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Abstract. This paper presents a comparison between traditional and automatic 
approaches for the extraction of an audio descriptor to recognize chord into 
classes. The traditional approach requires signal processing (SP) skills, con-
straining it to be used only by expert users. The Extractor Discovery System 
(EDS) [1] is a recent approach, which can also be useful for non expert users, 
since it intends to discover such descriptors automatically. This work compares 
the results from a classic approach for chord recognition, namely the use of 
KNN-learners over Pitch Class Profiles (PCP), with the results from EDS when 
operated by a non SP expert. 

1   Introduction 

Audio descriptors express by mathematical formula a particular property of the sound, 
such as the tonality of a musical piece, the amount of energy in a given moment, or 
whether a song is instrumental or sung. Although the creation of each descriptor re-
quires a different study, the design of a descriptor extractor normally follows the 
process of combining the relevant characteristics of acoustic signals (features) using 
machine learning algorithms. These features are often low-level descriptors (LLD), 
and the task usually requires important signal processing knowledge. 

Since 2003, a heuristic-based approach became available through the Computer  
Science Lab of Sony in Paris, which developed the Extractor Discovery System (EDS). 
The system is based on genetic programming, and machine learning algorithms em-
ployed to automatically generate a descriptor from a database of sound files examples 
and their respective perceptive values. EDS can be used either by non experts or expert 
users. Non experts can use it as a tool to extract descriptors, even with minimal or no 
knowledge at all in signal processing. For example, movie makers have created classi-
fiers of sound samples to be used in their films (explosions, car breaks, etc.). Experts 
can use the system to improve their results, starting from their solution and then con-
trolling and guiding EDS. For instance, the perceived intensity of music titles can be 
more precisely revealed, taking as a starting point the mpeg7 audio features [2]. 

We are currently designing a guitar accompanier for “bossa nova” style. During  
the application development process, we ran into the problem of recognizing a  
chord, which turned out to be a good opportunity of comparing classical and EDS  
approaches. On the one hand, chord recognition is a well studied domain, with solid 



186 G. Cabral, F. Pachet, and J.-P. Briot 

 

results that can be considered as reference. On the other hand, current techniques use 
background knowledge that EDS (initially) does not have (pitches, harmony). Good 
EDS results would indicate the capacity of the system to deal with real world musical 
description cases.  

We intend to compare the results from a standard technique of chord recognition 
(KNN learner over Pitch Class Profiles) and those from EDS, when operated by an 
inexperienced user (so called Naïve EDS) and by an expert user (so called Expert 
EDS). This paper presents the first part of this comparison, considering only the  
results obtained by the Naïve EDS. In the next section, we introduce the chord recog-
nition problem. In section 3 we explain the most widely used technique. In section 4 
we examine EDS, how it works and how to use it. Section 5 details the experiment. 
Section 6 shows and discuss the results. Finally, we draw some conclusions and point 
future works. 

2   Chord Recognition 

The ability of recognizing chords is important for many applications, such as interac-
tive musical systems, content-based musical information retrieval (finding particular 
examples, or themes, in large audio databases), and educational software. Chord rec-
ognition means the transcription of a sound into a chord, which can be classified ac-
cording to different levels of precision, from a simple distinction between maj and 
min chords to a complex set of chord types (maj, min, 7th, dim, aug, etc).  

Many works can be mentioned here as the state of the art in chord recognition. [4] 
and [5] automatically transcribes chords from a CD recorded song. [3] deals with a 
similar problem: estimating the tonality of a piece (which is analogous to the maj/min). 
In most cases the same core technique is used (even if some variations may appear 
during the implementation phase): the computation of a Pitch Class Profile, or chro-
magram, and a subsequent machine learning algorithm to find patterns for each chord 
class. This technique has been applied to our problem, as we explain in next section. 

3   Traditional Technique: Pitch Class Profiles 

Most part of the works involving harmonic content (chord recognition, chord segmen-
tation, tonality estimation) uses a feature called Pitch Class Profile (PCP) [6]. PCPs 
are vectors of low-level instantaneous features, representing the intensity of each 
pitch of the tonal scale mapped to a single octave. These vectors are calculated as 
follows: 1) a music recording is converted to a Fourier Transform representation 
(Fig1a to Fig1b). 2) the intensity of a pitch is calculated (Fig1b to Fig1d) by the mag-
nitude of the spectral peaks, or by summing the magnitudes of all frequency bins that 
are located within the respective frequency band (Fig1c). 3) The equivalent pitches 
from different octaves are summed, producing a vector of 12 values (eventually 24 to 
deal with differences in tuning and/or to gain in performance), consequentially unify-
ing various dispositions of a single chord class (Fig1e and Fig1f). For example, one 
can expect that the intensities of the frequencies corresponding to the notes C, E and 
G in the spectrum of a Cmaj would be greater than the others, independently on the 
particular voicing of the chord. 
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Fig. 1. Steps to compute a PCP. The signal is converted to Fast-Fourier representation; the FFT 
is divided into regions; the energy of each region is computed; the final vector is normalized. 

 

Fig. 2. Example of the PCP for a Amaj7. Each column represents the intensity of a note, inde-
pendently on the octave. 

 

Fig. 3. Example of the PCP for a Cmaj7 
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The idea of using PCPs to chord recognition is that the PCPs of a chord follow a 
pattern, and that patterns can be learned from examples. Thus, machine learning (ML) 
techniques [9] can be used to generalize a classification model from a given database 
of labeled examples, in order to automatically classify new ones. So, for the PCP of a 
chord, the system will respond the most probable (or closest) chord class, given the 
examples previously learned. The original PCP implementation from Fujishima used 
a KNN learner [6], and more recent works [3] successfully used other machine learn-
ing algorithms.  

4   EDS 

EDS (Extractor Discovery System), developed at Sony CSL, is a heuristic-based ge-
neric approach for automatically extracting high-level music descriptors from acoustic 
signals. EDS is based on Genetic Programming [11], used to build extraction func-
tions as compositions of basic mathematical and signal processing operators, such as 
Log, Variance, FFT, HanningWindow, etc. A specific composition of such operators 
is called feature (e.g. Log (Variance (Min (FFT (Hanning (Signal)))))), and a combi-
nation of features form a descriptor. 

Given a database of audio signals with their associated perceptive values, EDS is 
capable to generalize a descriptor. Such descriptor is built by running a genetic search 
to find relevant signal processing features to match the description problem, and then 
machine learning algorithms to combine those features into a general descriptor 
model. 

 

Fig. 4. EDS main interface 

The genetic search performed by the system is intended to generate functions  
that may eventually be relevant to the problem. The best functions in a population  
are selected and iteratively transformed (by means of reproduction, i.e., constant 
variations, mutations, and/or cross-over), always respecting the pattern chosen by  
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the user. The default pattern is !_x(Signal), which means a function presenting any 
number of operations but a single value as result. The populations of functions keep 
reproducing until no improvement is achieved. At this point, the best functions are 
selected to be combined. This selection can be made both manually or automatically. 
For example, given a database of audio files labeled as ‘voice’/‘instrumental’, kept 
the default pattern, these are some possible functions that might be selected by the 
system: 

 
Log10 (Range (Derivation (Sqrt (Blackman (MelBands (Signal, 24.0)))))) 
 
Square  (Log10  (Mean  (Min  (Fft (Split (Signal, 4009)))))) 

Fig. 5. Some possible EDS features for characterizing a sound as vocal or instrumental 

The final step in the extraction process is to choose and compute a model (linear 
regression, model trees, knn, locally weighted regression, neural networks, etc.) that 
combines all features. As an output, EDS creates an executable file, which classifies 
an audio file passed as argument. 

In short, the user needs to 1) create the database, in which each recording is labeled 
as its correspondent class. 2) write a general pattern for the features and launch the 
genetic search. The pattern encapsulates the overall procedure of the feature. For ex-
ample, !_x(f:a(Signal)) means that the signal is initially converted into the frequency 
domain, then some operation is applied to get a single value as a result. 3) select the 
appropriate features. 4) choose a model to combine the features. Although an expert 
user may drive the system (starting from an initial solution, including heuristics for the 
genetic search, etc), EDS has a fully automated mode, in which a default pattern is 
chosen, the most complementary features are selected and all models are computed. 
This mode is particularly attractive for non expert user, as he/she just needs to be able 
to create and label the database. That is the mode explored in this paper. 

5   Bossa Nova Guitar Chords 

Our final goal is to create a guitar accompanier in Brazilian “bossa nova” style. Con-
sequently, our chord recognizer has examples of chords played with nylon guitar. The 
data was taken from D’accord Guitar Chord Database [10], a guitar midi based chord 
database. The purpose of using it was the richness of the symbolic information pre-
sent (chord root, type, set of notes, position, fingers, etc.), which was very useful for 
labelling the data and validating the results. Each midi chord was rendered into a wav 
file using Timidity++ [12] and a free nylon guitar patch, and the EDS database was 
created according to the information found in D’accord Guitar database. Even though 
a midi-based database may lead to distortions in the results, we judge that the com-
parison between approaches is still valid. 

5.1   Chord Classes 

We tested the solutions with some different datasets, reflecting the variety of nuances 
that chord recognition may show: 
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AMaj/Min – classifies between major and minor chords, given a fixed root (La). 
There were 101 recordings, labelled in 2 classes. 

Chord Type, fixed root – classifies among major, minor, seventh, minor seventh 
and diminished chords, given a fixed root (A or C). There were 262 samples, divided 
in 5 classes, 

Chord Recognition – classifies major, minor, seventh, minor seventh and dimin-
ished chords, in any root. There were 1885 samples, labelled in 60 classes. 

80% of each database is settled on as the training dataset and 20% as the testing 
dataset. 

5.2   Pitch Class Profile 

In our implementation of the pitch class profile, frequency to pitch mapping is 
achieved using the logarithmic characteristic of the equal temperament scale, as illus-
trated in Fig. 5. The intensity of each pitch is computed by summing the magnitude of 
all frequency bins that correspond to a particular pitch class. The same computation is 
applied to a white noise and the result is used to normalize the other PCPs. 

Pi tch = log 2( )

12â log 440
Hzbinj j

ð ñ

 

Fig. 6. Frequency to pitch mapping 

For the chord recognition database, PCPs were rotated, meaning that each PCP 
was computed 12 times, one time for each possible rotation (for instance, a Bm is 
equivalent to a Am rotated twice). After the PCP computation, several machine learn-
ing algorithms could have been applied. We implemented 2 simple solutions. The first  
 

 

Fig. 7. Example of a template PCP for a C chord class 
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one calculates a default (template) PCP to each chord class. Then, the PCP of a new 
example can be matched up to the template PCP, and the most similar one is retrieved 
as the chord. 

The second one uses the k-nearest neighbours algorithm (KNN), with maximum of 
3 neighbours. KNNs have been used since the original PCP implementation and have 
proved to be at least one of the best learning algorithms for this case [3]. 

5.3   EDS 

The same databases were loaded in EDS. We ran a fully automated extraction, keep-
ing all default values. The system generated the descriptor without any help from the 
user, obtaining the results we call EDS Naïve, because they correspond to the results 
that a naïve user would achieve. 

6   Results and Discussion 

The results achieved by us are presented in the table 1. Rows represent the different 
databases. Columns represent the different learning techniques. The percent values 
indicate the number of correctly classified instances over the total number of exam-
ples in the testing database. 

As we can see, EDS gets really close to classical approaches when the root is 
known, but disappoints when the whole problem is presented. It seems that a combi-
nation of low level functions is capable of finding different patterns in the same root, 
but the current palette of signal processing functions in EDS is not sufficient to gener-
alize harmonic information. Sections 6.1, 6.2 and 6.3 detail the features that were 
found. 

Table 1. Percentage of correctly classified instances for the different databases using the 
studied approaches 

Approach 
Database 

PCP  
Template 

KNN EDS 

Maj/Min (fixed 
root) 

100% 100% 90.91% 

Chord Type (fixed 
root) 

89% 90.62% 87.5% 

Chord Recognition 53.85% 63.93% 40.31% 

6.1   Case 1: Major/Minor Classifier, Fixed Root 

Figure 5 shows the selected features for the Amaj/min database. The best model ob-
tained was a KNN of 1 nearest neighbour, equally weighted, absolute error (see [9] 
for details). The descriptor reached 90.91% of the performance of the best traditional 
classifier. 
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EDS1: Power (Log10 (Abs (Range (Integration (Square (Mean (FilterBank 
(Normalize (Signal), 5.0))))))), -1.0) 

EDS2: Power (Log10 (Abs (Range (Sqrt (Bartlett (Mean (FilterBank 
(Normalize (Signal), 9.0))))))), -1.0) 

EDS3: Sqrt (Range (Integration (Hanning (Square (Mean (Split (Signal, 
3736.0))))))) 

EDS4: Arcsin (Sqrt (Range (Integration (Mean (Split (Normalize (Sig-
nal), 5862.0)))))) 

EDS5: Log10 (Variance (Integration (Bartlett (Mean (FilterBank (Nor-
malize (Signal), 5.0)))))) 

EDS6: Power (Log10 (Abs (Range (Integration (Square (Sum (FilterBank 
(Normalize (Signal), 9.0))))))), -1.0) 

EDS7: Square (Log10 (Abs (Mean (Normalize (Integration (Normalize 
(Signal))))))) 

EDS8: Arcsin (Sqrt (Range (Integration (Mean (Split (Normalize (Sig-
nal), 8913.0)))))) 

EDS9: Power (Log10 (Abs (Range (Sqrt (Bartlett (Mean (FilterBank 
(Normalize (Signal), 3.0))))))), -1.0) 

Fig. 8. Selected features for the Amaj/min chord recognizer 

6.2   Case 2: Chord Type Recognition, Fixed Root 

Figure 6 shows the selected features for the chord type database. The best model  
obtained was a GMM of 14 gaussians and 500 iterations (see [9] for details). The 
descriptor reached 96,56% of the performance of the best traditional classifier. 

 
EDS1: Log10 (Abs (RHF (Sqrt (Integration (Integration (Normalize 
(Signal))))))) 

EDS2: Mean (Sum (SplitOverlap (Sum (Bartlett (Split (Signal, 
1394.0))), 4451.0, 0.5379660839449434))) 

EDS3: Power (Log10 (Abs (RHF (Normalize (Integration (Integration 
(Normalize (Signal))))))), 6.0) 

EDS4: Power (Log10 (RHF (Signal)), 3.0) 

EDS5: Power (Mean (Sum (SplitOverlap (Sum (Bartlett (Split (Signal, 
4451.0))), 4451.0, 0.5379660839449434))), 3.0) 

Fig. 9. Selected features for the Chord Type recognizer 

6.3   Case 3: Chord Recognition 

Figure 7 shows some of the selected features for the chord recognition database. The 
best model obtained was a KNN of 4 nearest neighbours, weighted by the inverse of 
the distance (see [9] for details). The descriptor reached 63,05% of the performance of 
the best traditional classifier. It is important to notice that 40,31 % is not necessarily a 
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bad result, since we have 60 possible classes. In fact, 27,63% of the wrongly classi-
fied instances were due to mistakes between relative majors and minors (e.g; C and 
Am); 40,78% due to other usual mistakes (e.g. C and C7; C° and Eb°; C and G); only 
31,57% were caused by unexpected mistakes. Despite these remarks, the comparative 
results are significantly worse than the previous ones. 

 
EDS1: Square (Log10 (Abs (Sum (SpectralFlatness (Integration (Split 
(Signal, 291.0))))))) 

EDS4: Power (Log10 (Abs (Iqr (SpectralFlatness (Integration (Split 
(Signal, 424.0)))))), -1.0) 

EDS9: Sum (SpectralRolloff (Integration (Hamming (Split (Signal, 
4525.0))))) 

EDS10: Power (Log10 (Abs (Median (SpectralFlatness (Integration 
(SplitOverlap (Signal, 5638.0, 0.7366433546185794)))))), -1.0) 

EDS12: Log10 (Sum (MelBands (Normalize (Signal), 7.0))) 

EDS13: Power (Median (Normalize (Signal)), 5.0) 

EDS14: Rms (Range (Hann (Split (Signal, 9336.0)))) 

EDS15: Power (Median (Median (Split (Sqrt (Iqr (Hamming (Split (Sig-
nal, 2558.0)))), 4352.0))), 1.5) 

EDS17: Power (HFC (Power (Correlation (Normalize (Signal), Signal), 
4.0)), -2.0) 

EDS18: Square (Log10 (Variance (Square (Range (Mfcc (Square (Hamming 
(Split (Signal, 9415.0))), 2.0)))))) 

EDS19: Variance (Abs (Median (Hann (FilterBank (Peaks (Normalize 
(Signal)), 5.0))))) 

EDS21: MaxPos (Sqrt (Normalize (Signal))) 

EDS22: Power (Log10 (Abs (Iqr (SpectralFlatness (Integration (Split 
(Signal, 4542.0)))))), -1.0) 

Fig. 10. Some of the selected features for the chord recognizer 

6.4   Other Cases 

We also compared the three approaches on other databases, as we can see in the  
table 2. MajMinA is the major/minor classifier, root fixed to A. ChordA is the chord 
type recognizer, root fixed to A. ChordC is the chord type recognizer, root fixed to C. 
RealChordC is the same chord type recognizer in C, but the testing dataset is  
composed by real audio recordings (samples of less than 1 second of chords played in 
a nylon guitar), instead of midi rendered audio. Curiously, in this case, the EDS solu-
tion worked better than the traditional one (probably due to an alteration in tuning in 
the recorded audio). Chord is the chord recognition database. SmallChord is a smaller 
dataset (300 examples) for the same problem. Notice that in this case EDS outper-
formed KNN and PCP Template. In fact, the EDS solution does not improve very 
much when passing from 300 to 1885 examples (from 38,64% to 40,31%), while the 
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KNN solution goes from 44% to 63,93%. Finally, RealChord has the same training 
set from the Chord database, but is tested with real recorded audio.  

The results from these databases confirm the trend of the previous scenario. The 
reading of the results indicates that the effectiveness of the EDS fully automated de-
scriptor extraction depends on the domain it is applied to. Even admitting that EDS 
(in its current state) is only partially suited to non expert users, we must take into 
account that EDS currently uses a limited palette of signal processing functions, 
which is being progressively enhanced. Since EDS didn’t have any information about 
tonal harmony, it was already expected that it would not reach the best results. Even 
though, the results obtained by the chord recognizer with a fixed root show the power 
of the tool. 

Table 2. Comparison between the performance of the EDS and the best traditional classifier for 
a larger group of databases. Comparative performance = EDS performance / traditional 
technique performance. 

DB NAME 
Comparative  
Performance 

MajMinA 90,91% 

ChordA 94,38% 

ChordC 96,56% 

Chord 63,05% 

SmallChord 87,82% 

RealChordC 116,66% 

RealChord 55,16% 

7   Conclusion and Future Works 

In this paper we compared the performance of a standard chord recognition technique 
and the EDS approach. The chord recognition was specifically related to nylon guitar 
samples, since we intend to apply the solution to a Brazilian style guitar accompanier. 
The standard technique was the Pitch Class Profiles, in which frequency intensities 
are mapped to the twelve semitone pitch classes, and then uses KNN classification to 
chord templates. EDS is an automatic descriptor extractor system that can be em-
ployed even if the user does not have knowledge about signal processing. It was oper-
ated in a completely naïve way so that the solution and the results would be similar to 
those obtained by a non expert user.  

The statistical results reveal a slight deficit of EDS for a fixed root, and a greater 
gap when the root is not known a priori, showing its dependency on primary opera-
tors. An initial improvement is logically the increase of the palette of functions.  
Currently, we are implementing tonal harmony operators such as chroma and 
pitchBands, which we suppose will provide much better results. Additionally, as the 
genetic search in EDS is indeed an optimisation algorithm, if the user starts from a 
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good solution, it will be expected that the algorithm makes it even better. The user can 
also guide the function generation process, via more specific patterns and heuristics. 

With these actions, we intend to perform the second part of the comparison  
we started in this paper – between the traditional techniques and EDS operated by a 
signal processing expert. 
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