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Abstract  
An important aspect of context in medical reasoning is the notion of "variation" of a chunk of knowledge

according to various contingencies, such as course of patient's disease, response to therapies, or team specificity.
Our position is to represent these variations implicitly, by proposing mechanisms to factor knowledge and to refine
it.  We propose three mutually compatible mechanisms that effectively contribute to represent slight variations of
knowledge in a representation framework integrating object-oriented programming and rule-based programming.
We illustrate them with examples extracted from various knowledge bases for the management of mechanical
ventilation.
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1. Introduction 

In medical reasoning, the notion of context is central for interpreting physiological parameters and is relevant
at all levels of expertise.  [Brézillon 93] showed that, within the community of researchers working on context
issues, two main tendencies emerge:

1) Context as a "situation"
Context considered as something (ill-defined) designating the  situation in which an interaction occurs, i.e.

the place, the task, the participants, etc.  
In the case of medical knowledge, context as situation encompasses several dimensions:

-  context  for  the  interpretation  of  data.   Context  reflects  patient's  history,  type  of  disease  or  response  to
therapies.
- context to account for various temporal phases in the course of the patient's disease.  Phases may correspond to
various tasks occurring over time.  In each phase, specific reasoning is envisaged.
- context to account  for  the  specificity of  the clinical  team.   Although clinical  practice is  largely based on
consensual  medical  knowledge,  each  clinical  team,  specialized  in  a  particular  medical  field,  accumulates
specific  experience.   This  difference  with  commonly accepted  knowledge reflects  habits,  cultural  contexts,
specific skills and experiences.

2) Context as a "set of beliefs"
Context considered as a restricted set of beliefs or logical assumptions that are necessary to interpret correctly

available information.  In the medical field, it is often important to explicitly represent the underlying assumptions
of the medical doctor regarding the patient's status, such as the diagnosis established, the theoretically predicted
evolution of the patient's state or the expected evolution in function of the current treatment.



In medical expertise, knowledge to be used in several contexts bear a lot of similarities.  As we will see in the
examples,  a  vital  aspect  of  context  is  the notion of  variation of  a  chunk of  knowledge according to various
contingencies, such as patient's response to therapy, course of patient's disease or team specificity.  Representing
similarities between different contexts raises complex issues.  For instance, [McCarthy 89], [Guha 91] propose a
dedicated mechanism (the so-called lifting rules) to establish some kind of communication between different but
related contexts.   

Moreover, context is  multiform and the mechanisms proposed to account for it in the representation of
knowledge, are various and often difficult to conciliate.  For example, the context mechanism proposed by [Guha
91] is hard to transpose in a non-logical representation framework.  Similarly, the mechanism proposed by [Abu-
Hakima 93] requires the explicit representation of goals to be used by the inference process.

Based on these two remarks, our position regarding context is 1) to focus on  mechanisms, rather than on
explicit representations, and 2) focus on  similarities rather than on dissimilarities, and 3) ensure some kind of
compatibility of  various  manifestations  of  context-dependency.   We  propose  three  mutually  compatible
mechanisms for factoring medical knowledge, thereby providing a powerful implicit representation of context.
These three mechanisms are: class inheritance, natural typing and rule base inheritance.  They are applicable in
representation frameworks integrating rule-based programming with object-oriented programming.

Our research is being conducted in collaboration with a team specialized in intensive care medicine at Henri
Mondor Hospital (Créteil, France).  We developed a knowledge-based system for ventilator management, called
NéoGanesh.   NéoGanesh  adjusts  in  closed-loop the  mechanical  assistance,  depending  on  the  patient's
physiological needs, and indicates when the patient can breathe without external assistance (weaning).  The results
[Dojat et al. 92], [Dojat et al. 94] demonstrated that NéoGanesh improves the quality of the patient's ventilation,
and therefore validates our approach.  To illustrate the interest of our proposals, we will use examples extracted
from NéoGanesh and from expertise in the same area found in the literature.

2. Our representation framework: Alliance of Objects and Rules

Object-orientation is particularly well suited to represent medical knowledge. Software objets are constructed
to  represent  a  monitor,  a  patient,  or  a  clinician,  as  well  as  therapies,  diagnosis,  expectations  and  so  forth.
Operations on these objects represent domain operations such as monitoring respiratory rate, changing respiratory
rate and administrating a new therapy, and are represented as methods associated to corresponding classes.

The need for combining object structures and rule-based programming has been widely recognized.  The fact
base of a rule-based program is a model of the concrete situation that is currently being processed.  To bring some
semantic  structure to facts,  one naturally tends to  see them as  properties  of  objects that  build up a universe
simulating the concrete world.  Individual facts are no longer represented as such, their logical value is ascertained
by querying objects in the model.  The fact base is thus dissolved into an object-oriented model of the world.  The
equation "fact base = model of the world" links the two techniques.

Starting with a standard object-oriented language (Smalltalk-80), and extending it with an embedded rule-
based layer, we built the NéOpus system [Pachet 95].  Turning to classical object-oriented style (the so-called
message passing) causes some trouble to the knowledge representation specialist (see, e.g. [Nebel 90]).  We refer
to [Pachet 94] for a discussion on the technical problems posed by this integration.  However, we feel that the
benefit gained from potentially applying rules to the whole universe of object-oriented models created by object-
oriented programmers does warrant these discrepancies from the generally accepted principles.



3. Three Mutually Compatible Mechanisms to Account for Context

We propose  three  mutually  compatible  mechanisms that  address  three  different  levels of  granularity  for
factoring medical knowledge representing context in our object-oriented setting 1) class inheritance, 2) natural
typing, and 3) rule base inheritance.

3.1. Class Inheritance to Account for Context

The inheritance mechanism has been used to represent contextual medical knowledge. For example, [Aikins
83, Chandrasekaran 83] use some form of inheritance to partition rule-base division according to context.  In the
context of object-oriented programming, the organizing principle of class inheritance allows to describe medical
information and create information structures comprising concepts which are statically related through common
property characteristics.  Although class inheritance can hardly be compared with true classification mechanisms
as found, e.g.  in description logics [Patel-Schneider 90],  it  nevertheless allows us to represent taxonomies of
physical or conceptual entities and generalization/specialization relation (e.g. class Intensivist inherits from
class Clinician which in turn inherits from MedicalDoctor).  .  Here are an example that shows how class
inheritance can be used  effectively to account for context.

Availability of data as Context

Well-structured problems of diagnosis are solved by the method of  heuristic classification.  This method
requires three steps: 1) abstraction from input data, 2) association with a taxonomy of possible solutions and 3)
refinement of the collection of potential solutions [Clancey 85].  Embedding classification mechanisms in object-
oriented languages is not, however a trivial task  [Yelland 92].  For our applications, we propose to use class
inheritance to represent the taxonomy of possible solutions.  Each class holds a set of constraints to which patient's
data is matched for classification.  For instance, to diagnose the current respiratory state of a patient, clinicians
currently use three main parameters: respiratory rate (RR), volume inspired at each breathing cycle (Vt), and
pressure  of  carbon  dioxide  at  the  end  of  the  expiration  (PetCO2).   Consequently,  the  class  Tachypnea
representing an anormal ventilation (RR too high), holds the following set of constraints (expressed as a single
Boolean expression): 

Constraint for class "Tachypnea"
VT > 250 AND
(RR < 35 AND RR > 28) AND
PetCO2 < 55

The classification process consists in matching a given patient ventilation state (represented by an instance of
class  MeasuredVentilation) against the solution classes.   For instance, the solution classes that  require
parameters VT, RR, and PetCO2 are: Normal, Tachypnea, Bradypnea, Insufficient, and so forth.  The
definition attached to each element of the taxonomy of solutions, as well as the thresholds used for interpreting
physiological data, may vary depending to the context: the patient's characteristics (sex, age, pathology, etc.), the
clinical evolution, or the medical doctor.  Moreover, the refinement of the potential solutions may depend on the
availability of certain data.  For instance, to characterize the patient's respiratory state more precisely, we can add
a  parameter,  called  Occlusion  Pressure or  P0.1,  which  measure  the  patient's  effort  needed  to  trigger  the
mechanical assistance.  To represent this new piece of information (and hence a new context of interpretation of
data), we add new solution classes to the taxonomy, with constraints that explicitly refer to this new data.  We add
the solution class FineTachypnea to our taxonomy by defining a 



subclass of Tachypnea.  Similarly, we will subclass Normal with class FineNormal, holding a constraint with
an additional condition on P0.1, and so forth.

Instead of systematically matching against all the classes of the taxonomy, we organize solution classes in
several collections, each one representing a particular combination of available parameters.  These collections of
classes  are  represented  as  methods  in  the  class  that  represents  the  current  clinician  (Intensivist).
standardSolutionsList represents the list  of solution classes  when RR, Vt and PetCO2 are available,

fineSolutionsList is used if P0.1 is available and so forth.

3.2. Natural Typing to Account for Context

The  preceding  example  shows  how  inheritance  may  be  used  to  factor  information.  Encapsulation (or
information hiding) supplies a useful  barrier among several levels of abstraction.  Now class inheritance and
encapsulation may be used in conjunction with rules, yielding another dimension of context representation.  This is
realized in NéOpus by so-called natural typing of rule variables.

3.2.1. The Mechanism

The idea behind natural typing is to allow the pattern-matcher to consider direct instances as well as instances
of subclasses to be matched by rule variables for a given rule.  The interpretation of a rule is therefore dynamic,
since 1) the condition and action parts of the rules are entirely expressed in terms of messages sent to the matched
objects and 2) the messages are redefined in subclasses.  In other words, the rules are context-dependent, where
the context is represented by the set of objects that match the rule.

r1
 | Class1 v1. Class2 v2. Class3 v3 |
  If  v1 mess1.
       v2 mess2: v3.
  Then
      v3 mess3.

Class1 

•  •  

•  •  

Class2 

•  •  

•  •  •  •  

Class3

•  •  

•  •  •  

mess1

mess1

mess1

mess2: mess3

mess3mess2:

mess2:

Figure 1. A rule with the corresponding class hierarchies. The rule should be read as follows: For any v1, instance
of class  Class1, v2 instance of  Class2 and  v3 instance of  Class3, if "v1 mess1" and "v2 mess:
v3" evaluate to true, then evaluate "v3 mess3". The rule uses three messages (mess1 through m3) which are
defined and redefined in the classes of the corresponding hierarchies.

More precisely, let r be a rule that declares n variables vi (i=1, n).  Let Ci be the class declared for vi. Now, if

each Ci has ki concrete subclasses (Cf. Figure 1), the total number of possibly different interpretations of r is P ki

(i = 1, n).  In practice, if r has 3 variables, and each declared class has 5 concrete subclasses, then r has 53 = 125
possibly different interpretations !

3.2.2. Reference Values as Context

[East  et  al.  94]  develop  computerized  protocols  to  assist  clinicians  with  the difficult  task  of  ventilating
mechanically patients with Acute Respiratory Distress Syndrome (ARDS).  They identify the arterial oxygenation
of the patient by means of PaO2 measurement to define the best therapy to provide.  If the clinician diagnoses a

Barotrauma, he tolerates a lower arterial pressure of oxygen, and tries to reduce alveolar pressures.  We represent
references of PaO2 by classes (Cf. Figure 2, left), and their 



variations by subclasses.   In this scheme, the reference used for PaO2 in the case of Barotrauma is therefore
represented  by  a  class  PaO2Low,  subclass  of  PaO2Reference,  which  redefines  method  "low"  with  the
appropriate value.   

The  chosen  strategy,  function  of  the  diagnosis  performed,  determines  the  appropriate  subclass  of
PaO2Reference that should be used for classifying PaO2.  The actual arterial oxygenation of the patient is
itself represented by an instance of  MeasuredVentilation.  The rule (Cf. Figure 2, right), is then used to
classify arterial oxygenation by comparing it  with the chosen PaO2 reference.  Thanks to natural typing, the
condition part of the rule is interpreted differently depending on the class of the reference of PaO2.

PulmonaryReferences

PaO  Reference2

PaO  Low2 PaO  High2

defines:
low, moderate, high

defines:
veryLow, veryHigh

redefines: low, moderate redefines: high, moderate

acceptableOxygenation
|MeasuredVentilation  vent.  Pa02Reference
reference|

vent paO2 > reference low.
vent paO2 < reference moderate.

then
Oxygenation new acceptable.

Figure 2: Left: gradual introduction of modification of thresholds for arterial pressure of oxygen classification.
Right: an example of rule to classify arterial oxygenation. Methods low and moderate, which return corresponding
threshold values, are redefined in subclasses of PaO2Reference.

3.2.3. Management of Time

In most medical knowledge-based systems, the course of the patient's disease is divided into several temporal
phases.  These phases may correspond to steps  in the treatment, e.g. in cholesterol treatment [Rucker et al. 90], or
respiratory assistance [Fagan 80], or various states of the patient's evolution, such as hemodynamic states ([Lau
and Vincent 93], [Cohn et al. 90]).  In each phase, specific rules are applied.

Recently,  [Dojat  and  Sayettat  94]  proposed  a  model  for  temporal  reasoning  representation  in  real-time
systems.  This model is based on temporal abstractions that allow observations to be interpreted incrementally as
they are  acquired.   Two mechanisms are used:  aggregation of  similar  situations and  forgetting non-relevant,
redundant or out of date information.  Activation of these two mechanisms are context-dependent. 

We implement this model using our combination of class inheritance and rules.  This is performed by 1)
reifying phases, and building a hierarchy of classes representing various significant phases of the course of the
patient's disease and 2) introducing an explicit management of time that account for state change and evolution.

TemporalObject

State

RespiratoryState

PreWeanable

ExpectedState

Maintain

Weanable

Restoration

Figure 3: Excerpt of the hierarchy of temporal objects in NéoGanesh.



Temporal  objects  are  time-stamped  entities,  used  to  develop  a  temporal  discourse  about  the  patient's
ventilation  evolution.   The  figure  3  shows  parts  of  the  hierarchy  of  temporal  objects  used  in  NéoGanesh.
RespiratoryState represents the ventilation status of the patient.  ExpectedState represents the future
patient's respiratory state, as expected by the doctor.  One of the goal of the medical reasoning is to appreciate the
stability of the ventilation over periods of time, the duration of instabilities and the persistence of inadequate
therapies.  Thus, the clinician has to perceive significant changes between successive observed states or successive
expected states.  This perception of changes is, of course, context-dependent: for instance, the notions of similarity
and dissimilarity  between states depends on the class of the states compared.  This is, once again, represented by
methods attached to the corresponding subclasses of TemporalObject.  Figure 4 shows a rule taken from the
rule base that handles perception of change.

partialContinuity
|State s1 s2 s3. Duration d1|
s3 persistent.
s1 similarTo: s3.
s2 dissimilarTo: s3.
s2 between: s1 and: s3.
s2 duration <= d1.
then
s1 validDuring: s3 duration.

Figure 4: A rule that aggregates two disjoint states (s1 and s3), separated by an instability (s2) considered short
enough to be discarded.

NéoGanesh includes numerous other examples of the use of natural typing, including more sophisticated
management of thresholds and representation of control ([Dojat and Pachet 92]).

3.3. Rule Base Inheritance to Account for Context

We introduce  a  third  level  of  context-dependency:  rule  base  inheritance  (RBI).   RBI  allows  to  specify
gradually the context of application of rules by matching objects that are relevant for this context.

3.3.1. The Mechanism

In our representation framework (NéOpus), rules are grouped in rule bases that are represented as abstract
classes.  The idea of transposing the class inheritance mechanism to rule bases is therefore natural.  We introduced
in [Pachet and Perrot 94] a scheme to transpose the intuition of class inheritance to rule bases.  In this scheme,
each rule base may be defined as a sub-base of an existing rule base, thereby inheriting all its rules.  An overriding
mechanism, based on rule names, allows a rule base to redefine a inherited rule into a more specific rule.  This
scheme is  based  on  a  static  propagation  of  rule  compilation to  sub-bases,  together  with a  particular  control
strategy (RBI strategy) that ensures that, in case of conflict, rules defined in the lowest sub-base will be selected.

There are indeed several advantages in providing rule bases with an inheritance mechanism.  It provides a
high level  scheme for  organizing rules,  it  allows to factor  out common rules,  and simplifies control  strategy
specification.  We will show here how RBI may be used to provide explicit contextual dependency of medical
knowledge.

3.3.2. RBI for Context Dependency in Temporal Reasoning  

The Figure 5 shows the inheritance tree for rule bases, which gradually introduce context-dependency in
temporal management, at the rule base (or task) level.



Rule base  TemporalManagement contains rules that define the perception of continuity, discontinuity,
partial continuity and so forth, in a use-neutral manner.  They match general temporal objects (State). 
Rule base  VentilationEvolution introduces a refinement of this general-purpose temporal reasoning to
adapt it to the ventilation management.  VentilationEvolution inherits all the rules defined in its super-
base,  redefines  some  of  them  (such  as  partialContinuity),  and  defines  specific  rules  (such  as
extendedAggregation).   Rules  defined  or  redefined  in  VentilationEvolution talk  about
RespiratoryState (instead of the general State class, see Figure 6).

NéOpusRuleBase

TemporalManagement

continuity
partialContinuity ...

VentilationEvolution

partialContinuity
extendedAggregation ...

extendedAggregation
successfulWeaning ...

WeaningEvolution

Figure 5: An inheritance tree of rule bases.

partialContinuity (redefined in VentilationEvolution)
|RespiratoryState s1 s2 s3|

s3 persistent.
s1 similarTo: s3.
s2 dissimilarTo: s3.
s2 between: s1 and: s3.
s2 durationInExpertise <= 1.
s3 durationInExpertise > 1.
then

s1 validDuring: s3 duration.
Figure 6: Rule partialContinuity redefined in a sub-base of TemporalManagement. The rule matches
more specialized objects (RespiratoryState instead of  State), modifies and adds a condition. The rule
states that 2 disjoint respiratory states, separated by an instability that lasts less than 1 expertise cycle, can be
aggregated.

Finally, WeaningEvolution is concerned by situations when the patient is on the verge of breathing without
assistance.   ExtendedAggregation rule  is  modified  to  tolerate  moderate  ventilation  instabilities.
SuccessfullWeaning indicates to the user that the patient can be extubated.  At this level, rules match only
instances of class Weanable.

4. Discussion



We have introduced three mutually compatible mechanisms that take context into account.  In our approach,
unlike the approach of [Guha 91], context is not represented explicitely, as a first-class object.  We illustrated the
mechanisms  by  instanciation  of  context-dependency  for  availability  of  data (class  inheritance),  representing
reference values (natural typing in forward-chaining rules), and representing different perception to changes (rule
base inheritance).  Object-orientation casts a new light on the classical distinction between the two notions of
context (situation versus set of beliefs).  Because our representation model is uniform (everything is represented
by an object), the notion of a "logical fact" disappears, making it difficult to represent "sets of beliefs".  However,
we think that this distinction is still  relevant,  and propose to take it  into account by distinguish between two
categories of domain objects:
- perceived objects (symptoms, devices, patient's status and history), that represent the world as it is "perceived"
by the clinician expert.  These objects represent concrete real-world objects as well as objects pre-existing to the
reasoning process. 
- conceived objects (diagnosis, models of ventilation and expectations) that represent the world as it is "conceived"
by the clinician expert, and created or worked out by his reasoning process.

In this setting, the distinction situation/belief is revisited: situation is represented by perceived objects, and
beliefs by conceived objects.

Few systems propose precise descriptions of the implementation level and how they practically achieve some
forms of  context  representation.   In  this  paper  we identified  three  mechanisms of  rule-based  object-oriented
programming: class inheritance, natural typing and rule base inheritance.  Although these mechanisms are not new
in themselves, we showed how they may be combined to implement various dimensions of context-dependency in
medical knowledge bases.  This reinforces the potential interest of the object-oriented paradigm and production
rules association.  We are convinced that the development of large open health care systems might strongly benefit
from this approach.
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