

R. Kronland-Martinet, T. Voinier, and S. Ystad (Eds.): CMMR 2005, LNCS 3902, pp. 185 – 195, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Recognizing Chords with EDS: Part One

Giordano Cabral1, François Pachet2, and Jean-Pierre Briot1

1 Laboratoire d’Informatique de Paris 6,
8 Rue du Capitaine Scott, 75015 Paris, France

{Giordano.CABRAL, Jean-Pierre.BRIOT}@lip6.fr
2 Sony Computer Science Lab,

6 Rue Amyot, 75005 Paris, France
pachet@csl.sony.fr

Abstract. This paper presents a comparison between traditional and automatic
approaches for the extraction of an audio descriptor to recognize chord into
classes. The traditional approach requires signal processing (SP) skills, con-
straining it to be used only by expert users. The Extractor Discovery System
(EDS) [1] is a recent approach, which can also be useful for non expert users,
since it intends to discover such descriptors automatically. This work compares
the results from a classic approach for chord recognition, namely the use of
KNN-learners over Pitch Class Profiles (PCP), with the results from EDS when
operated by a non SP expert.

1 Introduction

Audio descriptors express by mathematical formula a particular property of the sound,
such as the tonality of a musical piece, the amount of energy in a given moment, or
whether a song is instrumental or sung. Although the creation of each descriptor re-
quires a different study, the design of a descriptor extractor normally follows the
process of combining the relevant characteristics of acoustic signals (features) using
machine learning algorithms. These features are often low-level descriptors (LLD),
and the task usually requires important signal processing knowledge.

Since 2003, a heuristic-based approach became available through the Computer
Science Lab of Sony in Paris, which developed the Extractor Discovery System (EDS).
The system is based on genetic programming, and machine learning algorithms em-
ployed to automatically generate a descriptor from a database of sound files examples
and their respective perceptive values. EDS can be used either by non experts or expert
users. Non experts can use it as a tool to extract descriptors, even with minimal or no
knowledge at all in signal processing. For example, movie makers have created classi-
fiers of sound samples to be used in their films (explosions, car breaks, etc.). Experts
can use the system to improve their results, starting from their solution and then con-
trolling and guiding EDS. For instance, the perceived intensity of music titles can be
more precisely revealed, taking as a starting point the mpeg7 audio features [2].

We are currently designing a guitar accompanier for “bossa nova” style. During
the application development process, we ran into the problem of recognizing a
chord, which turned out to be a good opportunity of comparing classical and EDS
approaches. On the one hand, chord recognition is a well studied domain, with solid

186 G. Cabral, F. Pachet, and J.-P. Briot

results that can be considered as reference. On the other hand, current techniques use
background knowledge that EDS (initially) does not have (pitches, harmony). Good
EDS results would indicate the capacity of the system to deal with real world musical
description cases.

We intend to compare the results from a standard technique of chord recognition
(KNN learner over Pitch Class Profiles) and those from EDS, when operated by an
inexperienced user (so called Naïve EDS) and by an expert user (so called Expert
EDS). This paper presents the first part of this comparison, considering only the
results obtained by the Naïve EDS. In the next section, we introduce the chord recog-
nition problem. In section 3 we explain the most widely used technique. In section 4
we examine EDS, how it works and how to use it. Section 5 details the experiment.
Section 6 shows and discuss the results. Finally, we draw some conclusions and point
future works.

2 Chord Recognition

The ability of recognizing chords is important for many applications, such as interac-
tive musical systems, content-based musical information retrieval (finding particular
examples, or themes, in large audio databases), and educational software. Chord rec-
ognition means the transcription of a sound into a chord, which can be classified ac-
cording to different levels of precision, from a simple distinction between maj and
min chords to a complex set of chord types (maj, min, 7th, dim, aug, etc).

Many works can be mentioned here as the state of the art in chord recognition. [4]
and [5] automatically transcribes chords from a CD recorded song. [3] deals with a
similar problem: estimating the tonality of a piece (which is analogous to the maj/min).
In most cases the same core technique is used (even if some variations may appear
during the implementation phase): the computation of a Pitch Class Profile, or chro-
magram, and a subsequent machine learning algorithm to find patterns for each chord
class. This technique has been applied to our problem, as we explain in next section.

3 Traditional Technique: Pitch Class Profiles

Most part of the works involving harmonic content (chord recognition, chord segmen-
tation, tonality estimation) uses a feature called Pitch Class Profile (PCP) [6]. PCPs
are vectors of low-level instantaneous features, representing the intensity of each
pitch of the tonal scale mapped to a single octave. These vectors are calculated as
follows: 1) a music recording is converted to a Fourier Transform representation
(Fig1a to Fig1b). 2) the intensity of a pitch is calculated (Fig1b to Fig1d) by the mag-
nitude of the spectral peaks, or by summing the magnitudes of all frequency bins that
are located within the respective frequency band (Fig1c). 3) The equivalent pitches
from different octaves are summed, producing a vector of 12 values (eventually 24 to
deal with differences in tuning and/or to gain in performance), consequentially unify-
ing various dispositions of a single chord class (Fig1e and Fig1f). For example, one
can expect that the intensities of the frequencies corresponding to the notes C, E and
G in the spectrum of a Cmaj would be greater than the others, independently on the
particular voicing of the chord.

 Recognizing Chords with EDS: Part One 187

a) b) c)

d) e) f)

Fig. 1. Steps to compute a PCP. The signal is converted to Fast-Fourier representation; the FFT
is divided into regions; the energy of each region is computed; the final vector is normalized.

Fig. 2. Example of the PCP for a Amaj7. Each column represents the intensity of a note, inde-
pendently on the octave.

Fig. 3. Example of the PCP for a Cmaj7

188 G. Cabral, F. Pachet, and J.-P. Briot

The idea of using PCPs to chord recognition is that the PCPs of a chord follow a
pattern, and that patterns can be learned from examples. Thus, machine learning (ML)
techniques [9] can be used to generalize a classification model from a given database
of labeled examples, in order to automatically classify new ones. So, for the PCP of a
chord, the system will respond the most probable (or closest) chord class, given the
examples previously learned. The original PCP implementation from Fujishima used
a KNN learner [6], and more recent works [3] successfully used other machine learn-
ing algorithms.

4 EDS

EDS (Extractor Discovery System), developed at Sony CSL, is a heuristic-based ge-
neric approach for automatically extracting high-level music descriptors from acoustic
signals. EDS is based on Genetic Programming [11], used to build extraction func-
tions as compositions of basic mathematical and signal processing operators, such as
Log, Variance, FFT, HanningWindow, etc. A specific composition of such operators
is called feature (e.g. Log (Variance (Min (FFT (Hanning (Signal)))))), and a combi-
nation of features form a descriptor.

Given a database of audio signals with their associated perceptive values, EDS is
capable to generalize a descriptor. Such descriptor is built by running a genetic search
to find relevant signal processing features to match the description problem, and then
machine learning algorithms to combine those features into a general descriptor
model.

Fig. 4. EDS main interface

The genetic search performed by the system is intended to generate functions
that may eventually be relevant to the problem. The best functions in a population
are selected and iteratively transformed (by means of reproduction, i.e., constant
variations, mutations, and/or cross-over), always respecting the pattern chosen by

 Recognizing Chords with EDS: Part One 189

the user. The default pattern is !_x(Signal), which means a function presenting any
number of operations but a single value as result. The populations of functions keep
reproducing until no improvement is achieved. At this point, the best functions are
selected to be combined. This selection can be made both manually or automatically.
For example, given a database of audio files labeled as ‘voice’/‘instrumental’, kept
the default pattern, these are some possible functions that might be selected by the
system:

Log10 (Range (Derivation (Sqrt (Blackman (MelBands (Signal, 24.0))))))

Square (Log10 (Mean (Min (Fft (Split (Signal, 4009))))))

Fig. 5. Some possible EDS features for characterizing a sound as vocal or instrumental

The final step in the extraction process is to choose and compute a model (linear
regression, model trees, knn, locally weighted regression, neural networks, etc.) that
combines all features. As an output, EDS creates an executable file, which classifies
an audio file passed as argument.

In short, the user needs to 1) create the database, in which each recording is labeled
as its correspondent class. 2) write a general pattern for the features and launch the
genetic search. The pattern encapsulates the overall procedure of the feature. For ex-
ample, !_x(f:a(Signal)) means that the signal is initially converted into the frequency
domain, then some operation is applied to get a single value as a result. 3) select the
appropriate features. 4) choose a model to combine the features. Although an expert
user may drive the system (starting from an initial solution, including heuristics for the
genetic search, etc), EDS has a fully automated mode, in which a default pattern is
chosen, the most complementary features are selected and all models are computed.
This mode is particularly attractive for non expert user, as he/she just needs to be able
to create and label the database. That is the mode explored in this paper.

5 Bossa Nova Guitar Chords

Our final goal is to create a guitar accompanier in Brazilian “bossa nova” style. Con-
sequently, our chord recognizer has examples of chords played with nylon guitar. The
data was taken from D’accord Guitar Chord Database [10], a guitar midi based chord
database. The purpose of using it was the richness of the symbolic information pre-
sent (chord root, type, set of notes, position, fingers, etc.), which was very useful for
labelling the data and validating the results. Each midi chord was rendered into a wav
file using Timidity++ [12] and a free nylon guitar patch, and the EDS database was
created according to the information found in D’accord Guitar database. Even though
a midi-based database may lead to distortions in the results, we judge that the com-
parison between approaches is still valid.

5.1 Chord Classes

We tested the solutions with some different datasets, reflecting the variety of nuances
that chord recognition may show:

190 G. Cabral, F. Pachet, and J.-P. Briot

AMaj/Min – classifies between major and minor chords, given a fixed root (La).
There were 101 recordings, labelled in 2 classes.

Chord Type, fixed root – classifies among major, minor, seventh, minor seventh
and diminished chords, given a fixed root (A or C). There were 262 samples, divided
in 5 classes,

Chord Recognition – classifies major, minor, seventh, minor seventh and dimin-
ished chords, in any root. There were 1885 samples, labelled in 60 classes.

80% of each database is settled on as the training dataset and 20% as the testing
dataset.

5.2 Pitch Class Profile

In our implementation of the pitch class profile, frequency to pitch mapping is
achieved using the logarithmic characteristic of the equal temperament scale, as illus-
trated in Fig. 5. The intensity of each pitch is computed by summing the magnitude of
all frequency bins that correspond to a particular pitch class. The same computation is
applied to a white noise and the result is used to normalize the other PCPs.

Pi tch = log 2()

12â log 440
Hzbinj j

ð ñ

Fig. 6. Frequency to pitch mapping

For the chord recognition database, PCPs were rotated, meaning that each PCP
was computed 12 times, one time for each possible rotation (for instance, a Bm is
equivalent to a Am rotated twice). After the PCP computation, several machine learn-
ing algorithms could have been applied. We implemented 2 simple solutions. The first

Fig. 7. Example of a template PCP for a C chord class

 Recognizing Chords with EDS: Part One 191

one calculates a default (template) PCP to each chord class. Then, the PCP of a new
example can be matched up to the template PCP, and the most similar one is retrieved
as the chord.

The second one uses the k-nearest neighbours algorithm (KNN), with maximum of
3 neighbours. KNNs have been used since the original PCP implementation and have
proved to be at least one of the best learning algorithms for this case [3].

5.3 EDS

The same databases were loaded in EDS. We ran a fully automated extraction, keep-
ing all default values. The system generated the descriptor without any help from the
user, obtaining the results we call EDS Naïve, because they correspond to the results
that a naïve user would achieve.

6 Results and Discussion

The results achieved by us are presented in the table 1. Rows represent the different
databases. Columns represent the different learning techniques. The percent values
indicate the number of correctly classified instances over the total number of exam-
ples in the testing database.

As we can see, EDS gets really close to classical approaches when the root is
known, but disappoints when the whole problem is presented. It seems that a combi-
nation of low level functions is capable of finding different patterns in the same root,
but the current palette of signal processing functions in EDS is not sufficient to gener-
alize harmonic information. Sections 6.1, 6.2 and 6.3 detail the features that were
found.

Table 1. Percentage of correctly classified instances for the different databases using the
studied approaches

Approach
Database

PCP
Template

KNN EDS

Maj/Min (fixed
root)

100% 100% 90.91%

Chord Type (fixed
root)

89% 90.62% 87.5%

Chord Recognition 53.85% 63.93% 40.31%

6.1 Case 1: Major/Minor Classifier, Fixed Root

Figure 5 shows the selected features for the Amaj/min database. The best model ob-
tained was a KNN of 1 nearest neighbour, equally weighted, absolute error (see [9]
for details). The descriptor reached 90.91% of the performance of the best traditional
classifier.

192 G. Cabral, F. Pachet, and J.-P. Briot

EDS1: Power (Log10 (Abs (Range (Integration (Square (Mean (FilterBank
(Normalize (Signal), 5.0))))))), -1.0)

EDS2: Power (Log10 (Abs (Range (Sqrt (Bartlett (Mean (FilterBank
(Normalize (Signal), 9.0))))))), -1.0)

EDS3: Sqrt (Range (Integration (Hanning (Square (Mean (Split (Signal,
3736.0)))))))

EDS4: Arcsin (Sqrt (Range (Integration (Mean (Split (Normalize (Sig-
nal), 5862.0))))))

EDS5: Log10 (Variance (Integration (Bartlett (Mean (FilterBank (Nor-
malize (Signal), 5.0))))))

EDS6: Power (Log10 (Abs (Range (Integration (Square (Sum (FilterBank
(Normalize (Signal), 9.0))))))), -1.0)

EDS7: Square (Log10 (Abs (Mean (Normalize (Integration (Normalize
(Signal)))))))

EDS8: Arcsin (Sqrt (Range (Integration (Mean (Split (Normalize (Sig-
nal), 8913.0))))))

EDS9: Power (Log10 (Abs (Range (Sqrt (Bartlett (Mean (FilterBank
(Normalize (Signal), 3.0))))))), -1.0)

Fig. 8. Selected features for the Amaj/min chord recognizer

6.2 Case 2: Chord Type Recognition, Fixed Root

Figure 6 shows the selected features for the chord type database. The best model
obtained was a GMM of 14 gaussians and 500 iterations (see [9] for details). The
descriptor reached 96,56% of the performance of the best traditional classifier.

EDS1: Log10 (Abs (RHF (Sqrt (Integration (Integration (Normalize
(Signal)))))))

EDS2: Mean (Sum (SplitOverlap (Sum (Bartlett (Split (Signal,
1394.0))), 4451.0, 0.5379660839449434)))

EDS3: Power (Log10 (Abs (RHF (Normalize (Integration (Integration
(Normalize (Signal))))))), 6.0)

EDS4: Power (Log10 (RHF (Signal)), 3.0)

EDS5: Power (Mean (Sum (SplitOverlap (Sum (Bartlett (Split (Signal,
4451.0))), 4451.0, 0.5379660839449434))), 3.0)

Fig. 9. Selected features for the Chord Type recognizer

6.3 Case 3: Chord Recognition

Figure 7 shows some of the selected features for the chord recognition database. The
best model obtained was a KNN of 4 nearest neighbours, weighted by the inverse of
the distance (see [9] for details). The descriptor reached 63,05% of the performance of
the best traditional classifier. It is important to notice that 40,31 % is not necessarily a

 Recognizing Chords with EDS: Part One 193

bad result, since we have 60 possible classes. In fact, 27,63% of the wrongly classi-
fied instances were due to mistakes between relative majors and minors (e.g; C and
Am); 40,78% due to other usual mistakes (e.g. C and C7; C° and Eb°; C and G); only
31,57% were caused by unexpected mistakes. Despite these remarks, the comparative
results are significantly worse than the previous ones.

EDS1: Square (Log10 (Abs (Sum (SpectralFlatness (Integration (Split
(Signal, 291.0)))))))

EDS4: Power (Log10 (Abs (Iqr (SpectralFlatness (Integration (Split
(Signal, 424.0)))))), -1.0)

EDS9: Sum (SpectralRolloff (Integration (Hamming (Split (Signal,
4525.0)))))

EDS10: Power (Log10 (Abs (Median (SpectralFlatness (Integration
(SplitOverlap (Signal, 5638.0, 0.7366433546185794)))))), -1.0)

EDS12: Log10 (Sum (MelBands (Normalize (Signal), 7.0)))

EDS13: Power (Median (Normalize (Signal)), 5.0)

EDS14: Rms (Range (Hann (Split (Signal, 9336.0))))

EDS15: Power (Median (Median (Split (Sqrt (Iqr (Hamming (Split (Sig-
nal, 2558.0)))), 4352.0))), 1.5)

EDS17: Power (HFC (Power (Correlation (Normalize (Signal), Signal),
4.0)), -2.0)

EDS18: Square (Log10 (Variance (Square (Range (Mfcc (Square (Hamming
(Split (Signal, 9415.0))), 2.0))))))

EDS19: Variance (Abs (Median (Hann (FilterBank (Peaks (Normalize
(Signal)), 5.0)))))

EDS21: MaxPos (Sqrt (Normalize (Signal)))

EDS22: Power (Log10 (Abs (Iqr (SpectralFlatness (Integration (Split
(Signal, 4542.0)))))), -1.0)

Fig. 10. Some of the selected features for the chord recognizer

6.4 Other Cases

We also compared the three approaches on other databases, as we can see in the
table 2. MajMinA is the major/minor classifier, root fixed to A. ChordA is the chord
type recognizer, root fixed to A. ChordC is the chord type recognizer, root fixed to C.
RealChordC is the same chord type recognizer in C, but the testing dataset is
composed by real audio recordings (samples of less than 1 second of chords played in
a nylon guitar), instead of midi rendered audio. Curiously, in this case, the EDS solu-
tion worked better than the traditional one (probably due to an alteration in tuning in
the recorded audio). Chord is the chord recognition database. SmallChord is a smaller
dataset (300 examples) for the same problem. Notice that in this case EDS outper-
formed KNN and PCP Template. In fact, the EDS solution does not improve very
much when passing from 300 to 1885 examples (from 38,64% to 40,31%), while the

194 G. Cabral, F. Pachet, and J.-P. Briot

KNN solution goes from 44% to 63,93%. Finally, RealChord has the same training
set from the Chord database, but is tested with real recorded audio.

The results from these databases confirm the trend of the previous scenario. The
reading of the results indicates that the effectiveness of the EDS fully automated de-
scriptor extraction depends on the domain it is applied to. Even admitting that EDS
(in its current state) is only partially suited to non expert users, we must take into
account that EDS currently uses a limited palette of signal processing functions,
which is being progressively enhanced. Since EDS didn’t have any information about
tonal harmony, it was already expected that it would not reach the best results. Even
though, the results obtained by the chord recognizer with a fixed root show the power
of the tool.

Table 2. Comparison between the performance of the EDS and the best traditional classifier for
a larger group of databases. Comparative performance = EDS performance / traditional
technique performance.

DB NAME
Comparative
Performance

MajMinA 90,91%

ChordA 94,38%

ChordC 96,56%

Chord 63,05%

SmallChord 87,82%

RealChordC 116,66%

RealChord 55,16%

7 Conclusion and Future Works

In this paper we compared the performance of a standard chord recognition technique
and the EDS approach. The chord recognition was specifically related to nylon guitar
samples, since we intend to apply the solution to a Brazilian style guitar accompanier.
The standard technique was the Pitch Class Profiles, in which frequency intensities
are mapped to the twelve semitone pitch classes, and then uses KNN classification to
chord templates. EDS is an automatic descriptor extractor system that can be em-
ployed even if the user does not have knowledge about signal processing. It was oper-
ated in a completely naïve way so that the solution and the results would be similar to
those obtained by a non expert user.

The statistical results reveal a slight deficit of EDS for a fixed root, and a greater
gap when the root is not known a priori, showing its dependency on primary opera-
tors. An initial improvement is logically the increase of the palette of functions.
Currently, we are implementing tonal harmony operators such as chroma and
pitchBands, which we suppose will provide much better results. Additionally, as the
genetic search in EDS is indeed an optimisation algorithm, if the user starts from a

 Recognizing Chords with EDS: Part One 195

good solution, it will be expected that the algorithm makes it even better. The user can
also guide the function generation process, via more specific patterns and heuristics.

With these actions, we intend to perform the second part of the comparison
we started in this paper – between the traditional techniques and EDS operated by a
signal processing expert.

Acknowledgements

We would like to thank all the team at Sony CSL Paris, particularly Anthony Beurivé,
Jean-Julien Aucouturier and Aymeric Zils for their support and assistance with EDS;
and a special thanks to Tristan Jehan for his help in the conception and implementa-
tion of the algorithms.

References

1. Pachet, F. and Zils, A. “Automatic Extraction of Music Descriptors from Acoustic Sig-
nals”, Proceedings of Fifth International Conference on Music Information Retrieval
(ISMIR04), Barcelona, 2004.

2. Zils, A. & Pachet, F. “Extracting Automatically the Perceived Intensity of Music Titles”,
Proceedings of the 6th COST-G6 Conference on Digital Audio Effects (DAFX03), 2003.

3. Gómez, E. and Herrera, P. “Estimating the tonality of polyphonic audio files: cognitive
versus machine learning modelling strategies”, Proceedings of the 5th International
Conference on Music Information Retrieval (ISMIR04), Barcelona, 2004.

4. Sheh, A. and Ellis, D. “Chord Segmentation and Recognition using EM-Trained Hidden
Markov Models”, Proceedings of the 4th International Symposium on Music Information
Retrieval (ISMIR03), Baltimore, USA, 2003.

5. Yoshioka, T., Kitahara, T., Komatani, K., Ogata, T. and Okuno, H. “Automatic chord tran-
scription with concurrent recognition of chord symbols and boundaries”, Proceedings of
the 5th International Conference on Music Information Retrieval (ISMIR04), Barcelona,
2004.

6. Fujishima, T. “Real-time chord recognition of musical sound: a system using Common
Lisp Music”, Proceedings of International Computer Music Conference (ICMC99),
Beijing, 1999.

7. Bartsch, M. A. and Wakefield, G. H. “To catch a chorus: Using chromabased representa-
tion for audio thumbnailing”, Proceedings of International. Workshop on Applications of
Signal Processing to Audio and Acoustics, Mohonk, USA, 2001.

8. Pardo, B., Birmingham, W. P. “The Chordal Analysis of Tonal Music”, The University of
Michigan, Department of Electrical Engineering and Computer Science Technical Report
CSE-TR-439-01, 2001.

9. Mitchell, T. “Machine Learning”, The McGraw-Hill Companies, Inc. 1997.
10. Cabral, G., Zanforlin, I., Santana, H., Lima, R., & Ramalho, G. “D'accord Guitar: An

Innovative Guitar Performance System”, in Proceedings of Journées d'Informatique
Musicale (JIM01), Bourges, 2001.

11. Koza, J. R. "Genetic Programming: on the programming of computers by means of
natural selection", Cambridge, USA, The MIT Press.

12. Gómez, E. Herrera, P. “Automatic Extraction of Tonal Metadata from Polyphonic Audio
Recordings”, Proceedings of 25th International AES Conference, London, 2004.

13. Website: http:// timidity.sourceforge.net/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

