Advice with Part-Whole and Precedence Relations
in Task Graphs for Intelligent Tutoring Systems

Jean-Yves Djamen
Diantre R&D inc.

djamen@cam.org

Francois Pachet
LAFORIA
pachet@laforia.fr

Abstract

This article shows how advice can be enhanced in
Intelligent Tutoring Systems (ITSs). Our approach
is based on the systematic exploitation of two rela-
tions in task graphs : part-whole and temporal prece-
dence. The first relation describes the decomposition
of tasks into sub-tasks, and distinguishes concrete
actions from abstract tasks. The second relation de-
scribes temporal constraints between tasks. The un-
derlying reasoning mechanism can easily communi-
cate any given task to the human learner. Moreover
it performs the analysis of his/her actions during the
solution of a problem. This analysis is used to gener-
ate relevant advice in a tutoring context. The mech-
anism is general and can be applied to arbitrary task
graphs, thereby endowing the I'TS with a non trivial
advice-generating capacity.

1 INTRODUCTION

Cognitive task analysis is an important phase in
the development of an Intelligent Tutoring System
(ITS). Such an analysis (see for example [5, 4]) typ-
ically results in the identification of one or several
graphs representing, among others, teacher’s (and/or
learner’s) knowledge (or responses) in a given domain
(or problem solving). Those graphs, also known as
task graphs, can describe specific tasks to be done
during the tutoring session and thereby help in sev-
eral tutoring activities such as assessment.
Although the analysis phase is known as impor-
tant and incorporated in the design of several ITS

projects, exploiting their results is yet another prob-
lem to solve during the development of I'TSs.

In fact, representing analyzed tasks in an effective
intelligent program can be very complex, indeed if
prominent features of tutoring (such as presenting
the material at a good level of detail with regard to
learner’s actions, or recognizing alternative solutions
to the same problem) are to be taken into account.
To illustrate some of the key points to be addressed
during the representation of analyzed tasks, let us
consider a problem P, whose completion requires the
execution of a task [T] made up of three sub-tasks
[A], [B] and [C]. The Part-Whole relation of [T] can
be represented as shown in figure 1, i.e. sub-tasks of
a given task are described as child nodes.

F e H [T

EEIESIINRI'E

Figure 1: A typical task graph.

We will later refer to a task made up of sub-tasks
as an abstract task or simply a task. A task with
no child is a concrete task or simply an action. We
further suppose that some precedence relations have
been defined between sub-tasks of [T] as follows:

e Sub-tasks of [T], [D], [E], [G] and [I] must be

done in the specified order;

e Sub-Tasks of [B] must be done regardless of any
execution order.

Therefore, resolving the problem P will lead to one
of the following sets of actions:

L (A), (F), (9), (K), (H), (L), (M), (C)
2. (A), (H), (L), (M), (F), (J), (K), (C)

Such a representation can easily be handled in
most artificial intelligence (AI) programs. Particu-
larly in ITS, teaching may be faithfully represented
as a top down traversal of the graph.

However, the top-down representation is not suit-
able for assessment. In fact, the underlying reasoning
process leads most of the time to huge computational
complexity [1].

Moreover, an accurate cognitive task analysis will
always result to much more complex relations be-
tween tasks. For example cognitive task analysis of
P may also incorporate the following constraints:

e Resolving [T] can be reduced to resolving (A)
and (C) in some context (especially when the
task [B] has been executed previously);

e [D] can be interrupted by a partial execution of
[E] and vice-versa.

With regard to the latter constraint, there exists
an infinite number of sets of actions that can be given
by a trainee (or any appropriate automated process)
in order to solve P. For example the following set,
that may incorporate an endless loop on (F) (H), is
a valid solution that solves P

o (A), (F), (1), ... (F), (H) ...

(1), (K), (€)

In this consideration, the following sets will not
solve P if an interruption on either [D] or [E] is likely
to force the re-initialization of their execution, or
more generally if the execution of [D] can influence
in some way the execution of [E]:

o (A), (F), (H), (L), (M), (3), (K), (C)
o (A), (H), (F), (J), (K), (L), (M), (C)

Therefore, changing the execution order of certain
tasks can result to a non execution of some of their
sub-tasks.

In real applications a given task can influence other
tasks in several ways, thereby leading to multiple al-
ternative solutions with regard to a single problem.
As aresult, interpreting learner’s actions is still prob-
lematic in ITS developed so far.

(F), (H), (L), (M),

2 Task graphs in ITSs

Taking into account several temporal constraints is
not strait-forward in the development of an ITS. In
fact this problem is already known in Al, where the
misrepresentation of a piece of knowledge can lead to
a combinatorial explosion during the reasoning pro-
cess [7, 8].

Since a reasoning mechanism is tightly related
to the representation [3], the problem can also be
viewed as the one of chosing between a detailed repre-
sentation (Cf. figure 2) and a concise representation
(Cf. figure 3) of a task graph. A detailed represen-
tation can be difficult to handle in a huge graph. It
may also incorporate some wrong copies of a given
task [1]. On the other end a concise representation
incorporates unexpected situations such as loops.

B~ ¢

N
|

11

Figure 2: Detailed representation.

ii

iy
N

Figure 3: Concise representation.

More precisely, problems to be addressed in ITS
task graphs include the following:

e Level of abstraction of tasks;
e Relation between tasks and their sub-tasks;

e Computational complexity (reasoning part of
the graph);

e Synthesis of results;
e Integration of idiosyncratic advice;

e Structural identity and physical identity of
tasks;

In some well known ITSs, such as Sherlock [6],
some of these problems (also described as knowledge
representation problems) have been solved by hard-
coding some solution paths.

3 Sub-tasks behavior class approach

Our approach to solving the knowledge representa-
tion problems listed above consists in assigning a so-
called behavior class to abstract tasks. A behavior
class enables the specification of constraints that can
hold only on direct sub-tasks of a given task. For in-
stance, the behavior class <STRICT-AND> will be
associated to [T] to specify that all its sub-tasks, i.e.
(A) [B] (C), must be done with regard to the specified
order. Figure 4 shows the representation of solving
the problem P using our approach. For illustration
purposes, nodes in figure 1 have been instanciated as
follows:

e [T] = "Making an infusion with the following
rates: volume V = 25 ml and rate R = 35 ml/h”

e (A) = ”Press the On-Off/Charge button”
e [B] = ”Enter rate and Volume”
e (C) = ”Press Start”

[D] = ”Enter Rate 35”

= "Press Rate Key”

.
— —

=
flnlr -

G] = 7Enter fraction 35”
(J) = ”Press key pad 3”

e (K) = ”Press key pad 5”
[E] = ”Enter Volume 25”

e (H) = ”Press Volume Key”

e [I] = ”Enter fraction 25”

[MAKE PRIMARY INFUSION (RATE R=3600mils, VOLUME V=35mi]
| STRICT-AND |

| AsienaLsa
N 2| ENTER RATES R & V] 3
PRESS ON-OFF/CHARGI
FREE-AND < SIGNAL 53
21| ENTER RATE 2.2| ENTER VOLUME V.
STRICT-AND STRICT-AND _| <-._ SIGNALS2

2.2.4 ENTER FRACTION 3!
STRICT-AND

. SIGNAL S1

PRESS PRI STA#

214 ENTER FRACTION 3604

PRESS PRI VTB|
STRICT-AND

21 ‘{ PRESS PRI RATE|

| SIGNAL SO

leamner action detected

Figure 4: Representing a task using behavior class
approach.

e (L) = ”Press key pad 2”
e (M) = ”Press key pad b”

A task 1s therefore simply represented using the
grammar below (the syntax is following the Bacchus
Naur form), where a list of basic classes can be de-
fined and upgraded with minimum changes in the
program:

BEHAVIOR-CLASS ::= ’(’, TASKS, ')’, BASIC-CLASS

TASKS ::= TASK-LIST; TASK-LIST, BEHAVIOR-CLASS

BASIC-CLASS ::= 'Free-And’ | ’'Strict-And’ | 'Free-Or’ |
"Exclusive-Or’ | Optional-N | Strict-N-Over-M ...

TASK-LIST ::= TASK, TASK-LIST | TASK

TASK ::= "Task1’ | "Task2’ | ...

We have built an algorithm (dubbed QCOM.T) on
top of behavior class representation [9]. In fact every
time the learner’s action is detected, QCOM.I sends
a signal to the corresponding node in the graph. Sev-
eral cases are then possible:

e The action is legal (i.e. it belongs to the list
of next possible actions obtained by a top-down
traversal of the selected task graph);

e The action is not legal (no corresponding node
can be found in the selected graph);

e The action is ambiguous (multiple correspond-
ing nodes are present in the graph);

e The action is not ambiguous (only one corre-
sponding node is present in the graph).

By receiving a signal each node:
1. produces comments with regard to the received
signal;

2. changes its state if the action is legal (a concrete
task in the graph can either be inactive or ter-
minated while an abstract task can be inactive,
terminated or pending);

3. Ascends the signal to the parent node (up to the
root).

For example, an action on (F) will create the fol-
lowing trace:

e (F): Terminated;
¢ [D]: Pending;
¢ [B]: Pending;

e [T]: [B] is pending prematurely, execute (A)
first.

The overall advice will be summarized by ”Should
not execute task [B] since action (A)} is not yet done”.
As can be noted here; this advice is at a good level of
granularity. In fact, QCOM.I has detected a pending
task after the execution of an action and hence has
produced an advice using the appropriate abstract
tast (i.e. [B] and not [D]).

A failure within the trace, i.e. a violation of a con-
straint defined in the behavior class will enforce the
restoration of previous states (i.e. before the given
action). For instance an action on (A) will generate
the following changes:

e (A): Terminated;
¢ [T]: Pending.

This action will not produce an advice. However a
verbose mode of QCOM.I will generate the following
text: “action (A) has been done successfully”.

Comments are treated in context by QCOM.I in
order to produce a meaningful advice during a given
tutoring session. Some comments are qualitatively
described as follows:

e Already (action or task already done)
e Pending (Task is pending)
e PendingAlready (task is already pending)

e PendingNotTerminated (Task is pending and is
not terminated yet)

e PendingPrematurely (Task is pending prema-
turely)

e Premature (action or task done prematurely)

e Terminated (action or task terminated)

4 CONCLUSION

We have shown a way to provide advice in an I'TS
using part-whole and precedence relations defined in
a task graph. Our approach enables the enlargement
of temporal constraints that can be defined into (and
treated by) a task graph. More generally the behav-
ior class approach is usefull in numerous ways:

e It provides a means of decomposition of tasks in
a task graph. With this regard, abstract tasks
can be viewed as placeholders for general com-
ments to be given to the trainee.

e It provides a way to insert constraints between
sub-task with regard to defined goals. With this
regard, constraints are described within a given
abstract task, therefore preventing a prolifera-
tion of constraints (links) in task graphs.

e It provides a simple way to compute (expected
or past) actions/tasks vis-a-vis expected solu-
tions. With this regard, t

e It provides an easy way to incorporate com-
ments with regard to expected activities. With
this regard, the same I'TS can serve for advice,
critic, etc.

However, our approach can not support all prece-
dences between tasks. In fact, it has shown not to
be effective when dealing with some conditions; such
as those enabling both concurrent and interruptible
sub-tasks of a given task. However we have addressed
some of these problems elsewhere [2].

References

[1] Jean-Yves Djamen. Architecture de systéme
tutoriel ntelligent pour [Uanalyse du raison-
nement de lapprenant. PhD thesis, Univer-
sité de Montréal, Département Informatique et
Recherche Opérationnelles, 1995.

[2] Jean-Yves Djamen, Marc Kaltenbach, and
Claude Frasson. Qualitative comments with
physical systems for intelligent tutoring systems.
In Proc. of the Fighth Florida Artificial Intelli-
gence Research Symposium, pages 304-308, Mel-
bourne Beach, FL., April 1995.

[3] Kenneth D. Forbus. Intelligent computer-aided
engineering. Al Magazine, Fall:23-36, 1988.

[4]

N. Frederiksen, R. Glaser, A. M. Lesgold, and
M. Shafto. Diagnostic monitoring of skill and
knowledge acquisition. Lawrence Erlbaum Asso-

ciates, Hillsdale, 1990. edited book.

Suzanne P. Lajoie and Sharon J. Derry. Comput-
ers as cognitive tools. Lawrence Erlbaum Asso-

ciates Publishers; 1993. edited book.

Alan Lesgold, Suzanne P. Lajoie, M. Bunzo, and
G. Eggan. SHERLOCK: A coached practice en-
vironment for an electronic troubleshooting job.
In Jill H. Larkin and Ruth Chabay, editors, Com-
puter Assisted Instruction and Intelligent Tu-
toring Systems: Shared goals and complemen-
tary approaches, pages 201-238. Lawrence Erl-
baum Associates Publishers, Hillsdale, New Jer-
sey, 1992.

J. McCarthy and P. J. Hayes. Some philosophical
problems from the standpoint of artificial intel-
ligence. In B. Meltzer and D. Michie, editors,
Machine Intelligence, volume 6, pages 463-502.
American Elsevier Pub. Co., 1969.

Hyacinth S. Nwana and Ray C. Paton. Drawing
from the shortcomings of artificial intelligence:
Some critical issues connectionism must address.
In F. Attia, S. Flory, S. Hashemi, G. Gouarderes,
and J. P. Marciano, editors, EXPERSYS, pages
37-43. I.1.'T.T. International, Paris, 1992.

F. Pachet, J. Y. Djamen, Claude Frasson, and
Marc Kaltenbach. Production de conseils perti-
nents exploitant les relations de composition et de

précédence dans un arbre de taches. Techniques
des Sciences Educatives, 3(1), 1996.

