

Some Case Studies in Automatic Descriptor Extraction
Giordano Cabral

1
, Jean-Pierre Briot

1
, Sergio Krakowski

2
, Luiz Velho

 2
,

François Pachet
3
, Pierre Roy

3

1
Laboratoire d’Informatique de Paris 6 (LIP6) – Université Pierre et Marie Curie

8, Rue du Capitaine Scott, 75015 Paris, France

2
Instituto Nacional de Matemática Pura e Aplicada (IMPA)

 Estrada Dona Castorina, 110, 22460-320 Rio de Janeiro, RJ, Brazil

3
 SONY Computer Science Lab

6 Rue Amyot, 75005 Paris, France

{Giordano.CABRAL,Jean-Pierre.BRIOT}@lip6.fr,

{skrako,lvelho}@visgraf.impa.br, {pachet,roy}@csl.sony.fr

Abstract. This work aims to evaluate the effectiveness of EDS as a tool to

automatically extract descriptors for real-world problems, such as melody

extraction, chord recognition, and sound classification, comparing its

performance and development time to traditional approaches. Each of these

problems constitutes a case study, and along with the comparative results we

present some remarks about the descriptor extraction procedure.

1. Introduction
The last few years have witnessed an effort in rendering the descriptor extraction

process automatic, in order to 1) improve (current) features efficiency; 2) create new

features in an easier and faster way; and 3) allow non-signal processing experts to create

sound descriptors. In this scenario, the Extractor Discovery System (EDS) [Pachet and

Zils 2004] a very promising option, addressing the automation of the whole process. It

started to be developed in 2003, and has been continuously improved ever since.

In a previous work [Cabral et al. 2005] we explored the power of EDS to find

harmonic descriptors (chord recognizers) in a completely automated way. That work

tried to simulate the use of the system by a non-expert user. The current work extends

the previous one, by evaluating EDS capacity to find good descriptors for some well-

known and usual problems, namely the f0 estimation, chord recognition, and percussive

sound classification whereas EDS is operated by an expert.

The experiments presented in this paper intend to provide some examples of

employing EDS in real-world situations. These examples should be indicative of the

possibility of automatically extracting features, revealing its strengths and weaknesses.

In a simple way, we are trying to answer the following question “supposing someone

wants to develop an application such as a chord recognizer, a melody extractor, an

accompaniment system, or whatever other tool that needs to classify sound fragments,

would it be interesting to use an automatic descriptor extraction tool like EDS instead of

traditional techniques”?

We try to answer this question by presenting three case studies, which actually make

part of broader systems being developed by Sergio Krakowski at the VISGRAF/IMPA

group in Rio de Janeiro, Brazil, and Giordano Cabral at LIP6 and Sony CSL in Paris,

both advised by Francois Pachet. More particularly, we are interested in transcribing

melody, harmony, and rhythm of songs, with the purpose of building interactive

systems.

The transcription of musical information usually relies on a general approach: to

perform a short-term analysis on a sliding window, and track the result over time using

some kind of dynamic modeling such as HMM's or GMM's [Pachet and Briot 2004]

(Figure 1). This analysis typically means the computation of a feature which is pertinent

to the problem (e.g. the autocorrelation of the signal, or the pitch class profile).

Figure 1 – short-term analysis of a signal.

Nevertheless, those features could hypothetically be automatically discovered by a

descriptor extractor, such as EDS. That’s precisely the goal of the present work, which

compares the performance and development time of EDS to those of traditional

approaches.

The next 3 sections respectively describe the 3 problems we are investigating, and the

main features used for their analysis. Section 5 gives further detail on how EDS works.

Sections 6, 7, and 8 relate the 3 case studies: f0 estimation, chord recognition, and

percussive sound classification, presenting the methodology adopted in both approaches

as well as the results that were found. Finally, section 9 makes some overall comments

and remarks, and section 10 presents the conclusion and future work.

2. F0 Estimation
The problem of estimating the fundamental frequency of a sound is well known by the

scientific community. Among the applications of this problem we can cite automatic

melody transcription and real time accompaniment. There are many f0 estimation

techniques (and even different taxonomies) available in the literature. However, one

general classification is clearly observed: the distinction between approaches dealing

with the information on the time domain from others based on the frequency domain.

Time-based techniques rely on the high correlation of a signal with this same signal

shifted by particular values. These values are usually called lags, each one referring to a

respective frequency. The correlation is computed for a set of candidate lags, and the

highest correlation is taken as 1/f0 [Klapuri 2004]. One variation called AMDF [Pachet

and Briot 2004] is claimed to be more robust once it redefines the correlation as the

difference between the original signal and the shifted one, instead of their

multiplication. Alternatively, the cepstrum can be used as a replacement for the

correlation function [Klapuri 2004].

Frequency-based techniques analyses the signal transformed into the frequency-

domain. Whenever a quasi-periodic signal have period T, it can be considered periodic

with period nT. This behavior can be seen in the frequency domain by a regularity of the

peaks found in the DFT. Thus, a probability function of the fundamental candidates is

made by convolving the resultant DFT with comb functions aligned to the multiples of

the candidate frequency. An interesting variation of this technique was suggested by

[Kunieda 1996]. It is considered as of spectral-interval type and seeks for periods in the

frequency domain by performing a sort of autocorrelation of the spectrum. Other

variations exist, notably the ones based on the human auditory model [Cheveigné and

Kawahara 1999].

In general lines, the frequency-based approach is usually more appropriate to higher

register signals, since the DFT has better resolution around higher frequencies, while

time-based estimators are more appropriate to lower ones, since more distant periods

provide greater precision in the correlation [Klapuri 2004]. Ideally, different methods

could be merged in order to achieve robustness, maintaining a good performance

independently on the register.

3. Chord Recognition
The ability of recognizing chords is important for many applications, such as interactive

musical systems, content-based musical information retrieval (finding particular

examples or themes in large audio databases), and educational software. Chord

recognition means the transcription of a sound into a chord, which by its turn can also be

subdivided, for example in a root note and a type. Most part of the works involving

harmonic content (chord recognition, chord segmentation, tonality estimation) [Sheh

and Ellis 2003][Yoshioka 2004] use the same core technique (even though slight

variations may appear in the implementation): to compute an harmonic feature, such as

the Pitch Class Profile (PCP) [Fujishima 1999], or the chromagram [Bartsch and

Wakefield 2001], and a subsequent machine learning algorithm to find patterns for each

chord class.

PCPs are vectors of low-level instantaneous features, representing the intensity of

each pitch of the tonal scale mapped to a single octave. These vectors are calculated as

follows: 1) a music recording is converted to a Fourier Transform representation (Figure

2a to Figure 2b); 2) the intensity of a pitch is calculated (Figure 2b to Figure 2d) by the

magnitude of the spectral peaks, or by summing the magnitudes of all frequency bins

that are located within the respective frequency band (Figure 2c); 3) The equivalent

pitches from different octaves are summed, producing a vector of 12 values (eventually

24 to deal with differences in tuning and/or to gain in performance), consequentially

unifying various dispositions of a single chord class (Figure 2e and Figure 2f). For

example, one can expect that the intensities of the frequencies corresponding to the

notes C, E and G in the spectrum of a Cmaj would be greater than the others,

independently on the particular voicing of the chord. The chromagrams follow a

different method to be computed, but are conceptually the same.

Figure 2 - Steps to compute a PCP. The signal (a) is converted to Fast-Fourier
representation (b); the FFT is divided into regions (c); the energy of each region
is computed (d); these energies are folded into a 12-note vector (e); the final
vector is normalized (f).

The idea behind the use of PCPs for chord recognition is that the PCPs of a chord

follow a pattern, and patterns can be learned from examples. Thus, machine learning

techniques [Mitchell 1997] can be used to generalize a classification model from a given

database of labeled examples, in order to automatically classify new ones. So, for the

PCP of a chord, the system will respond the most probable (or closest) chord class,

given the previously learned examples. The original PCP implementation from

Fujishima used a KNN learner [Fujishima 1999], and more recent works [Gomez and

Herrera 2004] successfully used other machine learning algorithms.

4. Percussive Sound Classification
Percussive sound classification is a vast field in which many techniques have been

suggested but until now no one can be considered standard nor universal. The general

problem is to automatically classify percussive sounds in order to subsequently retrieve

the rhythmic structure or transcribe the rhythmic score. In that way, it can be seen as

analogous to the melody extraction problem, but instead of notes, we are interested in

sounds with different timbres. The set of possible timbres can be incredibly high due to

the diversity of instruments, and then solutions vary according to particular

drum/percussion sets and the information one wishes to extract.

Thus, a number of different strategies have been applied to specific problems. In

[Gouyon et al. 2000] the authors addressed the bass/snare drum discrimination, and

eventually considered the automatic extraction of rhythmic structures. For that, they

observed the zero-crossing rate estimation on the decay part of the sound. Another

approach is the source separation as found in [FitzGerald 2004]. The idea is to consider

each sound as made by one or more sources and, by subspace analysis, find the best

sources that model the sounds. Finally we can find an extensive work done by Herrera,

comparing many feature selection methods and classification techniques applied first to

drum kit [Herrera et al. 2002] and afterwards to percussion instruments [Herrera et al.

2003].

5. EDS
The Extractor Discovery System, developed at Sony CSL, is a heuristic-based generic

approach for automatically extracting high-level music descriptors from acoustic

signals. EDS is based on Genetic Programming [Koza 1992], used to build extraction

functions as compositions of basic mathematical and signal processing operators, such

as Log, Variance, FFT, HanningWindow, etc. A specific composition of such operators

is called feature (e.g. Log (Variance (Min (FFT (Hanning (Signal)))))), and a

combination of features forms a descriptor.

Given a database of audio signals with their associated perceptive values, EDS is

capable of generalizing a descriptor. Such descriptor is built by running a genetic search

to find relevant signal processing features matching the description problem, and then

machine learning algorithms to combine those features into a general descriptor model.

The genetic search performed by the system is intended to generate functions that may

eventually be relevant to the problem. The best functions in a population are selected

and iteratively transformed (by means of reproduction, i.e., constant variations,

mutations, and/or cross-overs), respecting a pattern chosen by the user. The default

pattern is !_x(Signal), which means a function presenting any number of operations but

a single value as result (for more information about EDS syntax, look at [Zils and

Pachet 2004]). The populations of functions keep reproducing until no improvement is

achieved, or until the user intervenes. At this point, the best functions are available to be

combined. A selection can be made both manually or automatically. The final step is to

choose and compute a model (linear regression, model trees, knn, locally weighted

regression, neural networks, etc.) that combines all features. As an output, EDS creates

an executable file, which classifies an audio file passed as argument.

In short, the user needs to 1) create the database, in which each recording is labeled with

the correspondent class; 2) write one or more general patterns for the features; 3) launch

the genetic search; 4) select the appropriate features; 5) choose a model to combine the

features. Some of the choices taken in these steps are crucial to the process. They

delimit how the user can interfere in the search for features, as explained next.

5.1. Pattern Choice

The pattern encapsulates the architecture of the feature. They are represented by the

output of the chain of functions to be found. As single values, this output can be a

frequency (f), amplitude (a), time (t), or any of them (x). Additionally, the output can be

a relation, such as time and amplitude (t:a), or frequency and amplitude (f:a). Moreover,

a recent improvement of the system allowed outputs to be a vector of any of the

previous types. The patterns may include intermediate outputs, which will be inputs of

the outer function. Along with these symbols, a *_ or a !_ is placed to express if the user

wants to search a single operator or a sequence of them. At last, the patterns may include

specific operators. For example, !_f(f:a(Signal)) means that the signal is initially

converted into the frequency domain (f:a), then some operation is applied to get a

frequency as a result (!_f).

5.2. Genetic Search

Given a set of patterns, a genetic search is launched. It means that a population of

features is created, and the capacity of each one to separate the examples in the database

is evaluated. The best features are then selected as seeds to a new population. This

process evolves the features until no improvement is found.

Although the genetic search can be performed fully automatically, the user can

supervise and interfere in the search. This intervention is even desired, since the space

of possibilities is enormous, and heuristics are hard to express in most cases. Therefore,

the user can lead the system through some specific paths by 1) stopping and restarting

the search if it is following a bad path; 2) selecting specific features for future

populations; 3) removing ineffective features from the search. Additionally, the stop

condition itself is an important factor frequently left to the user.

The choice of the population size may also influence the search, since larger

populations may hold a bigger variety of features (which will converge slower), whereas

smaller populations will perform a more in depth (faster) search, (which will be most

likely to terminate at local maxima). At last, the user can optimize features, finding the

values for their arguments which maximize the class separation. For example, the split

function (which divides a signal in sub-signals) has the size of the sub-signals as a

parameter. Depending on the case, a tiny value can be notably better than large values,

for example.

5.3. Feature Selection

After many features were found, possibly in different genetic searches, they can be

combined to create the final descriptor (eventually with a single feature). The selection

of which features to combine is left to the user, even if one useful tool is available: the

expert selection picks up the features that are better than a customizable threshold and

less correlated than another customizable threshold. In fact, as [Herrera et al. 2002]

shows, choosing features in a list is as complicated as finding the features themselves,

so that is maybe the point at which the quality of the result is more dependent on the

user.

5.4. Descriptor Creation and Evaluation

Finally, in order to create the descriptor, the learning method that will combine the

features must be chosen (normally KNN or GMM). The resultant descriptor is then

evaluated on a test database. The results are presented class by class, along with the

precision rates.

Figure 3 – Snapshot of EDS screen givin g the results of a chord recognition
descriptor classified with KNN, and evaluated on the test database.

6. Case Study One: F0 Estimation
Our first experiment compares the results of EDS with those of two of the most widely

used techniques for the f0 estimation, one in the time-domain, other in the frequency-

domain. In order to evaluate the algorithms, we created a database of 1570 wave files,

each one containing the sound of a note, ranging from A0 to C9. The wave files were

rendered from midi files using SoundFonts [Timidity 2006], where each one

encapsulated one note played by one specific melodic instrument.

The two techniques examined were the autocorrelation via AMDF and the filtering of

the spectrum at specific frequencies, both explained in section 2. The autocorrelation

feature was implemented as in [Pachet and Briot 2004], with 100 candidate frequencies

starting from 27.5. The correlation function was defined as the difference between

samples, as shown in the formula below.

Figure 4 – formula of the AMDF autocorrelation function

The second one is called here FPl, and uses a comb filter on the spectrum of the DFT

of the sound (see formula in Figure 5), this filter using the same candidate frequencies

as in the previous example.

Figure 5 – formula of frequency-based FPl function

The result of these functions can be interpreted as probabilities of each candidate to

be the fundamental. As a further step, machine learning algorithms can be used to map

the patterns of these density curves to specific pitch classes. We have implemented these

4 possibilities, called here Pure AMDF, Pure FPl, AMDF+Knn, and FPl+Knn. Machine

learning algorithms could be used as well to combine more than one of these features

into a single solution. We have not implemented this combination, but still calculated its

upper limit, defined as follows: if one of the algorithms gives the good solution, the

combined algorithm will also do it. The results are presented in the Table below:

Table 1. Results of Traditional Techniques for F0 Estimation

Method Precision

Pure AMDF 45.10%

Pure FPl 43.64%

AMDF+Knn 71.51%

FPl+Knn 44.18%

Upper Limit 77.90%

Noticeably the results reflect the deficiency of the techniques in specific ranges.

While the correlation-based works better for low-frequencies, the frequency-based

works better for high-frequencies. The learning phase corrected some misclassifications

but still did not work for the frequency-based solution.

One must notice that, including the research and reading of specialized papers and

books, we took 2 weeks to implement the first solution (Pure AMDF). 1 more day was

necessary for the second solution, and 2 more days for the Knn versions. Altogether, the

experiment took 2 weeks and 4 days (14 working days). Even if this information may

not be rigorously scientific, given that other people with different background,

programming skills, and dedication might perform differently, we find it useful to give

an idea of the order of the time which is needed for its implementation. One must not

forget that this is a part of major systems, and not a problem by itself. The developers

are experienced programmers, with medium level sound processing skills, that devoted

6 hours a day to this particular problem.

The goal of the experiment is to verify if the automatic extraction can pass the 71.51%

rate of correctly classified instances, hopefully approximate the 77.90%, and ideally

pass the 77.90%, as well as to monitor how much time it takes.

All images and illustrations should be in black-and-white, or gray tones. The image

resolution on paper should be about 600 dpi for black-and-white images, and 150-200

dpi for grayscale images. Do not include images with excessive resolution, as they may

take hours to print, without any visible difference in the result.

6.1. Automatic Extraction of F0

The system was taken from scratch, and we performed some searches using the general

patterns: “*_a(x)”, “*_f(x)”, “*_Va(x)”, and “*_Va(*_Va(t:a(x)))”, the more specific

patterns: “PitchBands(*_t:a(x), 120.0)”, “*_Va (PitchBands(*_t:a(x), 120.0)”,

“*_a(Autocorrelation (*_t:a(x)))”, “*_f(Autocorrelation(*_t:a(x)))”, “*_Va

(Autocorrelation(*_t:a(x)))”, “BarkBands(x, 25.0)”, “Chroma(x)”,

“*_Va(Chroma(*_t:a(x)))”, “*_Va (SplitOverlap(Autocorrelation(x), 441, 0))”, and the

very specific (optimization) patterns “PitchBands(x, 120.0)” and “Correlation(x,

t:a(x))”.

After 3 days of 12 genetic searches, some of them long and intensive, EDS found over

20 features superior to 70%, even though most of them were extremely correlated. On

the other hand, they were found in different paths (from different patterns), needing

more or less time to be found. We must mention that the correlation-based features

scored very badly (19% at best, against 75% from the frequency-based), indicating some

malfunctioning in the system. Until the present moment, we are not aware if this is a

problem with the genetic search or an error in the operator itself.

We pre-selected 11 features for further evaluation. Many permutations of these

features were tried. We hoped that some features would be complementary to the best

one(s), improving the overall result. Strangely, the more features in the descriptor the

worst was its performance. In fact, weaker features can bring down the quality of the

descriptor depending on the method chosen to combine them, and the best descriptor in

fact used only 1 feature.

1. Derivation (PitchBands (x, 120.0))
2. BarkBands (x, 120.0)
3. Chroma (Derivation (BpFilter (x, 488.0, 26.0)))
4. Integration (Integration (Hamming (Zcr (Split (Autocorrelation (x),

882.0)))))

5. PitchBands (x, 120.0)
6. Derivation (BarkBands (x, 100.0))
7. BarkBands (x, 150.0)
8. Chroma (Hann (BpFilter (x, 488.0, 26.0)))
9. Triangle (SpectralRolloff (Split (Autocorrelation (x), 3307.0)))
10. BarkBands (Abs (Autocorrelation (Autocorrelation (x))), 5.0)
11. SpectralCentroid (Autocorrelation (x))

The Figure 6 shows the final results, comparing them to those from the traditional

algorithms. It is interesting to notice that the expert selection facility actually selected

just the best feature, based on a minimum quality and a maximum correlation among all

the features found. The best descriptor scored 75.08%, using a frequency-based

approach. The experiment lasted 4 ½ days.

Figure 6 – Results of the F0 Estimators.

7. Case Study Two: Chord Recognition
The final goal of our chord recognizer is to create a guitar accompanier in Brazilian

“bossa nova” style. Consequently, our database has examples of chords played with

nylon guitar. The data was taken from D’accord Guitar Chord Database [Cabral et al.

2001], a guitar midi based chord dataset. The purpose of using it was the richness of its

symbolic information (chord root, type, set of notes, position, fingers, etc.), which was

very useful for labeling the data and validating the results. Each midi chord was

rendered into a wav file using SoundFonts [Timidity 2006] and a free nylon guitar

patch. The EDS database was created according to the information found in D’accord

Guitar database. The database divided the chords into 60 classes, 5 types per root note:

major, minor, seventh, minor seventh and diminished. From 1885 samples, 80% was

settled on as the training dataset and 20% as the testing dataset. We implemented the

traditional KNN over Pitch Class Profile algorithm in order to make a comparison.

More details about it can be found at [Cabral et al. 2005]. Considering research and

implementation, we took almost 4 weeks to implement it.

7.1. Automatic Chord Recognizer

The same databases were loaded in EDS. In our work from 2005, cited above, we found

some middling features after having run the system in a fully automated way. Our

strategy here is to merge new specialized features with the previous ones. In order to

find new and better features, we used specific patterns, appropriate to the problem,

mainly: “*_Va(*_t:a(x))”, “chroma(x)”, “*_Va(PitchBands (*_t:a(x), 120)”,

“*_Va(BarkBands(*_t:a(x), 120))” and insistently the pattern: “*_Va(chroma

(*_t:a(x)))”. Grosso modo, we intended to find features which firstly transformed the

signal into meaningful information, like the chroma and the pitchbands do. The chroma

EDS operator must not be confounded with the chromagram or the PCP features.

These are ready-to-use features, more or less complex, comprehending many processing

tasks, including pre and post-processing, while the chroma simply folds each bin from

the DFT into a single octave, storing the average value for each note.

The search was launched over 40 times, but as well as for the F0 Estimation case, the

majority of searches converged to similar results. Notably, the chroma-based features

surpassed their concurrent in part due to their adequacy to the problem, in part due to the

fact that it does not have extra (internal) parameters, such as the PitchBands or the

BarkBands does1. In fact, an internal variable can lead the feature to poor results, even if

they are potentially good, renouncing their persistent evolution.

Finally, we selected 14 features (11 from the previous work plus 3 just discovered).

The 3 new features are:

1. Derivation (Power (Chroma (Blackman (x)), -0.3))
2. Log10 (Chroma (Hamming (x)))
3. Hann (PitchBands (x, 120.0))

As in the previous experiment, combining many features did not work better than

using a single one. However, the single best one worked significatively better than the

traditional solution (72.68% against 63.93%), as illustrated in Figure 7. The time needed

to finish the experiment was 11 days.

Figure 7 – confusion matrix and precision rate of EDS (in the left) and the
traditional PCP method (in the right).

8. Case Study Three: Percussive Sound Classification
The pandeiro, a Brazilian variant of the tambourine, is a very important instrument in

the musical tradition of the country. Our aim is to automatically classify the different

types of strokes played on the pandeiro in order to build a reactive system. It is possible

to distinguish among three main categories of sounds: low strokes, slap strokes and

jingles strokes, although they are not completely mutually exclusive (the jingles are

usually played along with the other ones). We have not found any specific work about

this instrument in the scientific literature. However, the strong parallel between this

instrument and a drum kit conducts us to adapt algorithms initially conceived for the last

one. The low strokes can be related to the kick drum due to its low frequency content,

around 100 to 250Hz, whereas the slap strokes have the same strong loudness attack and

fast decay characteristics of the snare drum. Also, the jingles strokes have its spectral

information located at higher frequencies (around 10 to 15 KHz) similar to the hi-hat.

The examples in our database are divided in six classes: two types of low sounds,

named 'tung' and 'ting'; two types of slap sounds, named 'pa' and 'grand pa'; and two

types of jingle sounds, named 'tchi' and the 'tr'. Noticeably, it is much harder to

distinguish between classes in each pair than among the 3 pairs. We recorded several

minutes of pandeiro solo containing all the six types of sounds, using different

microphones and locations in order to preserve some inherent analysis difficulties, such

as variations on the room reverberation and different frequency responses of the

equipment. We built our database by automatically segmenting these recordings via a

peak detector through the derivative of the convolved loudness curve of the signal, as

1 Both the pitchbands and the barkbands have the number of bands as parameter.

described in [Pachet and Briot 2004]. The database was split into a training part, with

155 sound samples, and a testing one, with 288.

In this case study, we used EDS not only to automatically find a descriptor, but to

assess the traditional solutions as well. In fact, a big part of the traditional features are

equivalent to EDS built-in operators, such as the zero-crossing rate (ZCR) proposed by

Gouyon [2000]. Thus, EDS showed to be useful as a try-and-test tool, allowing the user

to instantaneously evaluate these features. Our first experiment was to evaluate if the

ZCR, which Gouyon demonstrated to well discriminate between the kick and the snare

drum, is suitable for the pandeiro. The unconvincing result of 47.0% is shown in detail

in Table 2.

Our second experiment used the fact that each class has most of its spectral

information located in a different region. The sum of band-pass filters, the spectral

centroid, or any operator that divides the spectrum in sub-bands seem to be appropriate

to capture this aspect. The result of dividing the spectrum in 20 Bark bands was

considerably better (90.9%), and is also presented in Table 2.

These experiments spent just a couple of minutes to be done. After some manually

created features, we did a first attempt to automatically generate features, by launching

the genetic search with the following patterns: “!_a (x)”, “!_Va (x)”, “!_Va

(SplitOverlap (x, 220.0, 0.1))”, “!_Va (BarkBands (x, 20.0))”, and “!_a (BarkBands (x,

20.0))”. This search was stopped after 3 populations of 50 features, which took about 30

minutes to be calculated. We selected the 11 features listed in the next page, resulting in

87.2% of correctly classified instances, as shown in Table 2 under the designation

EDS1.
SpectralDecrease(SplitOverlap(x,220.0, 0.1))

Rms (SplitOverlap (x,220.0,0.1))

RHF (SplitOverlap (x,220.0,0.1))

Mean (SplitOverlap (x,220.0,0.1))

SpectralSpread(SplitOverlap (x,220.0,0.1))

SpectralDecrease(SplitOverlap(x,220.0,0.3))

Rms (SplitOverlap(x,220.0,0.3))

Chroma (x)

SpectralDecrease (x)

HFC(Mean(SplitOverlap(x,220.0,0.1)))

Range(SplitOverlap(x,220.0,0.1))

Finally, we left the genetic search run for twelve hours, reaching 618 populations.

Among the great number of features found, we selected the features scoring more than

80% and less correlated than 50%, as listed below. The final rate was 89.2%, showing

that the system can converge very quickly, but may take a long time to make slight

improvements. The detailed results are also presented in Table 2, under the label EDS2.

Rms(SplitOverlap(x,220.0,0.1))

SpectralSpread(SplitOverlap(x,220.0,0.1))

SpectralDecrease(SplitOverlap(x,220.0,0.1))

SpectralKurtosis(SplitOverlap(x,220.0,0.1))

Variance(SplitOverlap(x,220.0,0.1))

Mean(SplitOverlap(x,220.0,0.1))

Sqrt(Sqrt(PitchBands(x,5.0)))

Log10 (PitchBands(x,5.0))

Square (Mfcc0(x,10.0))

Square (Chroma (x))

Power(Hanning (BarkBands (x, 20.0)), -0.5)

Table 2. Results for the Percussive Sound Classification

Low Slap Jingle
Method

Tung Ting Pa Gr Pa Tchi Tr
Overall

ZCR 68.2% 38.1% 10.9% 22.5% 72.0% 18.8% 47.0%

SubBands 92.2% 42.9% 93.5% 72.5% 89.2% 81.2% 80.9%

EDS1 84.3% 92.9% 84.3% 80.0% 91.4% 81.2% 87.2%

EDS2 90.2% 61.9% 91.3% 95.0% 97.8% 87.5% 89.2%

Besides the bad cost-benefit relationship between performance and computational

time, the data shows that the mixture of features enhanced the robustness of the solution

(visibly the ‘ting’ class, a kind of low stroke frequently misclassified by the traditional

solutions). Additionally, it became clear that a split overlap analysis followed by a post-

processing technique such as Rms or SpectralSpread overwhelmed other features,

becoming predominant inside the populations. Finally, the addition of other kinds of

features such as Bark bands, Chroma, Mfcc and Pitchbands apparently increased the

quality of the descriptor.

9. Discussion
EDS revealed itself as a good feature exploration mechanism, and as so it seems

especially appropriate to new or scarcely explored problems. The case study three

illustrated this exploratory characteristic of EDS, as the user was able to try-and-test

many possibilities, some of them fairly complicated, serving to validate ideas and/or

build prototypes. The results in sections 6 and 7 pointed out that EDS can achieve

satisfactory results for real world well-known problems. It exceeded or improved

traditional techniques, either by optimizing existing ones or launching searches from

scratch. On the other hand, the system did not find any especially innovative feature.

Even when started from scratch, EDS-created features corroborated those from

specialists.

For these specialists, EDS appeal relies on being: 1) an automatic tool to investigate

interesting possibilities of work, which can afterward be refined by the specialist; as

well as 2) a tool to optimize existing features.

We consider the feature selection methods could be improved, for example by using

the procedure described in [Herrera et al. 2002], since it lacks precise control of the

features and operators (ultimately the impossibility to build new operators).

At last, the quality of the final solution depends highly on the user. For instance, our

previous work explored the same chord recognition database, while EDS was operated

by a naïve user. The final descriptor scored 40.31%, in contrast to the 72.7% achieved

here.

Even with these disadvantages, we were quite satisfied with the performance of the

system, especially with its capacity to join the entire feature creation procedure into a

single piece of software, including the database creation, the search and selection of

good features, and the machine learning algorithms to combine them. A whole set of

programs which would be very expensive to implement. For this work, the results of

traditional approaches were obtained by re-implementing the algorithms described in the

literature, hence the performance could obviously be improved by cutting-edge

technicians. However, to remember the initial question, we consider these case studies

realistic to mimic someone who would start to develop some of these systems.

One extra asset of EDS is the visualization of the result. The rather simple interface,

showing the sound samples colored by their class, easily shows the correctly classified

instances, making the evaluation/analysis of the result more intuitive and direct. For

example, in the chord recognition problem we noticed that 18.94% of the errors referred

to equivalent chords, like Cº and Aº, F#m7/C# and A6/C#, or C/G and Am7/G.

Moreover, the system grouped together some chords (11.57% of the errors) with the

same function, such as F7 and B7(#11), or Em7 and A4/7. The system even corrected

some faults in the database, placing chords like C/Bb in the right class (C7 instead of

Cmaj). This situation represented 6.31% of the errors. In the end, the actual error rate

would be of 12.47% (instead of the 27.32% previously mentioned), from which only

0.79% refers to flagrant errors.

10. Conclusion and Future Work
This paper presented 3 case studies illustrating the use of an automatic extraction tool

called EDS. The work intended to validate the effectiveness of the tool in creating

descriptors sufficiently good to be used in real-world applications. The case studies

referred to the f0 estimation, the chord recognition, and the percussive sound

classification problems. The results showed that the system was able to achieve and

even surpass traditional descriptors.

These descriptors were needed for two systems currently being developed (an

accompaniment system and an interactive rhythmic tool), and we found it very useful to

share our experience with the community. We commented the usage of the system, and

suggested some desirable improvements, which can be envisaged as future work.

11. Acknowledgments
We would like to thank the whole music team at Sony CSL for the support and

encouragement.

References

Bartsch, M. A. and Wakefield, G. H. “To catch a chorus: Using chromabased

representation for audio thumbnailing”, Proceedings of International. Workshop on

Applications of Signal Processing to Audio and Acoustics, Mohonk, USA, 2001.

Cabral, G., Zanforlin, I., Santana, H., Lima, R., & Ramalho, G. “D'accord Guitar: An

Innovative Guitar Performance System”, in Proceedings of Journées d'Informatique

Musicale (JIM01), Bourges, 2001

Cabral, G., Pachet, F., and Briot, J.-P. “Automatic x traditional descriptor extraction:

The case of chord recognition”, Proceedings of the 6th International Conference on

Music Information Retrieval (ISMIR'2005), London, U.K., September 2005.

Cheveigné, A. de, and Kawahara, H. “Multiple period estimation and pitch perception

model,” Speech Communication 27, 175–185, 1999.

Fitzgerald, D. "Automatic Drum Transcription and Source Separation" PhD Thesis,

Conservatory of Music and Dram, Dublin Institute of Technology, 2004.

Fujishima, T. “Real-time chord recognition of musical sound: a system using Common

Lisp Music”, Proceedings of International Computer Music Conference (ICMC99),

Beijing, 1999.

Gómez, E. and Herrera, P. “Estimating the tonality of polyphonic audio files: cognitive

versus machine learning modeling strategies”, Proceedings of the 5th International

Conference on Music Information Retrieval (ISMIR04), Barcelona, 2004.

Gouyon, F., Pachet, F., and Delerue, O., "On the use of zero-crossing rate for an

application of classification of percussive sounds", DAF-00, Verone, Italy, 2000.

Herrera, P., Yeterian, A., and Gouyon, F. "Automatic classification of drum sounds: a

comparison of feature selection methods and classification techniques", 2002.

Herrera, P., Dahamel, A., and Gouyon, F., "Automatic labeling of unpitched percussive

sounds", AES 2003.

Klapuri, A. “Signal Processing Methods for the Automatic Transcription of Music”

Doctoral Dissertation. Tampere University of Technology, Tampere, Finland, 2004.

Koza, J. R. "Genetic Programming: on the programming of computers by means of

natural selection", Cambridge, USA, The MIT Press, 1992.

Kunieda, N., Shimamura, T., and Suzuki, J. “Robust method of measurement of

fundamental frequency by ACLOS — autocorrelation of log spectrum,” Proceedings

of the IEEE International Conference on Acoustics, Speech, and Signal Processing,

1996.

Mitchell, T. “Machine Learning”, The McGraw-Hill Companies, Inc. 1997.

Pachet, F and Briot, J.-P. Du signal au signe musical. Hermes, 2004.

Pachet, F. and Zils, A. “Automatic Extraction of Music Descriptors from Acoustic

Signals”, Proceedings of Fifth International Conference on Music Information

Retrieval (ISMIR04), Barcelona, 2004.

Sheh, A. and Ellis, D. “Chord Segmentation and Recognition using EM-Trained Hidden

Markov Models”, Proceedings of the 4th International Symposium on Music

Information Retrieval (ISMIR03), Baltimore, USA, 2003.

Timidity. Website: http:// timidity.sourceforge.net/, 2006.

Yoshioka, T., Kitahara, T., Komatani, K., Ogata, T. and Okuno, H. “Automatic chord

transcription with concurrent recognition of chord symbols and boundaries”,

Proceedings of the 5th International Conference on Music Information Retrieval

(ISMIR04), Barcelona, 2004.

Zils, A. and Pachet, F. Automatic Extraction of Music Descriptors from Acoustic

Signals using EDS. Proceedings of the 116th AES Convention, May 2004.

