A Language for Audiovisual Template
Specification and Recognition

Jean Carrivel, Pierre Roy?, Frangois Pach&tRémi Ronfard

1INA, 4 avenue de I'Europe

94366 Bry-sur-Marne, France
{jcarrive, rronfardl@na.fr

2INRIA, Domaine de Voluceau, Rocquencourt

78153 Le Chesnay Cedex, France
Pierre. Roy@i p6. fr

3 SONY CSL Paris, 6 rue Amyot

75005 Paris, France
pachet @sl . sony. fr

Abstract. We address the issue of detecting automatically occurrences of high
level patterns in audiovisual documents. These patterns correspond to recurring
sequences of shots, which are considered as first class entities by
documentalists, and used for annotation and retrieval. We introduce a language
for specifying these patterns, based on an extension of Allen’s algebra with the
regular expression operator +, which denotes an iteration of arbitrary length. We
propose a formulation of this pattern language using the constraint satisfaction
framework, in which templates are represented as constraint problems. We
propose an efficient representation of domains (all subsequences of a given
graph) and filtering methods for the Allen constraints. We illustrate the resulting
system on a corpus of real world news broadcast examples.

1 Introduction

Indexing and retrieving the contents of temporal media such as audio or video can be
made more effective by associating manual annotations (metadata) at various temporal
scalesin the media. This processis known as analytic indexing and is notoriously time
consuming, for two reasons. Firgt, it is often difficult to state the rules to be followed
in segmenting the media: how many segments ? how many levels of details ? Second,
even when such rules can be set, the segmentation remains repetitive and time-
consuming. In this paper, we present a framework designed to facilitate the two tasks
of defining and recognizing temporal structures in video. An application of this
framework is presented in the context of the DiVAN project, a prototype audiovisual
digital library management system financed by ESPRIT.

In recent years, great effort has been made on automatically extracting low-level
features from the video and audio streams [1]. Such tools alow for instance, for the

visual part, to segment a video into shots, which are filmed in one single run of the

camera, to detect gradual transitions between shots, as dissolves or wipes, to detect
occurrences of a given logo or to identify regions of the screen corresponding to
captions or faces. For the audio part, extraction typically consists in discriminating

sound segments such as music or speech, or detecting occurrences of a given jingle in

the audio track. Unfortunately, the resulting segments and features are not directly
exploitable by documentalists, for two reasons. First, the segments extracted are of

short duration. Even if a shot provides more synthetic information than a frame, it is

still too “low-level” to be used as a reference for annotation. Second, extracted
features usually bear too little semantic to be directly annotated. For instance, a face
region detected in a shot makes no sense to the documentalist as such, and will be
useful only if more contextual information is provided, to infer, e.g. that the face is
indeed the reporter’s face during a report, and that the text region on the bottom left of
the screen is the reporter's name. The aimmafro-segmentation is precisely to
extract higher level features and sequences from low level descriptors.

Macro-segmentation methods have been proposed for grouping together shots into
longer and more meaningful segments, such as sequences or scenes. For example, [2]
proposes an unsupervised algorithm which clusters shots into classes according to an
image similarity measure; [3] present a rule-based approach to detect scene
boundaries, founded for instance on empirically observed regularities concerning
alternations of gradual transitions and cuts in traditional movies. At the opposite of
these general methods, specific methods have been designed for specific types of
documents, especially news broadcasts [4].

In this paper, we are interestedaallections of documents which share common
characteristics, such as anchor persons, sets, graphics, and which follow a common
general scenario. Such collections can be for instance the 6:30 p.m. news broadcast on
a given channel during 1998, or some specific Saturday night variety show. These
documents generally present typical regularities which can be used for macro-
segmentation. For instance, the temporal structure of short news broadcasts is often a
succession of reports, a characteristic audio jingle being heard between reports which
indicates the beginning of a new report, as illustrated by Fig.1. Reports can be detected
provided that the document has been segmented into shots and that occurrences of the
jingle have been detected.

Report Report Report Report Report

A A A A A
4 Y Y Y Y N\

T T T T T T I I N N O O B O A I N B
Shots F——1t—11T——T1T 11T 11 T j i

Jingles °» » »- »-

Fig. 1. Reportsin a simple news broadcast

In this paper, we are interested in describing such sequences and in detecting
occurrences of these sequences automatically in the video.

1.1 Requirementsand examples

In our context of automatic video indexing, a video sequence is made up of segments
coming from automatic analysis tools. Those tools produce classified segments which
are the primitive terms of our language. The primitive classes — or analysis classes —
are for instancé&hot, Jingle, Text Region or Face Region, for which there exist robust
extraction algorithms [5, 6]. We further organize analysis classes hierarchically. For
instance, the face region detection algorithm produces regions of screen containing a
human face. Depending on the relative size of the region, shots can be classified into
so-called shot values, which range from close-up (CU) where the face occupies
approximately half of the screen, to the long shot (LS) where the human body is seen
entirely. Intermediate shot values are medium close-up (MCU), medium shot (MS)
and medium long-shot (MLS). In our case, primitive segments and their classes are
represented in a Description Logic formalism, using the CLASSIC system [7, 8].
Classes ofsequences can be defined by giving information on the temporal
arrangement of primitive segments. Let us give three typical examples of such
sequences.

Example 1: a simple one shot sequence. Fig.2 illustrates a simple sequence made up of
only one medium close-up shairing which some text is displayed at the bottom left

of the screen. In the “France 2" evening newscast from which the example is
extracted, the text usually contains the name of the person on-screen, so this shot can
be classified aBlamedPersonShot.

[MCUShot |
A .
during

| BL Text |

Fig. 2. Named Person Shot in a “France 2” evening newscast

Example 2: a sequence with a negative property. Some specific configurations can not

be expressed by Allen’'s temporal relation only. Consider the examplepartfts,
illustrated by Fig.1. The boundaries of a report are roughly defined bgutwessive
occurrences of a jingle. Two jinglésandj, are successive ff is before! j,, and if

there is no other jinglg, such thai, is before j, andj, is before j,. To express this
relationship, we need to introduce negation in our description language, with
expressions such as: “there must be no instance ofClassveen some components

n, andn, of the sequence”.

1 beforeis one of the 13 Allen’s basic relations, which are presented below.

Example 3: an iterated sequence. The broadcast news illustrated by Fig.1 is made up

of a set of contiguous reports (themselves made up of a set of contiguous shots

bounded by two jingles). This example illustrates the need for specifying contiguous
sequences of segments of arbitrary length. We define the notion of iterated sequence

of class C as a sequence of contiguous segments of class C. Two segments are
contiguous if they are in the meets Allen’s basic relation. By definition, an iterated
sequence contains at least one element, and its temporal extension is the temporal
union of the temporal extensions of its elements.

1.2 Stateof the Art

Temporal information holding between the components of a sequence are given by
Allen’s temporal relations [9]. A temporal relation is defined from 13 basic relations
which represent all the possible topological arrangements of two intervals placed on
an oriented axishefore [b], meets [m], overlaps [0], during [d], starts [s], finishes [f]

and their symmetric relationafter [a], ismet [mi], is-overlapped [oi], is-during [di],
is-started [si], is-finished [fi], plus equals [e] which is its own symmetric relation.
Common intuitions on relative temporal arrangement of two temporal objects can be
expressed by temporal disjunctions of these basic relations. For instance, temporal
inclusion may be expressed adafts [during O finishes (1 equals}. The complete
Allen’s interval algebra includes’®2elations.

As we have already mentioned, primitive segments and classes are represented in a
Description Logic (DL) formalism. In such a formalism, classes are described by
concepts which are automatically organized into a taxonomy according to a generality
—subsumption, oris-a— link, and segments are representedndividuals which are
automatically classified by computing their most specific parents in the taxonomy.
Concepts and individuals are defined dggcriptions using syntactic operators. DL
systems are usually unable to deal with temporal information, or more generally with
part-of relations. Some propositions have been made to extend a DL language with
temporal operators [10]. These works are mostly theoretical and no effective methods
are designed for classifying temporal objects. In [11, 12], Weida proposes in the
context of plan recognition a Constraint Satisfaction Problem (CSP) approach in
which plans to be recognized are representetirasnological constraint networks
which are constraint networks whose vertices are associated with concepts in a DL
framework and whose edges are temporal relations. Weida, however, concentrates on
the plan subsumption problem and the recognition is realized by a straightforward
node-to node matching process. Moreover, Weida's language can accommodate only
example 1, and does not address negation and iterative sequences.

The remaining of this paper is organized as follows. In the following of this section,
we present our language for definition tefnplates. In section 2, we describe the
template matching problem as a constraint satisfaction problem, we introduce a
representation of domains which allows to represent implicitly arbitrary subsequences
of the observation graph and we introduce filtering methods for temporal constraints
and specific constraints. We describe these filtering methods as a set of demon

procedures. In Section 3, we report on the use of our system on real world examples.

1.3 A Languagefor describing templates

Following the CSP approach pioneered by Weida we propose a language for
describing classes of audio visual sequences, called templates. The goa of this
language is to be flexible enough to accommodate all examples of typical video
sequences such as the examples given above. This flexibility leads us to give up
template subsumption, which is not necessary in our context.

We therefore propose to extend Weida's formalism with specific constraints and with
iterated sequences. For instanceNamedPersonShot in Fig.2 is defined by the
following template expression:

NanmedPer sonShot constraints
s1[BLText] sl d s2
s2[MCUShot]

This example uses only an Allen relation and could therefore be expressed using
Weida’s formalism. The following expression is the template definition of a report in
the broadcast news illustrated by Fig.1:

Repor t constraints
s1[Shot] sl ms2
s2[Shot +] s2 ms3
s3[Shot] sl {o s si di} s4
s4[Ji ngl €] s3 {0 s si di} sb
s5[Ji ngl e] sl s this
s2 f this

no Jingl e between s4 s5

The ‘+" symbol in the definition ofs, indicates an iterated sequence of shots;
temporal relations between braces indicate a disjunction of Allen’s basic relation; the
“this” keyword is used to set constraints between the instances of the Report template
and their components. Thus, the temporal extension of a report includes the first
jingle, during which important information such as titles may be given, but not the last
one, which is part of the next report. The last constraint in the definition indicates that
no instance of the Jingle analysis class should appear between the jingles matched
with thes, ands, vertices. The temporal relations betwaeands, (or betweers, and
s) state that the shot matched §ymust be the earliest shot having a non empty
temporal intersection with the jingle matchedspy

L T

startsf finishes *

[Snot I38] Shot+ 3] Shot |
{ 0TSO Cdi) {oCs0s Cdi)

Fig. 3. Graphical representation of a “Report” template

Note that this templates doesn't fit for the first and the last report, which have to be
dealt with specifically.

1.4 Definition and notation of templates

A template is a graph whose vertices are associated to classes or, recursively, other
templates. Additionally, a vertex can represent an iterated sequence of instances of an
analysis class or template. This vertices are catkrdted vertices. Schematically,
vertices of a template represent elements or sub-sets of the observation graph. The
edges of a template represent the temporal relations to be satisfied between the
observations matched by the vertices. Some additional constraints may be set between
the vertices of a template, such as a constraint forbidding that an instance of some
classC appear between the observations matched by two of the vertices (see example
2). Finally, the temporal extension of instances of a template may be defined by
setting temporal constraints in the template definition between the instance itself and
its components. We use the following notation:

- n:avertex in a template definition

- n.:anon iterated vertex associated with an analysis Class
- n{: an iterated vertex associated with an analysis €lass

— n,: anon iterated vertex associated with a temflate

- nt: an iterated vertex associated with a template

— OG (observation graph) is the set of observations

Let t' be a set of observations, t' 0 OG. t' is an instanceof template T’, noted

t < T, if and only if:

— every n.of T" is matched with some observationo, o J t', 0<C

- every n{ of T' is matched with some iterated sequence o={o,,...,0,}, o0t
o < C,0Oid1Lml

— every n. of T" ismatched with some set of observationst, tOt, t < T

- everyn; of T' is matched with some iterated sequencet = {t,,...,t }, tOt,t < T,
Oi O[L;m]

— tempora congtraints defined by the edges of T, and specific constraints defined in
T, are satisfied.

The goal of our study is therefore the following: given 1) an observation graph and
2) atemplate definition, find all the instances of the template in the observation graph.

15 Embedding templates

Aswe have seen, atemplate vertex may be associated with an analysis class or with
another template. In this latter case, tempora constraints set on such a vertex have to
be propagated on other vertices. The templates illustrated by Fig.4 define
SmpleReport as two contiguous shots with a jingle being heard during the first shot,
an TwoReports as two contiguous simple reports.

fooSmpleReport i E TwoReports
starts —— finishes starts T medis T finishes
[Shot " Shot | [SimpleReport—|SimpleReport|

Fig. 4. Embedded templates in atemplate definition

The initial observation graph is only made of instances of analysis classes. In order
to recognize embedded templates, one solution would consist in first recognizing
instances of the SmpleReport template, then to add them into the observation graph,
and finally to recognize instances of the TwoReports template. This supposes that the
temporal extension of instance of SmleReport could be precisely computed from the
temporal constraints set on “this” in the template definition, which is not necessarily
the case. We thus choose to expand the components SfrifleReport template into
the TwoReports template. In that case, temporal constraints have to be propagated so
that the definition of the whole constraint graph is complete. For reasons of simplicity,
we choose to propagate all constraints using the potentially non complete 3-
consistency algorithm proposed by Allen to minimize the temporal constraint network
[9]. The resulting definition of th&woReports template is illustrated by Fig.5.

TwoReports

A o A
starts finishes
meets

meets
[Shot F* Shot [* Swot * Shot |

during during
Jingle Jingle

Fig. 5. Expansion of embedded templates

In the case of iterated vertices associated with templates, sub-templates can not be
expanded in the same way. We adopt in this case the first solution mentioned for non
iterated vertices associated with a template, which consist in first recognizing
instances of embedded templates and to add them in the observation graph. This leads
to limit the templates that can be iterated to so-cablednded templates,i.e.

templates for which the temporal extension of instances can aways be computed.
Bounded templates are roughly templates which are in one of the Allen’s basic
relation equals, starts, meets, finishes — or their symmetric relations — with some of
their components.

2 Template matching asa Constraint Satisfaction Problem

We represent the template matching problem by a constraint satisfaction problem. In
this section, we focus on the representation of domains, which is of key importance for
the filtering procedures of constraints. For reasons of clarity, we will concentrate in
this section on templates whose vertices are not associated with sub-templates but only
with analysis classes.

2.1 Representation of domains

Each template is represented by a set of constrained variables. Variables representing
non iterated vertices have a straightforward domain: all the nodes of the observation
graph which are instances of the class associated with the vertex. For each non iterated
vertexn, of a template T, we create a variableassociated with., whose domain is
dom(v.) = {xOOG | x < C}.

The problem is to represent the domains of iterated varialileshich are
associated with each iterated vertiogof the template. In principle, the domain of an

iterated variable! is the set of all possible iterated sequences made up of instances of
C.

Of course, this set is very large, and grows exponentially with the number of
observations. In the worst case — which is fortunately unlikely in our context — a
observation set could happen to be mad&‘aiodes organized as in Fig.6. In this
case, the number of sequences of lepgth(N - p+1)x NP.

Fig. 6. Worst case with 16 observations

However, one can observe that some of these iterated sequences are subsequences
of others. For a given iterated sequence made @fservations associated with class
C, the number of possible iterated subsequencé&ssabsequences of length N-1)

subsequences of length 2, .N-p+1 subsequences of length ..., and 1
subsequence of lenghh The total number of subsequences is therefore:

i (N_i+l):N(N +1) @

=1

This observation may be exploited to yield an efficient representation of the set of
all possible iterated sequences. We calhaimal sequence an iterated sequence
which is not a subsequence of another iterated sequence. For a givel elasfirst
compute the set of maximal sequences. We then represent implicitly each possible
iterated sequence as a subsequence of one of the maximal sequences.

The computation of the complete set of maximal sequences is performed by a
standard graph search algorithm: starting with the set of all edges between two
contiguous instances @&, the algorithm walks through all possible paths from one
edge until it finds the extremum vertices and records the corresponding maximal
sequence. It then repeat the process until exhaustion of the set. The algorithm is of
high theoretical complexity but is in practidee(observation graphs are almost linear)
very efficient. Furthermore, it is computed only once, for each Glagpearing in an
iterated variable.

In the next section we describe the indexing scheme for describing subsequences of
maximal sequences.

2.2 Anindexing schemefor subsequences of maximal sequences.

The representation of domains is critical for the efficiency of the resolution. In the
CSP, each iterated vertex is represented by a constrained variable whose domain is the
set of all iterated sequences, which is potentially huge. Handling and storing all the
iterated sequences explicitly would be extremely costly, both in terms of space and
time.

Fortunately, each subsequence T can be fairly represented by three integer
numbers, namely 1) the index of a maximal sequence S of T, 2) the index of the first
element of T in S and 3) the length of T (see Fig.7). This makes up an implicit and
more compact characterization of iterated sequences.

Maximal Sequence
[TT2T3T4]5 6789 Jwo[ma]2[3]14a[15]16]17]

4 i=6
Subsequence [6] 78] 9[10]

—>
w=5

Fig. 7. Subseguences of maximal sequences

Let us present the internal representation of domains in the BackJava system.
Integer domains are stored as a list of integer ranges rather than as mere list of integer

numbers. For instance, the set {1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15} isrepresented
by thelist {[1,6]; [8]; [10,15]}.

This representation is obviousy much more compact than the explicit
representation, except for very sparse domains. This is also extremely efficient:
primitive operations on domains, such as changing the bounds and removing an
element, are much faster than the same operations performed on lists. Note that this
representation is particularly efficient for dense integer domains.

An arbitrary domain, that is a domain containing arbitrary objects as opposed to
integers, is represented in BackJava by an integer domain and a one-to-one mapping
that allows to compute an element from its index in the integer domain, and the way
around. For instance, domain {A, B, C, D} will be represented by integer domain
{[1,4]} and mapping: A-1,B-2;C-3;D-4.

This representation is very efficient, even though at first sight it may seem more
cumbersome and less efficient than the list of elementsitself. In effect, domains are
stored at each step of the search, and this representation allows us to save only the
integer domain because the list of elements and the mapping remain the same
throughout the search. This saves a substantial amount of space. The primitive
operations on arbitrary domains are the same than operations on integer domains
except composed with the mapping. For instance, in our example, to remove element
A from, the system simply removes the image of a by the mapping from the integer
domain. The overhead represented by the mapping is therefore critical for efficiency.

To efficiently represent iterated domains, we have to design a one-to-one mapping
of the three-dimensional implicit representation of subsequences onto integers. We
want this mapping, whose description follows, to be fast to compute, and to create as
dense an integer domain as possible.

For a given maximal sequence S of length N, the idea is to sort subsequences of S
by their length. We then number the sequences starting from 0 as follows:

— from0Oto N-1: subsequencesof length 1 ;
— from N to 2N-2 : subsequences of length 2 ;
— €tc.

~ N(N+1) 1 : subsequence of length N.

Let F be the indexing function of subsequences. F(w,:;,N) is the index of the

subsequence of length w, whose first element is at position i in a maximal sequence of
length N. The index of the first subsequence of length w, with w = 2, is the number of
subsequences of length less than w:

HwQN):zﬁwwq+Q:kag_wh%y“ﬂ @)

Finally, the indexes of subsequences are therefore obtained by:
F(w,i,N) = F(w,0,N) +i 3

In the case of several maximal sequences, the maximal sequences are themselves
ordered in a table Shift. The indexes of subsequences are systematically shifted by the
total number of subsequences of preceding maximal sequences.

Finaly, a procedure is applied to remove possible — though unlikely — duplications
of subsequences. Indeed, the subsequence representation scheme is redundant, since a
given sequence may appear in several maximal sequences. We solve this problem by
computing all sequences having multiple definitions, and removing the redundant
ones.

This mappingF is at the same time easy to compute and very econaomigt (
maps sequences onto a quasi-minimal range). When needed, an explicit representation
of sequence is easily computed from its inddx The maximal sequencof length
N to whichs belongs is determined by scanning 8nift table. The lengthw of s is
given by equation (4) which gives the integer part of the first root of funition

__[en-3-Jen-37 -g(N+k+1) [@)
w=E
T :

The index of the first element oé in Sis given by:i =k - F(W,O, N).

2.3 Filtering proceduresfor temporal constraints

We solve the CSP using a complete enumeration procedure, interlaced with a domain
reduction phase, which allows to speed up the resolution by pruning branches of the
search-tree. The domain reduction phase is critical for the overall efficiency of the
resolution, especially for large problems such as template matching on large-scale
corpuses of documents.

The most widely-used approach to domain reduction is to enforce arc consistency
[13] for every constraint at each step of the search. This is referred to as the real-full
look-ahead method [14]. Computing arc consistency in general is prohibitive. The
alternative is to use a weaker domain reduction schewnsgraint filtering [15].

Intuitively, the idea behind constraint filtering is to find the best trade-off between
the efficiency (i.e. number of values removed) and the cost of the domain reduction
phase. Technically, there are three essential aspects of constraint filtering. First, the
property of arc consistency is an "upper limit” for domain reduction. We can save
time by performing weaker domain reduction. Second, since we consider constraint
individually, we can adapt the domain reduction procedure according to the nature of
the constraint. Third, for a given constraint, we can trigger different domain reduction
procedures depending on the states of its variables.

We need to make one more remark before we present our filtering scheme and an
example of filtering procedure. When the domains of the variables of a temporal
constraint have not been much reduced, the constraint is usually arc consistent. In this
situation, it is useless to spend time looking for inconsistent values to remove, whereas
when one of the domain has become very small, there are inconsistent values in the
other domain.

This remark advocates the use of a filtering scheme in which a constraint is filtered
only when one of the domains of its variables have been dramatically reduced.

We chose to trigger filtering methods only when one of the variablesis instantiated.
This is arbitrary, but achieves in practice an efficient compromise. Besides, it allows
very simple and fast filtering methods to be designed (as shown by the filtering
method for meets).

The implementation of our filtering scheme is based on specific objects, called
demons [16]. A demon is a link between a constraint and a variable, which react to
modifications of the state of the variable, such as instantiation, and in turn triggers the
corresponding filtering procedure for the associated constraint.

Temporal constraints AllenCt, (v,, v,) are all binary, and parameterized by an
arbitrary Allen relation R. We distinguish between two cases, depending on the nature
of the variable which is not instantiated. For the sake of conciseness, we assume that v,
isthe variable that isinstantiated — sov, is not instantiated.

V, is non iterated. Disjunctions of Allen relations are represented by a bit array of
length 13, a value of 1 meaning that the corresponding Allen relation holds, using an
arbitrary ordering of Allen relations. The satisfaction of the constraint is therefore
achieved through a logical AND test between the observed temporal relation and the
constraint. We will therefore remove frodom(v,) all values which do not satisfy
relation R with the temporal extension of the valuevofNote that we don’'t have to
consider here whethey is iterated or not, for only the temporal extension of the value
of v, is taken into account.

V, isiterated. The problem here is to remove fratom(v,) all the values which do
not satisfy relatiorR with (the value ofy,, without enumeratingom(v,). This method
is designed as follows.

Firstly, two main basic access protocols are defined to access the domain of an
iterated variable:

- removeD, s, w, i): removes from domail® the subsequence of ti$& maximal
sequence, of lengtly, whose first element is at indén the maximal sequence.

This methods removes frol the integerF(w, i, N) + Shift[s], with N being the
length of thes" maximal sequence.

- removeD, s, w, b, €): remove from domai all subsequences of tis&é maximal
sequence, of lengtlv, whose first element is betwedénand e in the maximal
sequences. This methods removes fidthe interval f; ; f,], with f, = F(w, b, N) +
Shift[s] andf, = F(w, e, N) + Shift[d].

Second, we define 13 domain reduction methods, for each basic Allen relation
These methods remove from the domairv,cill values which do satisfyy with the
value of v,. For instance, the method for thiger relation is:

basi cRenmove, . (Vv,, V,) _
for s=0 to nunber of nmaximal sequences - 1

M = s'" maxi mal sequence

i = index of 1% elenent in M just after val(v,)
for w=1 to length(M) —i

remove(dom(v,), w, i, length(M)-w))

For each r, which is not element of R, execute basicRemove, (v,, V,), i.e. the method
which removes from dom(v,) all the values which are in the r, relation with the value
of v,.

For specific cases, however, we can define more efficient methods, which avoid
executing up to 12 of the basic domain reduction methods. For instance, in Fig.8, v, is
associated with the Jingle vertex of the template, and v, is associated with Shot+. if v1
is instantiated with jingle, it is possible to remove from dom(v,) al the iterated
sequences which do not start with S..

meets
Template | Jingle —»] Shot+ |

Observations l time_

»

(SlS[S1S]SIS SIS IS 1S01S:]Se]1S:0Su[Ss[Se]|Sr]

Fig. 8. Domain reduction method for the meets relation

Specific methods have been implemented for some Allen’s basic relations, as
equals, before, after, meets or issmet. The method for theneets relation is given
below.

keepmee!s(Vl’ V2)
for s=0 to nunber of nmaxinmal sequences - 1
M = s'" maximal sequence
i = index of 1% elenment in M which neets val (v,)
N, = lengt h(M)
for w=1 to N
ind =0
ind, = min(i-1, N-w)
ind,=i+1
ind,= N-w
if 1nd, 2 ind,
remove(D, s, w, ind, ind,)
if ind, = ind,
remove(D, s, w, ind, ind)

This particular filtering method actually achieves arc consistency for the constraint
when one of the variables is instantiated. The complexity of the general method to
achieve arc consistency, as presented in [13] for instance, is linear in the size of the
domain of the non-instantiated variable. More precisely, for each maximal
subsequence of length N, it is linear in the number of subsequences, namely

N(N +1)
2
The complexity of the method we present is, for each maximal sequence, in the

length of the sequence, as opposed to M .
2

These filtering methods as well as the general constraint satisfaction algorithm
were implemented in the BackJava system [16].

2.4 Filtering specific constraints

The specific constraints described above as “no instance oiClassveen vertices,
andn,” are filtered in a straightforward way. When one of the variable associated with
n, orn, is instantiated — say, —, we remove frondom(v,) all valuesv such that there
exists an instance @ after the value o, andbeforev.

3 Experimentations

In this section, we present two sets of experiments. The first one was made on a
corpus of six different evening news broadcasts recorded in 1996, which have been
entirely segmented and labeled by hand as a reference [17]. In this first experiment,
we had only one exemplar per collection, and the task was to design templates suitable
for all collections. The other experiment was made in the context of the DiVAN
project, and used five different exemplars of the same evening news collection
(Sair3). In this second experiment, the task was to verify that results obtained on one
exemplar could be applied to the whole collection.

3.1 Reports from the “M6” broadcast news

The first experiment concerns the recognition of the temporal structure of the evening
broadcast news of the “M6” French channel which is illustrated by Fig.1. The
template of a report has been described above. As mentioned, specific templates must
be defined for the first and the last reports. Provided that the first shot has been
classified asFirstShot, the template of the first report is given by the following
template:

Fi rst Report constraints
s1[FI rst Shot] sl ms2
s2[Shot +] s2 ms3
s3[Shot] s3 {0 s si di} s4
s4[Ji ngl €] sl s this
s2 f this

no Jingl e between sl s3

The LastReport template is defined in a smilar manner. The temporal structure of
the whole newscast is simply a succession of a FirstReport, an iterated sequence of
Reports and an LastReport:

News Cast constraints
sl Fi rst Report] sl ms2
s2[Repor't +] s2 ms3
s3[Last Report] sl s this

s3 f this

We applied the newscast template to a “M6” newscast containing 174 shots and 10
jingles. The recognition process gives exactly 1 matching for the newscast, which is
made of 1 first report, a sequence of 9 reports, and 1 last report, which means that all
reports have been recognized and that each report was recognized only once. Note that
simpler definitions of reports which could seem more intuitive may lead to recognize a
great number of reports. Thus, the following template defines a report as a sequence of
shots “between” two successive jingles. When applied to the same newscast, this
template gives 485 reports.

Nai veReport constraints
s1[Shot +] sl {si oi} s2
s2[Ji ngl e] sl {mo} s3
s3[Ji ngl e] sl ethis

no Jingl e between s2 s3

3.2 Reports from the “France 3" broadcast news

In this experiment, we are interested in comparing two ways of recognizing reports

from the evening broadcast news of the “France 3" French channel. The first method
which serves as a reference, defines a report as the sequence of shots appearing
between two successive shots of the anchor person. The second method is used when
shots of the anchor person cannot be detected and benefits from the observation that
shots of the anchor person generally start or finish with a gradual transition as a
dissolve. A report is then defined as the sequence of shots appearing between two
successive gradual transitions. A typical edition of this newscast is illustrated by Fig.9.

iroekiad Irassilioes

anchor parsan shois
F— H—= H = 5] e Li HH
framas
1

T L] T T

T
n S0 [FLs i} 15{a1 O ikt (i} HnM1

Fig. 9. Shots of the anchor person and gradual transitions in a typical edition of a “France 3”
broadcast news

Gradual transitions which appear in the course of a report lead to an over-
segmentation of reports; shots or sequences of shots of the anchor person neither

started nor finished by a gradua transition lead to unrecognized reports. Shots or
sequences of shots of the anchor person both started and finished by gradual
transitions lead to misclassified reports. Results obtained in five different editions of
the “France 3" broadcast news are summarized in Table 1.

Reports from Reports from gradual| Misclassified reports| Missed
anchor person | transitions reports
12 15 3 1
11 24 11 0
10 17 6 1
13 26 4 1
10 31 6 0

Table 1. Recognition of reports using shots of the anchor person, and using gradual transitions

The computation time for all experiments is always under 5 seconds on a PC (266
Mhz), which is largely enough in our context.

Templates for the Soir3 and other collection are currently being investigated in the
prototype DiVAN system, with real implementations of all segmentation and
classification tools. In this context, the analysis classes and templates associated with a
collection are stored in the metadata database, along with their definitions. They are
then used to parameterize the automatic macrosegmentation of all programs in the
collection. Macrosegments corresponding to a recognized template are presented to
the documentalists as candidate database entries, for confirmation and manual
annotation.

4 Conclusion

We have described a CSP formulation of a template matching problem in the context
of audio visual document indexing. The formulation yields a language for expressing

templates which is flexible enough to accommodate for most of the regularities

occurring in high level structures. The implementation of the language using the CSP
formalism vyields an efficient and sound solving procedure. The resulting system

improves on existing approach in macro-segmentation, by providing an efficient yet

general framework to the issue.

Various aspects of the system may benefit from improvements. For instance, the
template completion could be avoided and a graph analysis could allow to propagate
only necessary temporal constraints, thereby limiting the number of redundant
constraints.

Finally, the experiments showed that templates specified using simple primitives

produce macrosegmentations which are useful for documentalists.

Current work focus on the definition of templates for other classes of audiovisual

documents, to validate the approach on a large scale.

5 References

1. Brunelli, R., O. Mich, and C.M. Modena, A Survey on the Automatic Indexing of Video
Data. Journal of Visua and Image Representation, 1999. 10: p. 78-112.

2. Yeung, M. and B. Liu. Efficient matching and clustering of video shots. in IEEE
International Conference on Image Processing. 1995.

3. Aigrain, P., Joly, P., Longueville, V., Medium Knowledge-Based Macro-Segmentation of
Video into Sequences, in Intelligent Multimedia Information Retrieval, A.P.M. Press, Editor.
1997.

4. Watclar, H.D., et al., Intelligent Access to Digital Videos. Informedia Project. IEEE
Computer, 1996. 29(5): p. 46-52.

5. Garcia, C. and G. Tziritas, Face Detection Using Quantized Skin Color Regions Merging
and Wavelet Packet Analysis. |EEE Transactions on Multimedia, 1999. 1(3): p. 264--277.

6. Garcia, C. and X. Apostalidis. Text Detection and Segmentation in Complex Color Images.
in IEEE International Conference on Acoustics, Speech, and Sgnal Processing. 2000.
Istambul, Turkey.

7. Carrive, J., F. Pachet, and R. Ronfard. Using Description Logics for Indexing Audiovisual
Documents. in Proceedings of the International Workshop on Description Logics. 1998.
Trento, Italy.

8. Borgida, A., Brachman, R.J., McGuiness, D.L., Resnick, L.A. CLASSIC: A Sructural Data
Model for Objects. in ACM SSGMOD Int. Conf. on Management of Data. 1989.

9. Allen, JF., Maintaining knowledge about temporal intervals. Communications of the ACM,
1983. 26: p. 832-843.

10.Artale, A. and E. Franconi, Temporal Description Logics, in Handbook of Time and
Temporal Reasoning in Artificial Intelligence (forthcoming), v.B. Vila, Boddy, Fisher,
Gabbay, Galton and Morris, Editor. 1999, MIT Press.

11.Weida, R., Litman, D. Terminological Reasoning with Constraint Networks and an
Application to Plan Recognition. in Proceedings of the Third International Conference on
Principles of Knowledge Representation and Reasoning (KR'92). 1992. Cambridge,
Massachussetts.

12.Weida, R. Knowledge Representation for Plan Recognition. in 1JCAI 95 Workshop on the
Next Generation of Plan Recognition Systems. 1995. Montréal, Québec, Canada.

13.Mackworth, A.,Consistency in Networks or relations. Artificial Intelligence, 19778(1): p.
99-118.

14.Nadel, B.Constraint Satisfaction Algorithms. Computational Intelligence, 198S. p. 188-
224.

15.Roy, P., A. Liret, and F. Pach@&he Framework Approach for Constraint Satisfaction. in
ACM Computing Survey Symposium on "Object Oriented Application Frameworks', to be
published in March 2000. 1999.

16.Roy, P., A. Liret, and F. PachatFramework for Objected-Oriented Constraint Satisfaction
Problem, in Implementing Application Frameworks: Object-Oriented Frameworks at work,
M. Fayad, D. Schmidt, and R. Johnson, Editors. 1999, Wiley & Sons.

17.Ruiloba, R.,et al. Towards a Sandard Protocol for the Evaluation of Video-to-Shots
Segmentation Algorithms. in First European Workshop on Content-Based Multimedia
Indexing (CBMI’99). 1999. Toulouse, France.

