

Incremental Parsing for Real-Time Accompaniment Systems

Giordano Cabral
1
, Jean-Pierre Briot

1
, François Pachet

2

1Laboratoire d’Informatique de Paris 6 – Université Pierre et Marie Curie

8 Rue du Capitaine Scott 75018 Paris – France

2Sony Computer Science Lab Paris

6 Rue Amyot 75005 Paris – France

{Giordano.CABRAL,Jean-Pierre.BRIOT}@lip6.fr, pachet@csl.sony.fr

Abstract

The incremental parsing (IP) algorithm has been
successfully used in real-time applications, due to its
efficiency and power to model musical style. For example,
musical systems using IP can continue phrases played by a
musician in a consistent way. This paper proposes some
alterations in the original algorithm in order to adapt it to
accompaniment systems.

1. Introduction

Statistical analysis techniques have been applied to musical

material with the aim of modeling musical style. Dubnov

(Dubnov et al. 1998) showed how Markov chains can be

used to learn the dynamic behavior of melodies from a

database of examples. Lartillot (Lartillot et al. 2001) used

these probabilistic models to classify musical styles, while

Pachet (Pachet 2002) used them to create an interactive

system: The Continuator. We are interested in using

similar approaches for a real-time accompaniment system.

Our work is strongly inspired by the Continuator,

extending its methods to deal with accompaniment. The

Continuator is able to continue phrases played by a

musician, coherently to their style, by computing in real-

time a variable-order Markov model of the corpus. In order

to efficiently compute the model, the system uses an

algorithm called Incremental Parsing (IP) (Ziv and Lempel

1977), which was firstly designed for the LZ compression

method. The Continuator explored several interactive

modes, from the simple question-answer (where the system

just responds to the musician’s input) to the collaborative

one (where the system plays continuously, restraining the

generated sequence to harmonically acceptable notes).

Despite the unquestionable capacity of the system to

emulate the style of the musical input (see some video

excerpts in http://www.csl.sony.fr/~pachet/continuator) in

the question-answer mode, the system demonstrated to be

deficient in performing accompaniments. In fact, the

difficulty relies on balancing the ability to generate

stylistic coherent musical phrases and to adapt itself to the

musician’s input. This work proposes some modifications

in the IP algorithm hoping to better handle this problem.

Next section exposes the core problem involved in

developing our accompaniment system, identifying

possible tradeoffs among adaptation, continuity, and

prediction. Section 3 describes the traditional Incremental

Parsing used, for instance, in the Continuator. Section 4

presents the consequent modifications in the original IP.

Finally, Section 5 draws some conclusions and presents

our future works.

2. Musical Accompaniment

The system we are developing must be capable of

accompanying a user singing some melody via the

computer microphone, without any previous knowledge of

the song. The accompaniment style and the tempo are

given. For the first prototype, Brazilian Bossa-Nova style,

at 90 bpm. These constraints simplify the problem: the

system must only be able to find the best chords for a

melody that is currently being sung. In this context, we can

consider the application as performing real-time

harmonization.

 The core problem involved in the development of

such a system is to establish a tradeoff between continuity

and adaptation, as we can see in Figure 1. On the one

hand, the chords chosen for the accompaniment must keep

certain continuity. It means that the choice of the chords to

be used depends on the previous ones. On the other hand,

the chosen chords must fit the melody being sung.

Mel

1
Mel

1

Acc
1

Acc
1

Acc
2

Acc
2

Mel
2

Mel
2

Mel
3

Mel
3

Acc
3

Acc
3

Acc
4

Acc
4

Mel
4

Mel
4

Figure 1 – dependency relation between accompaniment

and leading melody. Chords depend both on previous

chords and on concurrent melody.

Moreover, as we are in a real-time scenario, there is one

extra requirement: the capability to predict notes, since the

melody that will be sung is unknown. In fact, we observed

3 strategies employed by the accompaniment musicians,

related to different combinations of adaptation, continuity,

and prediction.

1. Prediction/Retrieval – given a sequence of notes
(melody) sung by the singer, the musician imagines

(predicts) a continuation, and tries to find the good

chords to play along with. The adaptation relies on its

ability to combine melody and harmony, and the

continuity is kept while the singer follows a melody

sufficiently similar to the predicted one. At each

moment, the musician reviews the coupling

harmony/melody, updating or rebuilding the

predictions since conflicts were found, or the

predicted phrase terminates.

2. Retrieval/Continuation – according to the sung melody,

the musician creates an appropriate accompaniment.

Then, he/she looks for a continuation for this

accompaniment. The continuity is naturally respected,

but he/she has to constantly review the coupling

harmony/melody, and restart the process in case of

conflict.

3. Joint – melody and harmony are seen as a whole. Since

chords are groups of notes, it is reasonable to consider

the ensemble note and chord also as a chord, thus

adaptation, continuity, and prediction are taken

simultaneously into account.

The IP algorithm can be extended to operate in these 3

behaviors. Next sections explain the original and the

modified versions of it.

3. Incremental Parsing

This algorithm is originated from the analysis phase of the

Lempel-Ziv (Ziv and Lempel 1977) compression method.

The technique can be applied to music, whether interpreted

as a sequence of notes. The parsing is divided into 2

phases. First, the input sequence is read, generating a

model that captures the redundancy. Second, a compressed

representation of this sequence is encoded. For interactive

systems, the model captures probabilities of transitions

between notes, and the second part is substituted by a

stochastic simulation of that model, for a given new

sequence. Normally, suffix trees, where context is inverted

(i.e. the sequences are read from the leaves to the root) are

used, and the indexes of the continuations are stored in

each node.

 Figures 2 and 3 illustrate how the algorithm

works for interactive systems. The IP incrementally reads

the input sequences, where each sequence is divided into

an occurrence and a continuation. Let’s suppose the first

sequence is [C, A, F, E]. The possible occurrences and

continuations may be [C, A, F] and [E], [C, A] and [F], or

[C] and [A] (if we are only interested in one-sized

continuations). At each cycle, the shortest pattern that does

not exist yet in the dictionary of sub patterns is chosen and

added to the model, as well as its continuation. The sub

sequence [C, A, F] is read, having 4 as the continuation

index, thus each node has the continuation index 4.

Subsequently, the [C, A] is read, whose continuation has

index 3. Finally, [C] is read, creating the last branch of the

suffix tree (the complete tree at this stage is shown in

Figure 2).

Figure 2 – suffix tree generated by the original IP for

the sequence [C, A, F, E].

Later on, a second sequence ([C, C, F, G]) is observed.

The same process is employed. For example, the branch

[C, C, F] is attached to the branch [C, A, F], since they

have the same suffix ([F]). The final tree is shown in

Figure 3. This mechanism allows only new information to

be added, avoiding the storing of redundant data. In order

to search a continuation for a new sequence, one just needs

to browse the tree, looking for the longest suffix. For

instance, for the sequence [E, A, F], the answer is [E]

(continuation index 4), related to the subsequence [A, F]

(as showed in gray in Figure 3).

Figure 3 – suffix tree generated by IP for the sequences

[C, A, F, E] and [C, C, F, G], and possible query. In

gray, the answer for the query.

4. Modified Incremental Parsing

This section presents the necessary modifications for

allowing the IP to present the behaviors cited in Section 2.

In the first case (Prediction/Retrieval), we propose to alter

the structure of the suffix tree (Figure 4). Instead of storing

possible continuations, it would store the possible

accompaniment chords. In the second case

(Retrieval/Continuation), we propose to create 2 distinct

suffix trees, one for the lead melody, and other for the

accompaniment (Figure 5). Each leaf in the melody tree

would point to a node in the accompaniment tree. In the

third case (Joint), we propose to mix the states. The

elements in the sequence would neither be a single note

(from the leading melody) nor a chord (from the

accompaniment), but rather a tuple <note, chord>, as

shown in Figure 6.

 Let’s examine how that would work by making

use of an example. Let’s suppose that the sequences used

in the previous example ([C, A, F, E] and [C, C, F, G]) are

accompanied respectively by the chords [Am, %, F, E7]

and [Am, F, E7, %], where “%” indicates that the chord

remains the same. After a while, a new sequence [E, A, F]

is observed.

 Case 1 is illustrated in Figure 4. The tree is very

similar to the original IP tree, but the indexes refer to the

chords of the accompaniment, and not to possible

continuations. The longest suffix of [E, A, F] found in the

tree is [A, F], where there is only one index: 4. The

retrieved chord is, thus [E7].

Figure 4 – prediction/retrieval behavior.

Figure 5 illustrates the behavior of Case 2. On the top-left

corner, there is the suffix tree related to the

accompaniment. On the bottom-right corner, there is the

suffix tree related to the leading melody. As in the

previous case, the longest suffix of the new sequence [E,

A, F] is [A, F]. However, this suffix returns a subsequence

of chords (in the example, the chords between indexes 2

and 3, i.e. [Am, F]). The accompaniment suffix tree is then

used, in order to look for a continuation. In this case, there

would be 2 possibilities (to be randomly chosen): 4 or 7.

Figure 5 – retrieval/continuation behavior.

In case 3, each node is a tuple <note, chord>, thus the

chords are also considered in the query. Let’s assume the

system has played the chords [%, C7, F] along with the

melody [E, A, F]. The query becomes [<E, %>, <A, C7>,

<F, F>] (Figure 6). In such a case, the longest suffix found

is not of size 2 anymore (as the previous [A, F]), but of

size 1 (<F, F>), demonstrating this strategy is less likely to

find solutions.

Figure 6 – behavior of joint solution.

5. Discussion and Future Work

We judge the 3 suggested IP variations reflect the 3

behaviors mentioned in Section 2. In the first one, the

system predicts a continuation to the leading voice melody,

and then searches an appropriate accompaniment. When

the actually sung melody conflicts with the predicted one,

the system is restarted with a new query. In the second

one, the system searches an appropriate accompaniment

for the current leading melody, and then generates a

continuation for the sequence of chords. When the sung

melody conflicts with the chosen accompaniment, the

system is restarted with a new query. In the last one, the

system considers note and chord as a whole, and searches a

good continuation for both simultaneously. A situation

where the query does not get any answer would be

considered a conflict between leading melody and

accompaniment.

Such algorithms are currently being implemented, and we

intend to run some experiments with musicians, in order to

evaluate the strengths and weaknesses of each one, to

investigate whether the system really emulates musician’s

abilities. Obviously, it is difficult to have measures to the

quality of the system, given its subjectivity. However, we

believe that computing the time of use of each mode,

recording and analyzing users reactions, and ask them to

feedback us, can bring some light to the subject, helping to

conceive a hybrid optimized model, combining the

strengths of them all.

6. Conclusion

In this work, we proposed modifications in the Incremental

Parsing algorithm in order to make it work with concurrent

sequences. Thus, it would be suitable to musical

accompaniment systems. We suggested 3 variations,

emulating 3 different behaviors of musicians:

prediction/retrieval, retrieval/continuation, and joint. We

are currently analyzing possible criteria to evaluate them,

in order to provide comparative data.

Acknowledgements

We would like to thank the Sony Computer Science Lab in

Paris for their support.

This research is supported by CAPES/COFECUB,

Brazil/France.

References

Lartillot, O., Dubnov, S., Assayag, G., and Bejerano, G.

2001. Automatic Modeling of Musical Style. In

International Computer Music Conference, La Havana.

Dubnov, S., Assayag, G., and El-Yaniv, R. 1998.

“Universal Classification Applied to Musical Sequences”.

In Proceedings of International Computer Music

Conference, pp. 332-340.

Pachet. P. 2002. “The Continuator: Musical Interaction

with Style”. In ICMA, editor, Proceedings of ICMC, pp.

211-218.

Ziv, J., and Lempel, A. 1977. “A Universal Algorithm for

Sequential Data Compression”, IEEE Transactions on

Information Theory, Vol. 23, No. 3, pp. 337-343.

