
1

NÉOGANESH: TOWARDS A GENERIC KNOWLEDGE-BASED SYSTEM FOR THE
CONTROL OF MECHANICAL VENTILATION.

M. DOJAT 1, F. PACHET 2

(1) INSERM Unité 296, Faculté de médecine, 94010 CRETEIL.
(2) LAFORIA Institut Blaise Pascal, Université Paris VI, 75005 PARIS.

I. INTRODUCTION. 

Although computers have several functions in clinical practice such as data-base management, data acquisition
and physiological signal processing, sophisticated systems based on techniques involving Artificial Intelligence
(AI) which might provide advice in the choice of therapy and assistance in diagnosis are not yet widely used.
Several such systems are described in the literature, but only a few are routinely used in clinical practice (see (1)
& (2) for a collection of papers on medical AI). “Intelligent” decision support systems will help the physician to
make better clinical decisions but they have yet to be tested at the patient’s bedside.
We describe  here  a  rule-based  system for  monitoring physiological  data in  real  time and  for  controlling the
mechanical  assistance provided to a ventilated patient.  This system is now being tested at  the Henri  Mondor
Hospital  in  Créteil,  France.  First  we will  define the  medical  problem and technical  constraints  then we will
describe our system and the knowledge representation and lastly,  we will  consider  the generic  aspect  of  our
system.

I.1. The medical problem

The  mechanical  assistance  provided  to  a  patient  with  respiratory  insufficiency  must  be  well  adapted  to  his
physiological needs: too high a level of assistance results in unacceptable  hyperventilation, and too low a level
leads to extra work for the patient's respiratory muscles. The clinician must appreciate the respiratory comfort of
the patient and the evolution of his ventilation, and set the ventilator settings accordingly.
Control  algorithms which  automatically  maintain a  physiological  parameter,  such as  respiratory  frequency or
inspired volume per minute, under or above the threshold set by the clinician have severe limitations (3). They do
not reflect the physician’s attitude which takes into account the general context of the patient's ventilation and its
evolution. In this respect, a rule-based approach is  a priori better adapted to represent the clinical expertise on
which the physician’s attitude is based.
The  second task  of  a  system designed  to  assist  the  clinican  in  Intensive  Care  Unit  (ICU),  is  to  reduce  the
mechanical assistance gradually, until the patient is able to breathe alone. This is known as the weaning process,
and for some patients who have been on prolonged mechanical ventilation it can be complex. In such cases, the
clinician relies on the considerable expertise acquired during long clinical practice. He or she must assess the
patient's  capacity  to  breathe  alone  before  any  disconnection  from the  ventilator,  in  order  to  avoid  repeated
connections and disconnections.
Strategies for patients who are difficult to wean have been proposed (4,5), but they are seldom used in practice,
because they need constant monitoring of the patient's ventilation. 
The system presented here implements such a strategy. It is based on the knowledge of weaning management
acquired by the clinical staff of the ICU at the Henri Mondor Hospital.

1Offprint requests to: M. DOJAT
INSERM U.296 Faculté de médecine, 8 av du Général Sarrail, 94010 Créteil France.
phone: 33 1 48 98 46 03  fax: 33 1 48 98 17 77  e.mail: dojat@laforia.ibp.fr



2

Contrarily to other approches (6,7,8,9), our system deals with a volontarily limited problem:

-  only one mode of  ventilation is managed by the system: Pressure Support  Ventilation (PSV).  Recent
studies have shown that this mode is of interest because it reduces respiratory muscle work while allowing
satisfying gas exchange (5,10).
- patients ventilated with the system should have spontaneous respiratory activity.

These  limitations  allowed  us  to  design  a  closed-loop  system which  controls  the  ventilator  without  any
intervention by the clinician.

I.2. Backgrounds

To solve the problems of control and weaning, we designed an initial prototype: the Ganesh system (11). This
system proved valid when used at the Henri. Mondor Hospital, and has shown good results in clinical application
(12). However, the nature of the knowledge representation in the inital environment (a conventional 0+ expert
system shell) severely limited its extension (13). Clearly, the Ganesh system suffers from: 1) a poor representation
of the domain objects 2) a lack of modularity 3) a lack of facility for building a powerful interface 4) an unclear
separation between various aspects of the reasoning (knowledge and control). Therefore to have an extensible and
generic system at our disposal and also to solve our problems of knowledge representation we designed a new
knowledge-based system: NéoGanesh.

II. METHODS

II.1. Programming environment

Because object orientation is well adapted to increasing the modularity and the quality of representation, we chose
the  Smalltalk-80  language  (14),  which  includes  an  interactive  programming  environment.  However,  object-
oriented languages do not provide any inference facility.  To cope with inference needs,  Laursen & Atkinson
proposed  a  rule-based  system called  Opus  (15)  which  was  integrated  into Smalltalk-80,  and  Pachet  recently
designed NéOpus, an extension of Opus (16, 17). This environment constitutes a first order forward-chaining
inference engine. NéoGanesh based on NéOpus was designed to model medical expertise used in ICU. We chose
to implement our system on a PC compatible that is the type of micro-computer widely used in ICU. We therefore
used Smalltalk-80 v.4 with the Windows 3.0 environment.

II.2. The overall achitecture of NéoGanesh

At the patient’s bedside, NéoGanesh acquires and processes a set of data. We use three parameters to appreciate
the respiratory comfort of the patient:  respiratory frequency (Fr),  tidal volume (Vt), and end-tidal CO

2
 pressure

(PCO
2
).  Respiratory  frequency  is  the  most  important  index  because  in  many  circumstances  it  is  a  precise

reflection of  respiratory muscle adaptation to the imposed workload (18).  The  level  of  pressure support (PS)
provided to the patient is used to evaluate the quality of the respiratory system. All these parameters are obtained
from external devices via serial communication (Fr, Vt, PS are obtained from a ventilator, and PCO

2,
 from a CO

2
analyzer); the system modifies the ventilator settings (PS and ventilatory mode). From the physiological data, it
evaluates the respiratory comfort of the patient and assesses the stability of the breathing 



3
pattern.  All the physiological  parameters except one, which is obtained from a CO

2
 analyzer (Ohmeda 5200,

France), are measured by the ventilator (Veolar, Hamilton Switzerland) which was especially adapted to our study
by the manufacturer. Smalltalk methods were defined for the management of communications with the connected
devices. 

NéoGanesh

Ventilator

Patient

Respiratory rate
Tidal volume
Alarms

Ventilatory mode
Pressure support
level

Alarms
End-tidal Pco2

PCO2
Monitor

Fig. 1. The architecture of NéoGanesh

II.3. The interface 

The interface was designed with the Model View Controller paradigm (14). By acting on the mouse, the user feeds
the system with information about the patient and launches a ventilation expert consultation. A simulation mode is
also available enabling the user to interact with the system and modify the physiological parameters, in order to
test typical situations. 

III. RESULTS 

III.1. Knowledge representation

Our system uses a three-axis knowledge paradigm to represent knowledge: domain objects defined by Smalltalk
classes, rules which represent the knowledge of the expert, and meta-rules used to control the firing of rules.

III.1.1. The domain objects

The system has a representation of every real object involved in the ventilation process. According to the object-
oriented paradigms (14), these real objects are represented as Smalltalk objects, which are instances of Smalltalk
classes. Three categories of classes are defined: the Clinician, the Patient and the Device. We describe below the
most important class: the VentilationExpert class, a subclass of the Clinician class.
The VentilationExpert can modify the settings of the ventilator. Its knowledge is represented by production rules,
as explained in the next section.
The expert object responds to messages that evaluate the patient's status, such as ventilation which represents the
level  of ventilation (normal,  polypnea...)  or  severity which depends on the level  of  assistance needed by the
patient,  and  also  about  temporal  aspects  of  the  reasoning  such  as  patientBeingStableSince,
startOfWeaningObservation. 



4
The expert also manages various thresholds needed to qualify correct ventilation (e.g.,  frequencyThreshold,  the
respiratory frequency must be below this threshold) .
The  expert  object  may  also  have  to  change  the  duration  of  the  data  acquisition  performed  to  update  the
physiological values before any new expertise.
All these messages are used in the conditions parts of the rules that implement the expert’s knowledge.
The ventilationExpert 's actions are also represented in terms of Smalltalk methods. 
We distinguish between four kinds of actions:

- Setting of a diagnosis: respiratoryCheckUp method 
- Modification of the ventilator settings: the increaseAssistance method (resp. decreaseAssistance) is used to
raise the level of pressure support (resp. decrease), and the  switchToMechanicalMode method changes the
mode of assistance (pressure support) to controlled mechanical ventilation,
- Anticipation of the next consultation: the nextEvaluationIn: aTime method sets the duration (aTime) of the
next data acquisition for the signalProcessor,
- Predictions for the weaning of the patient: the methods  predictionForWeaning, weaningObservationTime,
and instabilityTolerance are defined for this purpose.

III.1.2. Rules

Data-driven methods to generate therapeutic suggestions are generally well adapted to represent the clinician’s
reasoning (11, 19).
In our system, the knowledge of the expert is indeed represented by first-order (i.e., with variables) production
rules, operating in forward-chaining. Since, as already stated, the Smalltalk environment provides no inference
facility, we use the NéOpus system, which basically adds a production rule facility to the Smalltalk language. The
NéOpus system (16, 17) is a rewriting of the Opus system (15). It adds several new extensions to the original
Opus system that are primarily used to represent control knowledge (see next section).
The main characteristics of the NéOpus system are to combine the advantages of the Smalltalk-80 language in the
rules 1) by allowing any Smalltalk object to be matched by a rule, and 2) by allowing any Smalltalk expression in
the condition and conclusion parts of the rules 
The rules consist of a declaration part, in which variables representing Smalltalk objects are declared according to
their class; a condition part (yielding boolean results) and an action part. Condition and action parts are expressed
as Smalltalk expressions.

In our system, each rule has  only one variable,  that  is  matched against  an expert  object  (an instance of  the
VentilatorExpert class, describe above). The rule conditions are designed to test the values of the physiological
data or information about the patient, using the messages described in the VentilatorExpert class (see preceding
section). The rule actions set the expert objet in motion thereby leading to side-effects, such as modifications of
the overall check-up and adaptation of the assistance.

III.1.3. Examples of rules

Here are some examples of rules taken from our knowledge base.
In the first example, the goal is to appreciate the quality of the patient's ventilation. Firstly, the expert checks the
values for PCO

2
 and tidal volume. If they are within physiological limits, the expert decides to test respiratory

frequency.
This is represented by the  frequencyTest rule (Fig.  2).  The physiological  limits are defined by two methods:
pco2Threshold and  volumeThreshold. The decision to test the frequency corresponds to an action by the expert
(message ventilation:).



5
When the decision to test the frequency has been taken, there is a possibility of polypnea. The polypnea rule
defines the conditions under which the patient is polypneic in the same way as the frequencyTest rule.
In this example, it is clear that the  polypnea rule should be fired after  frequencyTest rule. Rule sequencing is
defined, among other things, by the rule protocol (Fig.2, in parenthesis). The notion of protocols is discussed in
§4.

frequencyTest (ventilation protocol )
"tests the physiological parameters that qualify the ventilation"

|VentilationExpert expert|

expert patientPco2 <= expert pco2Threshold.
expert patientVolume >= expert volumeThreshold.

actions
expert ventilation: #frequencyTest.
expert report: 'Now, I am going to test the frequency'.
expert modified.

polypnea (frequencyTest protocol)
|VentilationExpert expert|

expert patientFrequency > expert frequencyThreshold.
expert patientFrequency < expert maxFrequency.

actions
expert ventilation: #polypneic.
expert report: 'The patient is polypneic. Resp. rate too high'.
expert modified.

Fig. 2. Example of rules to test the quality of ventilation.

The next two rules determine whether an action must be taken on the ventilator, and the duration of the next data
acquisition.

observation (ventilatorAction protocol)
"observation of the patient, no modification of the mechanical assistance”

|VentilationExpert expert.|

expert respiratoryCheckUpIsStable.
expert ventilationIsNormal.
expert periodOfStability < expert observationDuration.

actions
expert stability: #observation.
expert nextEvaluationIn: 2.
expert incrPeriodOfStability.
expert report: 'The patient is correctly assisted'.
expert modified.



6

incrementAssistance (ventilatorAction protocol)
"tests whether action must be taken on the ventilator"

|VentilationExpert expert.|

expert stabilityIsErratic.
expert ventilationIsPolypneic.

actions
expert respiratoryCheckUp: #Unstable.
expert nextEvaluationIn: 5.
expert increaseAssistance.
expert report: 'I increase the assistance.'.
expert modified.

Fig.3. Example of rules to determine whether action must be taken on the ventilator .

These rules are independent of any control strategy. The next problem is to represent adequately the control linked
to this rule base. This is done by means of meta-rules that control the firing of the rules.

III.2. Control knowledge

Control of the reasoning is a complex part of the expert's knowledge. In our system, control knowledge is far from
trivial because it involves  sequencing, which is inherently difficult to represent in a rule-based scheme (20), as
well as the notion of alarms.
An appropriate architecture is therefore needed to represent the  control knowledge which directs the reasoning.
Such declarative architecture of control is represented in NéOpus by two features: the meta-rules (21) and the rule
base inheritance. 

III.2.1. Structure of rule bases

Rules are organized into rule bases, which correspond to Smalltalk classes. Rules are defined as methods for their
rule base, but are parsed and compiled with a particular compiler into a Rete network (22) for efficiency.
The management of rules is thus similar to the management of methods, and the rules that make up a base are
grouped into protocols. 
In our application, the rule base ClinicRules contains all the rules relevant to the expertise of the clinician. In this
base, nine protocols are defined representing various knowledge units of this expertise. For instance, protocol
severity groups together the rules relating to the overall appreciation of the patient's state; ventilation includes the
rules for the characterization of the present respiratory pattern;  stability, those that assess the evolution of the
ventilation with time; ventilatorAction, those for defining the appropriate action on the ventilator; and weaning the
rules for the implementation of a special observation phase designed to permit weaning of the patient. Protocols
may be considered as independant clusters of knowledge.
By classifying the rules in this manner, we obtain a method for partitioning knowledge in a way that reflects
human expertise in the domain concerned.
However, protocols are not simply containers used for organizational purposes. On the contrary, they are used by
the control architecture to represent the sequential aspect of the reasoning, thanks to the application of appropriate
meta-rules.

III.2.2. Meta-rules control rule firing

The rule base ClinicalRules is intended for activation in forward chaining. When a set of objects matches all the
premises of a rule, this rule is said to be fireable, and is added to a conflict set. In this scheme, a standard cycle
consists in firing rules until the conflict set is 



7
empty (22).  However,  we have mentioned above that  the control  involved in  our expertise is  not  trivial.  To
implement this control without modifying the  ClinicalRules rule base, which represents the knowledge domain,
we used the declarative architecture for control of NéOpus. In NéOpus a rule base can be controlled by another
rule base, which is called its meta-base. The rules governing the meta-base are called meta-rules. The meta-rules
which syntactically do not differ from standard NéOpus rules, activate the rule base linked to the meta-base. The
objects matched against the meta-rule premises are particular objects called ruleBaseEvaluators. Fuller details on
the use of meta-rules can be found in (21). The interesting aspect of these meta-rules is that they allow domain
knowldege and control  knowledge to  be defined  independently,  thereby increasing the  generic  nature of  our
system (see §IV).

Defining a particular control consists in writing meta-rules which directly affect on the activation of the controlled
rule base.

Here are some examples of the use of meta-rules to represent our control strategies:

Sequencing: The expert's reasoning has a sequential structure. For instance, stability must be estimated after the
current ventilation has been characterized. To represent this sequencial structure we use the Smalltalk protocols
described in III.2.1. A special set of meta-rules is designed to handle the sequencial character of the reasoning by
organizing a list of protocols and firing rules according to this list. 
When the system is initialized,  the list  of  protocols  is  initialized (listOfProtocols <-  #(#Severity #Ventilation
#Stability #VentilatorAction)).
However, this list may vary, depending on the status of the patient, as ascertained during the consultation.
For  example (Fig.  4),  the  afterVentilatiorAction meta-rule  represents  the  following sequence:  the appropriate
action on the ventilator is performed (ventilatorAction protocol) followed by the selection of a particular protocol
list. The listProtocolsEnd1 list (which includes the weaning protocol) is selected in case of a favorable prediction
for the weaning. If the prediction for weaning is not favorable, this protocol is ignored and another list is selected
(listProtocolsEnd2).

afterVentilatorAction
   | RuleBaseEvaluator e. OpusConflictSet c|

e status = #loop.
c <- e conflictSet.
e agenda currentProtocol = #ventilatorAction.
c hasRuleInProtocol: #ventilatorAction.

actions
c fireRules: (c rulesInProtocol: #ventilatorAction) 
e agenda changeProtocolList:
(e expert predictionForWeaning = #favorable

ifTrue: [Clinic1 listProtocolsEnd1]
ifFalse:[Clinic1 listProtocolsEnd2]).

e modified.

Fig. 4. This meta-rule changes the list of protocols according to the patient status.

Alarms management: Alarms are actions that must be taken regardless of other pending actions or reasoning. The
alarm problem is solved by the use of specific meta-rules. For instance (Fig. 5) is a meta-rule that will detect any
rules that can be fired from protocol alarms. On detection, such rules are instantly fired.



8

alarmsHandling
   | RuleBaseEvaluator e. Local rules conflictSet |

e status = #loop.
conflictSet <- e conflictSet.
rules <- conflictSet rulesFromProtocol: #alarms.

actions
Transcript show: 'Alarm. Check the patient'.
conflictSet fireRules: rules.
e suspend. conflictSet modified. e modified

Fig. 5. Alarms management.

III.2.3. Rule base inheritance 

The rule base inheritance mechanism allows rule bases to be represented in an inheritance tree, very similar to the
usual  class  inheritance  trees  (14).  This  mechanism  provides  a  means  of  organizing  rules  according  to  a
generalization/specialization scheme. Rules defined in super-bases are inherited by all sub-bases, thus enabling
rule re-use. In addition, the rules defined down in the hierarchy are considered more specific, and will be preferred
for conflict resolution.
We used this inheritance mechanism to organize meta-rules. Instead of defining a single meta-base to represent
control  knowledge,  we  split  this  base  into  several  hierarchical  meta-bases,  using  the  rule  base  inheritance
mechanism. We distinguished five levels of meta-base, each defining a particular control structure.
In this way we implemented the following inheritance tree: DefaultMeta, MetaProtocols, MetaProtocolsOneShot,
MetaClinicProtocols,  MetaClinicAlarms. The ClinicRules rule base is controlled by the MetaClinicAlarms meta-
base. This meta-base is in charge of the activation of the ClinicRules base, and contains all the control knowledge
of the expert. This inheritance tree is represented graphically in Fig. 6.

DefaultMeta, MetaProtocols,  and  MetaProtocolOneShot are general and not particular to our application. The
meta-base  MetaProtocolOneShot, a sub-base of  MetaProtocol (itself a sub-base of  DefaultMeta) manages
the notion of protocols for rule firing. The rules are fired according to a fixed list of protocols given by the user.
With this structure we implement static sequencing.
This static sequencing has to be changed in some cases, to adapt it to the context (see the meta-rules in fig. 4). The
MetaClinicProtocols meta-base, a sub-base of MetaProtocolsOneShot, is peculiar to our expertise and implements
the  dynamic  sequencing. These  meta-rules  must  be  activated  before  the  meta-rules  of  MetaProtocol.
MetaClinicProtocols is therefore a sub-base of MetaProtocols.
Alarms are preferable to other pending actions. Consequently the notion of alarming cases is well represented by
the lowest meta-base in the hierarchy and its meta-rules (included in the  MetaClinicAlarms meta-base) will be
fired in preference to other meta-rules defined in higher meta-bases.

IV. DISCUSSION

The medical expertise involved in the process of reasoning we have described can be represented with production
rules, as we showed previously with the Ganesh prototype (11). We designed NéoGanesh using Smalltalk with
NéOpus to solve certain knowledge representation problems and obtain an open environment to develop specific
tools adapted to clinical expertise. We now discuss the generic aspect of our system.



9
IV.1. The use of Smalltalk 

The system benefits from 1) the powerful features of the Smalltalk environment (browsers, debugger) and 2) from
its portability on different platform window systems (Xwindows, Windows, OpenWindow, and MultiFinder), as
well as an active user community.
Our  prototype  has  to  work  in  real  time.  The fact  that  Smalltalk may be  slower  than  C for  some numerical
applications (23) is not a problem for us, for two reasons: our system does not require intensive computations, and
our time constraints are weak because ventilation processes are slow (respiratory rate is less than 0,5 Hz). The
sample frequency used for data acquisition is 0.1 Hz. In alarming cases, a response time of 1 or 2 seconds is
tolerated. The sophisticated management of memory implemented in this version of Smalltalk is therefore correct
for our application because no inopportune garbage collecting disturbs the working process.
The user’s interface is an important element of a computerized system and the MVC paradigm provided us with
good tools for tailoring the interface to the clinical staff’s specific needs.

ClinicRules MetaClinicAlarms

MetaClinicProtocol

MetaProtocols

Control
[ domain rules ] [alarm meta-rules]

[ handles dynamic
sequencing ]

[ handles sequencing
with protocols ]

Rule base
Inheritance

DefaultMeta

[ default meta
behavior ]

controls

MetaProtocolsOneShot

[ handles one shot
firing for rules in protocols ]

NeOpusRuleBase

Procedural
control

Fi

g. 6. Inheritance tree architecture



10
IV.2. Towards a generic environment

In our opinion, three major aspects of our system make it generic and suitable for designing medical knowledge-
based systems.

1) Class inheritance
Object orientation gives us the advantage of the flexibility and reusable code. For instance, we created the Device
class to represent the devices connected to a patient. Because of the lack of standardization, the interface of each
device has to be specified individually. Subclasses such as  Monitor  and Ventilator were introduced to represent
particular  devices.  Similarily,  the  programmer  describes  new  devices  by  defining  Monitor or  Ventilator
subclasses. For  instance,  Veolar (a  subclass  of  Ventilator)  and  Ohmeda  (a  subclass  of GasMonitor,  itself  a
subclass  of  Monitor) were  created  for  the  two  types  of  apparatus  we  need  for  the  clinical  application  of
NéoGanesh. Thanks to inheritance only the protocol of communication has to be redefined for the new device
class.
Inheritance  can  also  be  used  to  modify  or  refine  the  expert’s  behavior.  Thus,  several  subclasses  of  the
VentilationExpert class can be created to represent various interpretations of the messages used in the rules. For
instance, the pco2Threshold method (Fig. 2), which yields a maximum threshold for PCO

2
 may be redefined. In

the VentilatonExpert class, this method is defined so as to return 50. In subclasses, this method may be redefined
to yield an other value. Subclasses of VentilationExpert can also include additional specific structures (i.e. instance
variables) to account for particular types of expertise.

2) Rule base inheritance
The rule base inheritance is a powerful feature of NéOpus, and may be used to refine or modify the expert's
knowledge. For instance, to implement a new weaning reasoning, a sub-base of the ClinicalRules rule base (say
ClinicalRules2) will be created. In this sub-base, only the rules from the Weaning protocol will be modified.

3) Generic aspect of the control reasoning
The control reasoning is implemented without modifiying the knowledge domain in a very elegant way; it is not
embedded in the code thereby allowing a clear separation between knowledge and control.  As the control  is
represented by meta-bases, it can be re-used with other domain rule bases (for instance  ClinicalRules2 defined
above). If a new reasoning strategy is needed, it can be obtained by linking a more appropriate meta-base to the
rule base concerned.

4) Multi-tasks and multi-expertise 
In its current state, the system is sequential, and only one task is executed at a time. This can give rise to difficult
problems. For instance, an alarm can occur while the system is reasoning. An interesting extension to our system
is that it allows different tasks such as checking alarms, data acquisition and processing, and reasoning to run
concurrently.
Another function of multi-tasking is to implement a distributive problem-solving structure (24). In this scheme,
several experts cooperate to find the solution by sharing and exchanging information. For instance, one expert may
be may be specialized in ventilation, and another, in the sensor control.
Multiprocessing primitives are available in the Smalltalk-80 environment in the form of Process and Semaphores
classes. Actalk (25) is an extension of Smalltalk that provide concurrent facilities. Its integration into our system is
now in progress.

The open environment we have proposed is well adapted to research purposes and has allowed us to test some new
concepts designed to improve the representation of clinical expertise in intensive care.



11

V. CONCLUSION AND FUTURE WORK

NéoGaneh is going to replace Ganesh in the ICU of H. Mondor Hospital. Our aim is to use it to implement more
complex expertises than the expertise present in Ganesh. To explore the creation of a general architecture for
knowledge-based  systems  that  would  support  clinical  procedures  in  intensive  care  and  anesthesia,  our
environment must be extended so as to permit the handling of new paradigms designed to improve knowledge
representation. Temporal logic must be introduced to manage the patient’s history correcty. Uncertainty will be
also useful, for instance to improve the representation of physiological thresholds. The extension of the present
system to a  multi-expert  environment  is  now in progress  in  order  to  develop  asynchronous  communications
between objects.

VII. REFERENCES

1- MILLER P.L. “Selected topics in medical artificial intelligence”. New York, Springer Verlag, (1988).

2- CLANCEY W.J., SHORTLIFFE E.H. (eds) "Readings in medical Artificial Intelligence : the first decade".
Readings, MA, Addison Wesley, (1984).

3- BOYER F., BRUNO B., GAUSSAGUES P., JAS-LAMONNERY S., ROBERT D. "Aide inspiratoire avec
asservissement du niveau de pression : volume ventilé minute versus fréquence respiratoire". Réan. Soin. Intens.
Med. Urg. vol. 5, n° 4, 227-232, (1989).

4- BROCHARD L., PLUSKWA F., LEMAIRE F. "Improved efficacy of spontaneous breathing with inspiratory
pressure support". Am. Rev. Resp. Dis. 136, 411-413, (1987).

5- MAC INTYRE N. "Respiratory function during pressure support ventilation". Chest, 677-683, (1989).

6-  FAGAN  L.M.  "Representing  time  dependent  relations  in  a  medical  setting".  PhD  dissertation,  Dept.  of
Computer Sciences, Standford University, Palo Alto, Ca., (1980).

7- HERNANDEZ-SANDE C., MORET-BONILLO V. ALLONSO-BETANZOS A. "ESTER : An expert system
for management of respiratory weaning therapy". IEEE Trans. Biom. Eng. vol. 36, n° 5, 551-564, (1989).

8- RUDOWSKI R., FROSTELL C., GILL H. "A knowledge-based support system for mechanical ventilation of
the lungs. The KUSIVAR concept and prototype". Comput. Biomed. Res. vol. 30, 59-70, (1989). 

9- SITTIG D.F. "A computerized patient advice system to direct  ventilatory care". PhD dissertation, Dept. of
medical informatics, University of Utah, (1986). 

10-  BROCHARD  L.,  HARF  A.,  LORINO  H.,  LEMAIRE F.  "Inspiratory  pressure  support  prevents
diaphragmatic fatigue during weaning from mechanical ventilation". Am. Rev. Resp. Dis. 139, 513-521, (1989).



12
11- DOJAT M., BROCHARD L., HARF A. "A knowledge-based system for the management of the weaning
procedure  of  mechanically  ventilated  patients".  Proceedings  of  12th  International  Symposium  on  Computer
Assisted  Decision  Support  and  Data  Base  Management  in  Anesthesia  Intensive  care  and  Cardiopulmonary
Medecine. Rotterdam, October 2-4, (1991).

12- DOJAT M., HARF A., BROCHARD L. "Evaluation d'un système d'aide à la décision pour le sevrage des
patients  ventilés  artificiellement".  XXème Congrès  de la  Société  de  Réanimation de langue Française,  Paris,
January 16-18, (1992).

13- DOJAT M., PACHET F. "Representation of a Medical Expertise Using the Smalltalk environment: putting a
prototype to work". Proceedings of TOOLS 7, Dortmund, Germany, March 31-April 2, (1992). 

14- GOLDBERG A. "Smalltalk-80: The interactive programming environment". Addison-Wesley, (1984).

15- LAURSEN J. , ATKINSON R. "Opus: A Smalltalk Production System". OOPSLA '87 377-387, (1987).

16- PACHET F. "NéOpus mode d'emploi". Rapport LAFORIA, n° 14/91, Paris, (1991).

17- PACHET F. "Reasoning with objects: the NéOpus environment". Proceedings of EastEurOOpe conference,
Bratislava , September, (1991).

18- TOBIN M.J., PEREZ W., GUENTHER S.H. SEMMES B.J., MADOR M.J. ALLEN S.J., LODATO R.F.,
DANTZKER  D.R.  "The  pattern  of  breathing  during  successful  and  unsuccessful  trials  of  weaning  from
mechanical ventilation". Am. Rev. Respir. Dis. 134, 1111-18, (1986).

19- SITTIG D.F. "Clinical evaluation of computer-based respiratory care algorithms". Int. Jour. Clin. Mon. Comp.
vol. 7, 177-185, (1990) 

20- GOMEZ F., CHANDRASEKARAN B. "Knowledge organization and distribution for medical diagnosis".
IEEE Transactions on systems, man, and cybernetics, vol. smc-11, n°. 1, 34-42, (1981).

21- PACHET F. "Du bon usage des méta-règles en NéOpus". Rapport LAFORIA, n° 16/91, Paris, (1991).

22- FORGY C. L. "Rete : A fast algorithm for the many pattern/many object pattern match problem". Artificial
Intelligence, vol. 19, 17-37, (1982).

23- DEUTCH P.L. "The past , present, and future of Smalltalk". Proceedings of ECOOP '89, pp. 109-130, Cook,
London, (1989). 

24- BOND A. “Readings in distributed artificial intelligence” San Mateo, Ca, Morgan Kauffmann, Grasser L. eds.,
(1988).

25- BRIOT J. P. "Actalk: a testbed for classifying and designing actor languages in the Smalltalk-80 environment".
Proceedings of ECOOP '89, 109-130. Cook, London, (1989).



13
NÉOGANESH : VERS UN SYSTEME À BASE DE CONNAISSANCES GENERIQUE POUR LE

CONTROLE DE LA VENTILATION ARTIFICIELLE DES PATIENTS.

M. DOJAT, F. PACHET 

RESUME :

Nous décrivons un système à base de connaissances en cours de validation à l'hôpital Henri Mondor
(Créteil, France). Le système NéoGanesh est destiné à adapter l’assistance ventilatoire mécanique fournit à un
patient insuffisant respiratoire selon ses besoins physiologiques. Le système acquiert des données physiologiques
en temps réel, établit un diagnostic,  et agit directement sur les réglages du ventilateur connecté au patient. Il
développe un raisonnement pour sevrer le patient du ventilateur. Le malade est ventilé avec une aide inspiratoire
en pression. Nous utilisons l'environnement de programmation à objets Smalltalk -80 pour représenter les objets
du  domaine.  Un  moteur  d'inférences  d'ordre  1,  NéOpus,  écrit  en  Smalltalk,  est  utilisé  pour  implémenter  le
raisonnement.  L'architecture  complète  de  contrôle  du déclenchement  des  règles  est  présentée.  Nous insistons
finalement sur les aspects génériques de notre système. Intégré dans un environnement sophistiqué, NéoGanesh
constitue  un  premier  pas  vers  un  système  générique  de  représentation  d'expertises  médicales  utilisées  en
réanimation et anesthésie. 

MOTS CLES : Expertise médicale - système à base de connaissances - ventilation mécanique - sevrage.

NÉOGANESH: TOWARDS A GENERIC KNOWLEDGE-BASED SYSTEM FOR THE CONTROL OF
MECHANICAL VENTILATION.

ABSTRACT:

We describe a working rule-based prototype now being tested at the Henri Mondor Hospital (Créteil,
France).  The  system NéoGanesh  is  designed  to  adapt  the  mechanical  assistance  provided  to  a  patient  with
respiratory  insufficiency  to  his  physiological  needs.  NéoGanesh  monitors  physiological  data  in  real  time,
establishes  a  diagnosis  and acts  directly  to  modify  the  settings of  the  ventilator  connected to  the patient.  It
implements a strategy to wean the patient from the ventilator. The patient is ventilated with Pressure Support
Ventilation. We chose the object-programming environment Smalltalk-80 to represent all the domain objects. The
rule-based system NéOpus, a first order foward chaining engine embedded in Smalltalk, is used to implement the
reasoning. The complete architecture that controls the firing of the rules is described. We consider the generic
aspect of our system by showing how new expertise can be modelled from the existing one. Embedded in a
powerful environment, our system is intended to constitute a first step towards the creation of a generic system
designed to represent medical reasoning used in intensive care and anesthesia.

KEY WORDS: Clinical expertise - knowledge-based system - mechanical ventilation - weaning.


