This technique has shown promising results
in many areas of supervised classification, in particular in
the audio domain. However, feature generation is usually
performed blindly, with genetic algorithms. As a result
search performance is poor, thereby limiting its practical
use. We propose a method to increase the search perfor-
mance of feature generation systems. We focus on ana-
lytical features, i.e. features determined by their syntax.
Our method consists in first extracting statistical proper-
ties of the feature space called spin patterns, by analogy
with statistical physics. We show that spin patterns carry
information about the topology of the feature space. We
exploit these spin patterns to guide a simulated annealing
algorithm specifically designed for feature generation. We
evaluate our approach on three audio classification prob-
lems, and show that it increases performance by an order
of magnitude. More generally this work is a first step in
using tools from statistical physics for the supervised clas-
sification of complex audio signals.

1. INTRODUCTION

The identification of feature sets is a fundamental step in
solving supervised classification problems [3]. For prob-
lems involving complex signals (e.g. music, images, etc.)
the traditional approach is to use “off-the-shelf” features
(see, e.g. [9]). However, general-purpose features are not
always adapted to solve difficult classification tasks. An-
other solution is to design manually ad hoc features, spe-
cific to the problem at hand. Such a task can be con-
ducted only by experts knowledgeable both in the domain
(e.g. music) and in signal processing, a difficult, costly and
time-consuming task. Moreover, there is no guarantee that
humans will find the best possible features.
Feature generation has recently been introduced to address
this problem, by generating automatically problem-dependent
features, designed to be efficient for any particular super-
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vised classification problem [18]. Feature generation con-
sists in building features by searching in a huge feature
space, usually through genetic programming techniques [7].
The fitness of a feature is defined as the performance of
a classifier using this feature on the problem at hand [8].
These previous works have consistently demonstrated that
feature generation outperforms traditional approaches based
on feature selection (see e.g. [5, 14]). However, most, if
not all, feature generation systems proposed in the litera-
ture were shown to necessitate the exploration of a large
number of features before finding relevant ones. For in-
stance in [17], in the context of classification of percus-
sive sounds, the feature generation system evaluated about
77500 features to eventually find features which outper-
formed standard ones.
Although search performance is usually not an issue for
off-line applications, poor search performance forbids the
use of these promising techniques in other contexts. As
an example, the multiplication of portable entertainment
devices creates a need for application requiring fast clas-
sification of a priori unknown user data (audio, pictures,
gestures, etc.). In these contexts, feature generation cannot
be used primarily because of performance issues. We pro-
pose a search method that reduces substantially the number
of features to actually evaluate.
The main source of inefficiency of feature generation comes
from the blind search strategy inherent to genetic program-
ming. Most of the computation time is lost in evaluating
irrelevant features, as noted by [5]. This problem worsens
in the signal domain, where some features can be costly to
evaluate (for instance features involving the computation
of complex transforms). In this context, search can take
several days.
Search performance can be increased by guiding the search
using domain specific heuristics. To find heuristics we
have to understand the mathematical structure of the fea-
ture space, to estimate a priori what regions are likely to
contain relevant features. However, this is impossible to do
in general, because we do not have information about the
semantics of the features [11]. For this reason we restrict
our study to the specific case of analytical features [14].
Analytical features (AF) are functional compositions of el-
ementary signal processing operators. An AF is defined by
its syntactical form, i.e. a tree of basic operators. A central
question of our study, reflected in the title of this paper, is
therefore how to exploit this syntax to extract information
about a features fitness before actually computing it. As



we will see, this relation is complex.
In this paper, we first show that predicting directly the fit-
ness from the syntax is difficult. We propose to model
features from a more fine-grained perspective: borrowing
techniques from spin glass theory [10] we introduce the no-
tion of spin patterns to model partial statistical information
about basic operators. We show that spin patterns contain
probabilistic information about the fitness of features that
use a given operator. We also show how these patterns can
be used to predict feature fitness. We then propose a fea-
ture generation algorithm guided by these predictions. Our
algorithm can be viewed as a variant of the simulated an-
nealing [4]. The comparison between simulated annealing
and genetic programming is a well studied topic [2], how-
ever it is hard to establish what is the more efficient opti-
mization method in the general case [19]. In our context
we use simulated annealing because it is easier to guide by
the information obtained from the spin patterns.
Two versions of the algorithm are proposed. The basic ver-
sion searches for individual features, and the extended ver-
sion searches for feature sets. Even if it is well known
that individual features are not able to solve difficult
classification problems [3], we present the basic ver-
sion because it well describes the theoretical aspects of
the algorithm. We evaluate our algorithms on three audio
classification problems. We show that our algorithms find
features and feature sets which are as good or better than
features found by a standard feature generation algorithm,
but with a significantly improved search performance (an
order of magnitude).
This paper is structured as follows: In Section 2, we in-
troduce analytical features and syntactic neighborhood. In
Section 3, we study the prediction of feature fitness from
their syntax. In Section 4, we introduce the notion of spin
pattern for operators. We illustrate these patterns on a sim-
ple audio classification problem. In Section 5, we intro-
duce our search algorithms. In Section 6, we describe
the performance of our algorithm on 3 audio classification
problems, and compare it to a standard feature generation
algorithm.

2. ANALYTICAL FEATURES

Analytical Features are expressed as a functional term, tak-
ing as only argument the input signal (represented here as
x). This functional term is composed of basic operators.
Given a library of basic operators L, an analytical feature
f is an application f = O1 ◦ . . . ◦ ON such that Oi ∈ L.
S(f) = {O1, . . . , ON} is the syntactical form of f . The
length l(f) is the number of operators making up the fea-
ture. F is 0the set of all possible analytical features built
on L.
For instance, the following feature (A) computes the MFCC
(Mel Frequency Cepstrum Coefficients) of successive frames
of length 100 (samples) with no (0) overlap, and then com-
putes the variance of this value vector:

A = V ariance(MFCC(Split(x, 100, 0))).

Problem I(dFit, dSyn)

PAN 0.032
INS 0.015
MG 0.015

Table 1. Estimation of the mutual information
I(dFit, dSyn) between the distances dFit and dSyn eval-
uated on three audio classification problem.

The neighborhood of f is the set Vf = {g ∈ F|dSyn(f, g) ≤ 1} ,
where dSyn(f, g) is the Levenshtein distance.

2.1 Feature Fitness

Given a classification problem, the fitness λD(f) of an
AF measures the capacity of the feature to distinguish ele-
ments of different classes.
There are several ways to assess the fitness of a feature.
We follow here a wrapper approach [6], by which features
are evaluated using a classifier built on-the-fly during the
feature search process [14]. The fitness of the feature is
defined as the performance of a classifier built with this
unique feature.
We use Support Vector Machines. To evaluate the perfor-
mance of the classifier (or more precisely its average F-
measure) we use 10-fold cross validation on the training
database.

3. PREDICTING FEATURE FITNESS

We define the distance dFit(f, g) based on the fitness of f
and g:

dFit(f, g) = |λD(f)− λD(g)| .
We study here experimentally the relationship between dSyn

and dFit on concrete problems. In this study we consider
three audio classification problems. The problem PAN
consists in discriminating between six percussive sounds
[15], INS consists in discriminating between sounds played
by eight different instruments [12] and MG consists in dis-
criminating between six musical genres [13].
We compute a population P of 1000 features randomly
generated from F . For each problem and for each couple
(f, g) in P , we compute distances dFit(f, g), dSyn(f, g).
Note that dFit depends on Di, whereas dSyn is problem-
independent.
We then estimate the mutual information I(dFit, dSyn) [1]
between the distances. Table 1 shows that in each case the
mutual information is smaller than 0.1: if a relation exists
between syntax and fitness, it is somehow hidden and dif-
ficult to model.

4. SPIN PATTERNS

In this section we introduce a representation of analytical
features taking into account the contribution of each sam-
ple. Let D be a labeled data set, composed of N audio
samples divided in k classes, C1, . . . , Ck:

D = {(x1, l1), . . . , (xN , lN )} ,



where xi is the i-th audio sample and li ∈ C = {Cj}j=1,...,k

is its label.
Given a feature f ∈ F , we define its spin configuration as:

f → σf =

{
+1 if f classifies xi correctly
−1 otherwise

If C : R → C = {Cj}j=1,...,k is a classifier trained on D
with f as a single feature, we have:

σf
i =

{
+1 if C(f(xi)) = li

−1 otherwise

Given f ∈ F , λ(f) is the fitness of f on D, 0 ≤ λ(f) ≤ 1.
By analogy with the spin glass model [10], we can interpret
fitness as the Hamiltonian H(σf ) of a spin configuration
σf induced by the feature f :

H(σf ) = −λ(f).

Given a basic operator o ∈ L, where L is the operator
library used to construct F , we define

Fo = {f ∈ F|o ∈ S(f), l(f) ≥ 10} .

So Fo is the set of all features that contain o with length
smaller than 10. Considering only these features we
have 0 < |Fo| < ∞
The spin pattern of a basic operator o is a vector m(o) =
{mi(o)}i=1,...,N such that:

mi(o) =
⟨
σf
i

⟩
Fo

=
1

|Fo|
∑
f∈Fo

σf
i

In practice mi(o) is an indicator of the probability that a
feature containing o correctly classifies sample xi. Indeed,
it is easy to show that, given f ∈ Fo,

Pr(σf
i = +1) =

1 +mi(o)

2

Pr(σf
i = −1) =

1−mi(o)

2

Therefore we are interested in operators whose pattern has
as many values as possible which are close to 1. Con-
versely, zero spin patterns configuration (mi(o) = 0 ∀j)
do not provide any information about the set of features
considered. In order to measure the amount of information
given by a spin pattern, we can compute its total magneti-
zation, defined as follows:

M(o) =

N∑
i=1

mi(o)

N

Figure 1 shows a graphical representation of the spin pat-
terns of two operators. The samples are arranged in a pic-
ture composed by N squares. |mi(o)| is mapped to the
darkness of the corresponding square. In this representa-
tion, high magnetization features correspond to dark im-
ages. In the figure we can observe that the spin pattern of

a specific operator like LpFilter has more magnetization
than the spin pattern of a more general operator like Abs
(the Abs pattern is clearly lighter). The main intuition in
guiding search toward an optimal path in the feature space
is that there is a rich, non uniform distribution of spin pat-
terns for all basic operators. To support this claim we com-
pute the spin patterns of each operator on the three classi-
fication problems presented above. In general, operators
yield a spin pattern whose magnetization is significantly
higher than 0 (the magnetization of the zero spin pattern,
taken as a reference): as we see in figure 2, for each prob-
lem, the distributions of the magnetizations for all o ∈ L
are concentrated near 0.5. This study shows that interest-
ing patterns do exist. Of course we do not know the spin
patterns a priori for a given classification problem. How-
ever, we have seen experimentally that we can estimate
these patterns using a relatively small number of com-
putations (≈ 1000).

5. THE ALGORITHM

Our algorithm takes as input a labeled database D and a
library of basic operators L. The algorithm searches the
feature space F defined by L, guided by spin patterns, as
defined in section 4.

5.1 Individual feature search (IFS)

We describe here the IFS algorithm, that searches for indi-
vidual features. Section 5.2 describes an extension to fea-
ture set search. IFS receives as input a labeled database D
and a library of basic operators L. The output is a feature
with a high fitness on domain D.
The algorithm is a variant of the simulated annealing al-
gorithm. It is based on a Metropolis procedure [4] that
guarantees the convergence to a global optimum.
Starting from a random feature f0, the algorithm iteratively
selects neighbors of the current feature, using the spin pat-
terns. At each iteration, the algorithm selects a new feature
in the syntactical neighborhood of the current feature. This
choice is done according to the estimation of the spin pat-
terns. The algorithm terminates after a specified number
of iterations, or as a result of an interactive user request,
and returns the best feature (i.e. the feature with highest
fitness) found during the search as output.
In the following subsections we detail the components of
the algorithm.

5.1.1 The Spin Pattern Estimator

The spin pattern estimator (SPE) is executed only once at
the beginning of the algorithm.
The SPE computes a population T of 1000 random fea-
tures. These features are used to estimate the spin patterns
of each operator o ∈ L.

5.1.2 The Neighbor Selector

The task of the neighbor selector is to decide how to move
in the feature space. The selector receives as input the cur-



(a) LpFilter (b) Abs

Figure 1. Graphical representation of the spin patterns of the basic operators Lpfilter (left) and Abs (right) evaluated on
the problem PAN (classification of percussive sounds). The representation of a domain specific operator like LpFilter is
clearly darker. In the spin pattern of LpFilter note the two dark stripes on the center and on the right. Magnetization are
0.46 and 0.28 (resp.)
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(b) MG
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Figure 2. Distributions of the absolute magnetizations of the spin patterns of all the operators o ∈ L

rent feature and the spin pattern estimation of each operator
o ∈ L. The output of the selector is either a new feature,
or the feature passed in input.
Given the input feature f and the estimations of the spin
patterns, the selector assigns a score to each basic operator
o ∈ L. This score is designed to favor operators that tend
to correctly classify the samples that are wrongly classified
by f . The score µ(o) of operator o is defined as:

µ(o) =

N∑
j=1

b(σf
i )m̄i(o)

N
(1)

where b(x) = −1
2x + 1

2 is a function that converts a ±1
spin in a {0, 1} boolean value (b(+1) = 0, b(−1) = 1).
µ(o) induces a score function µ(g) for a feature g ∈ F by
averaging on all operators of f :

µ(g) =

∑
o∈S(g)

µ(o)

l(g)
(2)

A crucial point of our method is that in general the score
function µ(g) is easier to compute than the fitness λ(g).
The selector then computes the neighborhood Vf of f (see
section 3). Vf is then sorted according to the score func-
tion defined in (2). The feature f̃ ∈ Vf with highest score
is chosen by the neighbor selector. The spin configuration
σf̃ and fitness λ(f̃) of f̃ are then computed.
To avoid local maximum effects, f̃ is accepted as the next
feature in a stochastic way, using the Metropolis proce-
dure.
More precisely, if ∆λ = λ(f̃) − λ(f) ≥ 0 f is accepted.
The case ∆λ < 0 is accepted with a probability Pr(∆λ) =

e
∆λ
tk , where

tn =

(
t1
t0

)n

t0

and k = |T |.
If the feature f̃ is not accepted, it is removed from Vf , oth-
erwise it will be reselected by the neighbor selector in the
next iteration. Using the Metropolis procedure, we can as-
sume that, for a good choice of parameters T0 and T1, the
algorithm converges to the global maximum [4]. Follow-
ing [4], we heuristically set T1/T0 = 0.95 and T0 = 10.

5.2 The Feature Set Version

As described earlier, a single feature is usually not enough
to solve a classification problem and a feature set is re-
quired. In principle, building feature sets instead of in-
dividual features complexifies drastically the procedure,
since all combinations of features must be considered at
each step. For this reason we propose the follow simple
extension of IFS that searches feature sets, in order to
maintain an affordable computational cost.
The architecture of the algorithm is essentially the same
of the basic version. The spin pattern estimator works ex-
actly in the same way. The only module that changes is the
neighbor selector. In this version it takes as input a feature
set of dimension d (d is a fixed parameter) and outputs a
feature set instead of a single feature.
Because the spin configuration of a feature f is defined by
the classifier built with the values of f , it is possible to de-
fine in the same way the spin configuration σF and the fit-
ness λ(F ) of a feature set F , using the classifier produced
by the values of F . Therefore we can define the score of
an operator µ(o) and the score of a feature µ(g) as in the



previous subsection.
In this version of the algorithm, a feature f is randomly
chosen ∈ F . A feature f̃ in the neighborhood Vf is se-
lected like in the basic version of the algorithm.
The new feature set F̃ is then built from F by substitut-
ing f by f̃ . The new feature set is accepted with the same
Metropolis procedure described above. Our algorithm is
then able to search for feature sets of any dimension.
In the next section we compare the search performance
of our two algorithms against the search performance of
a standard genetic algorithm.

6. RESULTS

6.1 Individual Feature Search

To assess the search performance of IFS we compare it
against the search performance of a standard genetic algo-
rithm on three audio classification problems. These prob-
lems are the same presented in the section 3. The genetic
algorithm we use is described in [14].
Given a classification problem D, we use our algorithm
and the genetic algorithm to search the feature f with high-
est fitness λD(f) and we compare the sets of features ex-
plored by the two algorithms. We are interested in three
quantities: the fitness of the best feature found, how many
features are computed before finding the best feature and
the distribution of the fitness of the explored features.
To get statistically significant results, we execute both al-
gorithms three times for each classification problem. The
results are shown in figure 3 and figure 4. In figure 3
we can observe that IFS finds features at least as good
as the features found by the genetic algorithm but con-
verges faster to the solution. In average, it computes less
than 3500 features to find the best features. This figure in-
cludes the number of features needed to estimate the spin
patterns (approximately 1000, as described in section 4).
Conversely the genetic algorithm requires more than 48000
features to find the optimal.
As we can see in figure 4 the distribution of the fitness,
when using IFS, is concentrated near high values of the
fitness. Conversely the genetic algorithm explores blindly
the feature space, resulting in a more uniform distribution
of the fitness.

6.2 Feature Set Search

The feature set version of our algorithm builds feature sets
of dimension N . Again we test this algorithm against the
genetic algorithm used above to find feature sets of dimen-
sion 3 for the three reference problems.
The genetic algorithm, after a population has been created
and each feature has been individually evaluated, selects
a subset of features to be retained for the next population.
The output of the genetic algorithm is a feature set FGA of
dimension 3: FGA is the set {f1, f2, f3|f1, f2, f3 ∈ Flast}
with maximum fitness. Flast is the last population.
Here we compare the two feature sets obtained by the two
algorithms against an other feature set obtained by apply-
ing a feature selection algorithm (in our case, InfoGain

Database GP FS IFS
PAN 0.76 0.78 0.79
INS 0.56 0.56 0.59
MG 0.77 0.79 0.77

Table 2. Comparison between the fitness of the best fea-
ture sets obtained by IFS against the best feature sets ob-
tained by the genetic algorithm. In two cases IFS outper-
forms the genetic one. GP means genetic programming,
FS means feature selection.

Database GP and FS IFS
PAN 77531 4043
INS 72837 4152
MG 43265 7221

Table 3. Number of features needed to find the best feature
sets.

[16]) to the whole set of features explored by the genetic
algorithm. In table 2 we observe that our algorithm per-
forms as well as the genetic one and the feature selection
one on the three problems. However, the features sets ne-
cessitate a smaller exploration: table 3 shows the number
of features explored in order to find the best feature set. It
can be seen again that our algorithm improves the search
performance by an order of magnitude.

7. CONCLUSION

We have explored the relation between the syntax and the
fitness in a supervised classification context. Such a re-
lation seems complex to grasp at a macroscopic level. We
have proposed a sample-based approach to model the topol-
ogy of feature spaces, and exhibited a computable crite-
rion, spin patterns, to guide a feature search algorithm.
This algorithm is based on simulated annealing, with a
Metropolis procedure, and exploits spin patterns, resulting
in a better performance than genetic programming, as mea-
sured by the total number of features actually evaluated.
As such, this approach is a promising one to reduce the tra-
ditionally high computational cost of feature generation,
and increase the applications of this technique. The an-
swer to our title question is therefore: “Yes, there is a
complex relationship”. Furthermore, we showed how this
relationship can be exploited to improve the performance
of a feature generation system. More generally, this work
represents a first step in applying tools from statistical me-
chanics of complex systems to supervised classification of
complex audio signals.
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