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Abstract  
 Knowledge reuse is now a critical issue for most developers of medical 
knowledge-based systems.  As a rule, reuse is addressed from an ambitious 
knowledge engineering perspective that focuses on reusable general purpose 
knowledge modules, concepts and methods.  However, such a general goal fails to 
take into account the specific aspects of medical practice.   From the point of view of 
the knowledge engineer, whose goal is to capture the specific features and intricacies 
of a given domain, this approach addresses the wrong level of generality.  In this 
paper, we adopt a more pragmatic viewpoint, introducing the less ambitious goal of 
"domain-dependent limited reuse", and suggesting effective means of achieving it in 
practice.  In a knowledge representation framework combining objects and 
production rules, we propose three mechanisms emerging from the combination of 
object-oriented programming and rule-based programming.  We show how these 
mechanisms contribute to achieve limited reuse and to introduce useful limited 
variations in medical expertise. 

1. INTRODUCTION 
 
 An abundant flow of information is available today to the health-care 
workers.  As Gardner points out (21) , it is not realistic to believe that the human 
mind can integrate all the pieces of the medical decision puzzle to select the best 
treatment without assistance.  Since Mycin, Artificial Intelligence (AI) techniques 
have generated considerable interest as a tool for clinical problem solving, and a 
wealth of computer systems for assisting the clinical staff in critical medical decision-
making have been designed (9,34,50). 
 Research into use of AI in medicine has focused mainly on the construction of 
Medical Knowledge-Based Systems (MKBSs).  Unfortunately, only few MKBSs have 
been evaluated in clinical environments with the goal of validating them for routine 
use.  Consequently, the impact of AI techniques for improving the quality of patient 
care is still small (9).  This paradox has been widely acknowledged, and several lines 
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of research have been suggested as capable of filling the gap between the many 
prototypes developed in research laboratories and the development of systems 
appropriate for bedside use.  In particular, Musen (37) insists on the importance of 
sharing and reuse as "necessary conditions for building complex systems that the AI 
in medicine community ultimately hopes to develop". 
 In the same vein, Ramoni et al. (45) have argued that the development of real world 
MKBSs requires a fine epistemological analysis of the medical tasks and reasoning 
involved.  This analysis is useful for two different reasons: 1) to provide a 
framework for acquiring and modeling knowledge and 2) to facilitate sharing and 
reuse.  These requirements lead to the well-known separation (39) between a 
conceptual model (or knowledge level) and the representation paradigms (or symbol 
level) used to implement it.  For these purposes, two complementary but distinct 
categories of knowledge level descriptions have been identified (37): 1) problem-
solving methods, or models of "how a particular task is performed", such as models 
of diagnosis, therapy planning, and patient monitoring; and 2) ontologies, or 
structural descriptions of types of domain-knowledge objects and expressions, 
including taxonomic, causal, and time ontologies. 
 We are currently working on the design of knowledge-based medical systems 
intended for use in real-life clinical situations.  However, rather than trying to 
identify and to define general purpose knowledge modules, concepts, or methods, we 
have concentrated on achieving some kind of limited reuse, within a given domain.  
This limited reuse is the focus of this paper. 
 The development of large medical decision support systems requires 
formalization of expert knowledge prior to its implementation on a computer.  This 
formalization is useful to compare different types of expertise, to conduct in-depth 
evaluations of the structure of medical decision making and, when possible, to 
achieve some degree of standardization.  This need for standardization has been 
emphasized by Morris (36), who advocated strong standardization of clinical 
practices in computerized protocols, contending that this is the only means of 
scientifically evaluating treatments. 
 Departing from this approach, we support loose standardization.  As pointed 
out by Brender and McNair (5), "gold standards" in medicine may vary from place to 
place depending on factors related to traditions, socio-economic conditions, and 
politics, rather than science and ethics.  Our experience with the acquisition of 
medical expertise shows how important it is for the clinician to reason using not 
only a consensual kernel of concepts but also small variations around this kernel, 
which reflect the specific characteristics of each patient and clinical team 
(qualifications, skills, culture, or local habits).  We believe that this distinction 
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strongly constrains the structure of the MKBS itself.  Therefore, we propose to 
explicitly take this difference into account, both during the process of knowledge 
acquisition (at the conceptual level) and during actual construction of the knowledge 
base (at the symbol level).  Rather than formalizing medical knowledge at large for 
purposes of scientific validation, we propose limited reuse as a means of achieving 
loose standardization in bounded domains. 
 
 The remainder of the paper is structured as follows. In Section 2, we define 
limited reuse and propose ways to achieve it.  In Section 3, we define our 
epistemological position and distinguish between three knowledge layers, i.e., 
domain, inference, and control.  Section 4 describes the combination of objects and 
rules used to implement our epistemological model.  In Section 5, we illustrate 
effective domain-dependent reuse with examples of mechanical ventilation 
management.   Section 6 gives more details on NéoGanesh, a working prototype for 
mechanical ventilation designed using our methodology.  Finally, we discuss the 
importance of limited reuse in medical systems and emphasize the benefits of the 
association of object-oriented paradigm and production rules to achieve it. 
 
 

2. Limited Reuse 
 
  Our research is being conducted in collaboration with an intensive care 
unit team at the Henri Mondor Hospital (Créteil, France). The medical domain is 
patient monitoring and, more specifically, ventilator therapy management.  In this 
context, we have accumulated experience in the gradual acquisition and 
representation of the team's expertise concerning ventilator therapy management. 
 

2.1. Importance of  Limited Reuse 
 
   This experience shows the importance of reusing our systems in particular 
situations in which an initial corpus of knowledge undergoes several small variations.  
These variations occur in three main situations, which are outlined below. 
 1) Small variations of expertise according to its context of application  
 The concept of context is vital in medical knowledge and appears at all levels 
of expertise in different forms:  
 - context for the interpretation of data.  Context reflects the history of the 
patient, the diagnosis, or the response to treatment. 
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 - context to account for various temporal phases in the course of a patient's 
disease. Phases may correspond to various tasks.  For instance, a proposal for 
managing a sudden deterioration in ventilation during the weaning period - when a 
patient needs a low level of assistance - could be an adaptation of the therapy given 
in usual situations. 
 2) Small variations in expertise among physicians 
 Although clinical practice is largely based on consensual medical knowledge, 
each clinical team, specialized in a particular medical field, accumulates specific 
experience.  This difference with commonly accepted knowledge reflects habits, 
cultural factors, and specific skills.  Knowledge representation mechanisms are 
needed to account for this particular category of variation. 
 3) Continuous refinement of the expertise of a given team 
 Medical knowledge is inherently unstable, and varies according to theoretical 
and experimental research as well as advances in technology.  For instance, 
ventilator management is influenced by improvements in physiological and 
mechanical models for ventilator-patient interactions, by gradual improvements in 
medical skills used during care of patients with severe respiratory disorders, by the 
development of new non-invasive methods that provide real-time information on 
the patient's status, and by advances in ventilator technology.  From a more practical 
point of view, the design of a knowledge-based system must anticipate continuous 
modifications of prototypes aimed at adapting their behavior to new real-life 
situations. 
 
 These observations have led us to develop domain-dependent software 
components, which can be reused within an intentionally limited bandwidth.  
 

2.2. Mechanisms for Limited Reuse 
 
 The design of intelligent systems requires a blend of software engineering and 
knowledge engineering technologies and methods (25).  We believe that rule-based 
object-oriented programming, mixing rules and objects, is particularly well adapted to 
our objectives.  Indeed, this approach benefits from 1) the abstraction and 
computation capabilities of object-oriented languages for simulating the relevant 
entities of an idealized and reified medical world and from 2) the representation 
capabilities of production rules for modeling the clinician's reasoning.  This interest 
for rule-object alliance is increased by the observation (2) that working expert 
systems contain only few rule-based modules, the major part being implemented in 
imperative programming languages.   
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 In this paper, we discuss the powerful symbiosis between 1) two mechanisms 
of software engineering, i.e., inheritance and encapsulation; and 2) the ubiquitous 
mechanism of knowledge engineering, i.e., forward-chaining rule-based programming.  
We identify three main modes of objects/rules combination namely class inheritance, 
rule-based inheritance, and control specification. We also show, with examples from 
real-life medical expertise, how these modes contribute effectively to the 
achievement of limited reuse. 
 
 

3. Our Epistemological Position 
 
 Recent knowledge engineering research has proposed several abstraction 
paradigms and conceptual architectures to build rationally knowledge-based 
systems (7,10,52).  Despite differences between the structured methodologies that 
have been developed, a general consensus is apparently emerging about the need to 
clearly separate three knowledge layers: the domain layer, the inference layer, and 
the control layer. 
 

3.1. Domain Layer 
 
 The domain layer contains all the entities that are of use in representing the 
application domain.  Entities model physical objects in the domain (e.g., patients, 
doctors, devices, diagnoses, and therapies), as well as intangible objects, concepts, or 
abstractions that have no physical reality (e.g., therapeutic goals, expected states, 
and respiratory models).  The static structure and dynamic behavior of each entity is 
defined with the required level of abstraction and detail. A set of relations (physical 
or conceptual) links entities to each other.  For instance, an intensivist (a physician) 
acts on the ventilator (a device) to modify the respiratory treatment (a therapy) 
provided to a hyperventilated patient (a diagnosis) and expects the patient to 
recover (a therapeutic goal) normal ventilation (a respiratory model). 
 

3.2. Inference Layer 
 
 The inference layer contains domain inferences which describe what is known 
about the entities of the domain layer.  It represents a discourse about these entities. 
Forward-chaining production rules is an appropriate formalism for representing a large 
part of medical discourse (44).  Some domain inferences are intended to represent 
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specific tasks and must, therefore, be structured into groups.  Each group in turn 
may contain several packs of inferences for each inferential step, such as 
determination of initial clinical severity, classification of current ventilation, and 
determination of treatment (action on FiO2 or action on Peep). 
 

3.3. Control Layer 
 
 The control layer (control inferences) contains knowledge about how to use 
the knowledge of the inference layer.  It encodes the strategies used by experts to 
make a decision.  Although eliciting strategic knowledge from experts is a difficult 
task (23), the importance of explicit formulation of control knowledge and of 
separation of control knowledge from domain knowledge is now well recognized 
(8), (11).  The main distinction between control and domain knowledge is the nature 
of the entities they deal with. Control inferences can, therefore, be expressed using 
the same formalism as for domain inferences.  Control inferences are applied to 
control entities that represent the state of the deductive process at a given time, 
whereas domain inferences are applied to domain entities.  For instance, control 
inferences enable the user to intervene in the deductive process, to dynamically 
introduce his/her own strategy, and to modify this strategy as required by the 
context.   
 

4. Objects and Rules: a Powerful Symbiosis 
 
  Object-oriented programming offers a uniform approach to 
implementing the domain layer.  Production rules is a formalism designating model 
deductive processes.  An environment that combines these two approaches is a 
powerful tool for representing the three knowledge levels described above. 
 

4.1. The Object-Oriented Approach 
 
 Object-oriented languages offer a rich set of logical and physical models that 
can be used to reason about several aspects of modeled systems.  Modeling the 
structures of domain entities and their interconnections using object-orientation 
provides a layer for simulating the dynamic behavior of the reified medical world.  
The programming metaphor is based on personifying the physical or conceptual 
objects from some real-world domain into objects in the program domain (19), (30). 
Software objects are constructed to represent a monitor, a patient, or a clinician.  
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Operations on these objects represent domain tasks such as monitoring the 
respiratory rate, changing the respiratory rate, or administering a new therapy. 
 Object-oriented programming is a paradigm  for developing structured, 
easily-maintainable software and all the features needed to achieve simulation. 
Encapsulation (or information hiding) supplies a useful barrier between several levels 
of abstraction.  Encapsulation is the complementary concept of abstraction: 
abstraction focuses on the outside view of an object, and encapsulation prevents the 
client from accessing the inside view (3).  For instance, to modify the level of 
mechanical assistance, an intensivist can ignore details such as how the pressure 
support is generated by the servo-valve placed inside the ventilator.  At a higher 
level of abstraction, the organizing principle of inheritance allows to describe medical 
information and create information structures comprising concepts, which are 
statically related through common property characteristics.  Inheritance allows to 
represent taxonomies of physical or conceptual entities, as well as the 
generalization/specialization relation (e.g., Intensivist inherits from 
Clinician, who in turn inherits from Physician).  Note that inheritance is not a 
classification mechanism in the sense of description logics (4).  We will see in Section 
5.2.2 how we deal with classification in our representation framework. 
 
 

4.2. Rules and Objects: the NéOpus Architecture 
 
 The need for combining object structures and rule-based programming has 
been widely recognized.  The fact base of a rule-based program is a model of the 
concrete situation that is currently being processed.  To bring some semantic 
structure to facts, one naturally tends to see facts as properties of objects that build 
up a universe simulating the concrete world.  Individual facts are no longer 
represented as such, and their logical value is ascertained by querying objects in the 
model.  The fact base is thus dissolved in an object-oriented model of the world.  
This operation is so natural that objects crept into rule-based formalisms (in a 
rudimentary form) as early as OPS-5.  
 As a consequence, the main rule-based knowledge representation systems 
(KEE, ART, and later systems) all have a strong object-oriented component.  These 
object formalisms, however, have usually been defined to suit the reasoning process 
and rely on frames rather than on objects in the sense of object-oriented 
programming (e.g., Smalltalk).  Accordingly, they are more complex than the 
standard structures of object-oriented programming languages, i.e., class/instance 
and inheritance mechanisms.  Even when they are defined using such a language, 
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they usually constitute an additional layer on top of the "autochtonous" objects of the 
language. 
 We proceeded in the reverse direction, starting with a standard object-
oriented language and adding to it a rule-based layer that was "thin" and "seamless" 
as possible.  Our aim was to enrich the class/instance paradigm with rule-based 
deductive mechanisms.  In order to benefit from the work of others we chose 
Smalltalk-80 as the language for our system, NéOpus (42). 
 Indeed, forward-chaining rules may be considered a natural extension of 
ordinary object-oriented programming.  An object-oriented program operates a 
series of updates of a certain set of instances that constitutes a model of the world. 
Much in the same way, rule-based programming (in its forward-chaining version) 
uniquely relies on repeatedly updating the fact base (this is no longer true for 
backward-chaining).  The equation "fact base = model of the world" links the two 
techniques.  Their basic difference is only in the control structure, which is rigidly 
procedural (stack discipline) for object-oriented programming and non-deterministic 
for rules.  Yelland (53) contended that this warranted abandoning rules in his 
Smalltalk-based knowledge representation system.  Based on our experience with 
NéOpus, we feel on the contrary that this difference does not prevent rules and 
methods from cooperating smoothly, but rather is precisely the reason why 
introduction of rules into an object-oriented environment is worthwhile. 
 
 

5. Three Modes of Knowledge Reuse 
 
 We propose three main categories of limited reuse, which are represented 
using three embedded mechanisms addressing three different levels of granularity: 1) 
class inheritance, 2) combination inheritance/rules, and 3) rule base inheritance.  We 
will illustrate these three mechanisms with various examples extracted from medical 
expertise for mechanical ventilation management.  To facilitate understanding of our 
examples, we will first describe the medical problem. 
 

5.1. The medical problem 
 
 Mechanical assistance provided to a patient with respiratory insufficiency 
must be well adapted to his or her physiological needs: an excessive level of 
assistance results in unacceptable hyperventilation and an inadequate level imposes 
extra work on the patient's respiratory muscles.  The clinician must assess the 
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respiratory comfort of the patient and the time-course of his or her ventilation and 
must select the ventilator settings accordingly.  A second task of the clinician is to 
reduce mechanical assistance gradually until the patient is able to breathe alone.  
This is known as the weaning process .  This process can be complex, especially in 
patients who have been on prolonged mechanical ventilation.  In such cases, the 
clinician relies on the considerable expertise that he or she acquired during long 
clinical practice.  The patient's ability to breathe alone must be assessed before 
disconnection from the ventilator, in order to avoid repeated connections and 
disconnections. 
 To facilitate and improve the weaning process, we designed the knowledge-
based system called NéoGanesh.  It is based on the knowledge of weaning 
management acquired by the clinical staff of the Intensive Care Unit at the Henri 
Mondor Hospital.  In contrast to other systems (26,48), our system deals with a 
voluntarily limited problem: 1) only one mode of ventilation is managed by the 
system, i.e., pressure support ventilation (PSV); 2) patients ventilated with the 
system must have spontaneous respiratory activity.  These limitations allowed us to 
design a closed-loop system that controls the ventilator without any intervention by 
the clinician.   
 
 

5.2. Class Inheritance to Refine the Expertise 
 
 We will describe in detail how class inheritance allows to take into account 
small variations in several specific situations encountered in mechanical ventilation 
management. 
 
5.2.1. Small Variations According to the Context of Application 
 When interpreting data, it is essential to consider the context in which the 
data were collected.  In an analysis of the basic nature of the diagnostic process, 
Rasmussen (46) pointed out that diagnostic judgment does not consist in theoretical 
categorization of observed data but rather in a search for several alternatives, which 
can be separated depending on the actual context of decision making.  In medical 
reasoning, the notion of context is central for interpreting physiological parameters. 
 
 One of the first systems that introduced explicit management of context is VM 
(20), a precursor system designed to interpret on-line physiological data in intensive 
care units.  In VM, physiological data are represented symbolically, with each 
symbol representing a particular range of values (such as "acceptable" or "low").  As 
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pointed out by Fagan, the meaning of a given symbol varies as the patient moves 
from state to state.  To specify symbolic interpretations for each parameter in the 
context of a particular therapeutic state, VM uses initializing rules that are invoked 
when a state transition is detected.  These rules assign symbols to the ranges 
corresponding to the new context.  For example, the rule "initialize-CMV" sets the 
"acceptable" range for "mean arterial pressure" to the interval [88 torr - 95 torr] as 
soon as the patient is placed on controlled mechanical ventilation (CMV).  The 
problem with this architecture is that the various sets of ranges are defined 
independently from each other.  When a new set of ranges has to be defined, the 
ranges of all the symbols must be systematically specified. 
 
 Class inheritance can substantially reduce the quantity of information needed, 
by factoring out the ranges that do not change.  In our context, the sets of ranges 
correspond to various expectations of the internist regarding data measurement 
results.  Representing expectations by classes (RespiratoryExpectation) allows 
to simplify the representation and assignment of symbolic ranges.  Each 
RespiratoryExpectation is represented by a class, which redefines only the 
range for the context-dependent parameters (see Figure 1).  The other ranges are 
inherited.  When a transition to a new mode is detected, the clinician changes 
his/her expectations to classify the current ventilation of the patient. 
 

RespiratoryExpectation

ToCmv

ToVolume

ToAssist

ToTpiece

ToTpiece-FromVolume

heartRate
meanArterialPressure
ph ...

 
Figure 1 : The figure shows a hierarchy of expectations about the patient's physiological parameters 
when the ventilator is switched to a new mode, i.e., to Controlled Mandatory Ventilation (ToCMV), 
Volume Controlled Ventilation (ToVolume), or Assisted Ventilation (ToAssist), when the patient is 
placed directly on a T-piece (ToTpiece), or when the patient is placed on a T-piece after a period of 
volume-controlled ventilation (ToTpiece-FromVolume) (adapted from (26)).  

 
5.2.2. Representing the Taxonomy of Possible Solutions - Part 1 
 Well-structured diagnostic problems can be solved by the method of heuristic 
classification.  This method involves three steps: 1) abstraction from input data; 2) 
association with a taxonomy of possible solutions; and 3) refinement of the collection 
of potential solutions (10).  Embedding classification mechanisms into object-
oriented languages is not, however, a trivial task. Yelland (53) for instance, proposed 
a scheme for integration of subsumption mechanisms smoothly integrated with 
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object structures.  The main problem with these powerful mechanisms is that they 
are not complete (for ex., see (27) for an evaluation of various terminological 
systems).  In our context, we believe that the sophistication of subsumption 
mechanisms is not needed, since the collection of potential solutions is to support 
only limited extensions.   Instead, we propose use of class inheritance to represent the 
taxonomy of possible solutions (see Figure 2). 
 In NéoGanesh, each class is characterized by a set of constraints, to which 
patient's data is matched for classification.  For instance, to diagnose the current 
respiratory state of a patient, clinicians use three main parameters: respiratory rate 
(RR), volume inspired at each breath (Vt), and pressure of carbon dioxide at the end 
of expiration (PetCO2).  Consequently, the class Normal, which represents normal 
ventilation, is characterized by the following set of constraints (expressed as a 
Boolean expression):  
 

Constraint for class "Normal" 

 Vt > 250 AND 

 (RR < 28 AND RR > 12) AND 
 PetCO2 < 55 

 
 The classification process consists in comparing a given ventilation state 
(represented by an instance of class MeasuredVentilation) in a patient to the 
solution classes.  Instead of systematically matching against all the classes in the 
taxonomy, solution classes are grouped into several collections, each of which 
represents a particular combination of available parameters.  For instance, the 
solution classes that require parameters Vt, RR, and PetCO2 are: Normal, 
Tachypnea, Bradypnea, SevereTachypnea, and so forth.   This collection of 
classes is represented as a method (called standardSolutionList) defined in the 
class that represents the current clinician (Intensivist).  Other collections include 
fineSolutionsList, rawSolutionsList and so forth. 
 

RespiratoryState

Normal Tachypnea Bradypnea Insufficient

FineNormal

TidalVolume
PetCO
RespiratoryRate

2

RawNormal

OcclusionPressure

Devices

Alarm, Data, Port

MonitorVeolar Banalyzer

Monitor
MonitoredParam

OcclusionPressure
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Figure 2. The left-hand panel shows a part of the set of solution classes used by the intensivist to 
classify the patient's ventilation.  This taxonomy is refined when a new combination of available 
parameters is introduced.  Several classes of monitors are defined (right-hand panel). Each class of 
monitor measures different physiological parameters.  The class of the monitor (among other things) 
determines the list of the solution classes that will be used to classify the patient's respiratory status. 

 
5.2.3. Representing the Taxonomy of Possible Solutions - Part 2 
 The definition attached to each element of the taxonomy of solutions, as well 
as the thresholds used for interpreting physiological data, may vary according to the 
patient's characteristics (sex, age, and diagnosis), the clinical context, or the 
physician.  Several short examples extracted from different areas of medical 
expertise will show how class inheritance and encapsulation allow to introduce such 
variations. 
 Refinement of the potential solutions may depend on the availability of 
certain data.  To characterize the patient's respiratory state with greater precision, 
we can add a measure called occlusion pressure (P0.1), which reflects the effort that 
the patient must supply to trigger mechanical assistance.  To represent this new 
piece of information, we added to the NéoGanesh taxonomy new solution classes 
with constraints that explicitly refer to this new data.  For instance, the additional 
solution class FineNormal is a subclass of Normal with the following constraints: 
 

Constraint for class "FineNormal" 

 VT > 250 AND 

 (RR < 28 AND RR > 12) AND 
 PetCO2 < 55 AND 

 P0.1 > -3 

 
 Similarly, we individualized Tachypnea subclass FineTachypnea, 
characterized by a constraint with an additional condition on P0.1.  This new list of 
solution classes is represented as a new method (fineSolutionsList) in class 
Intensivist. 
 This scheme for refining the solution class taxonomy can also be used to 
represent a lack of information.  For instance, a bad signal from the gas analyzer does 
not allow to obtain reliable PetCO2 data.  To account for this lack of information, we 
introduce a new collection of solution classes in our taxonomy 
(rawSolutionsList).  This list include class RawNormal (another subclass of 
Normal) whose constraint does not include the condition on PetCO2; class 
RawInsufficient and so forth (see Figure 2). 
 Any combination of available data is represented by a list of classes, each of 
which represents a particular constraint on the values of available data. Whereas the 
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number of classes increases exponentially in theory, in practice only classes 
representing relevant sets of available data are represented. In NéoGanesh, the 
following classes have been introduced to date: 
• normalSolutionList = Normal, Tachypnea, SevereTachypnea, Bradypnea, 

Insufficient, HyperVentilation; 
• rawSolutionsList = RawNormal, Tachypnea, SevereTachypnea, RawInsufficient, 

HyperVentilation; 
• fineSolutionsList = FineNormal, Tachypnea, SevereTachypnea, FineInsufficient, 

HyperVentilation, Bradypnea. 
Note that all combinations of classes are not necessarily present. For instance, the list 
rawSolutionsList does not contain hypothetical classes RawTachypnea or 
RawSevereTachypnea, which do not make sense since parameter PetCO2 is not 
used in the constraints attached to the corresponding classes (Tachypnea and 
SevereTachypnea). 
 The choice of the list of solution classes to be used for classification is, 
therefore, determined by the set of available parameters, which is in turn directly 
provided by the class of the monitor used. 
 

5.3.  Combining Inheritance with Rules 
 The preceding examples show how inheritance can be used to factor 
information.  Class inheritance can also be used in conjunction with rules, yielding 
another dimension of limited reuse.  This is achieved in NéOpus by so-called 
"natural typing" of rule variables.  The idea behind natural typing is to allow the 
pattern-matcher to consider direct instances as well as instances of subclasses to be 
matched by rule variables for a given rule.  The interpretation of a rule is, therefore, 
dynamic, since 1) the condition and action parts of the rules are entirely expressed in 
terms of messages sent to the matched objects; and 2) the messages are redefined in 
subclasses.  In other words, the rules are context-dependent where the context is 
represented by the set of objects that match the rule.  More precisely, let r be a rule 
that declares n variables vi (i=1, n). and Ci be the class declared for vi.  If each Ci 
has ki concrete subclasses, the total number of possibly different interpretations of r 
is Πki  (i = 1, n).  In practice, if r has 3 variables and each declared class has 5 
concrete subclasses, then r has 53 = 125 possibly different interpretations!  The figure 
3 illustrates the notion of natural typing. 
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Figure 3. A rule with the corresponding class hierarchies.  The rule should be read as follows: For any 
v1, instance of class Class1, v2 instance of Class2 and v3 instance of Class3, if "v1 mess1" and "v2 
mess: v3" evaluate to true, then evaluate "v3 mess3".  The rule uses three messages (mess1 
through mess3) that are defined and redefined in the classes of the corresponding hierarchies. 

 
5.3.1. Example of the Use of Natural Typing 
 At LDS Hospital (Salt Lake City, USA), East et al. (18) developed 
computerized protocols to assist clinicians with the difficult task of ventilating 
mechanically patients with Acute Respiratory Distress Syndrome (ARDS).  They 
evaluated the arterial oxygenation of the patient by means of PaO2 measurement to 
determine the best therapy approach.  If barotrauma is diagnosed, lower arterial 
pressure of oxygen (PaO2) are tolerated and steps are taken to reduce alveolar 
pressures. This tolerance allows to shorten therapy.  
 To introduce new thresholds for tolerance, we reify the references of PaO2 
(see Figure 4, left) to allow their modification by subclassing.  Specific objects 
(Strategy) may be used to specify, in the rules, all aspects of the intensivist's 
attitude (definition for oxygenation classification, size of therapy change and 
frequency).  The intensivist adopts the relevant strategy depending of the 
examination of supine chest radiographs (for instance detection of barotrauma).  The 
chosen strategy defines the values of reference (PaO2Reference) that should be 
used for classifying PaO2.  Then the rules, which are used for arterial oxygenation 
classification, match all subclasses of PaO2Reference (see example on Figure 4, 
right).  Thanks to inheritance and encapsulation, conditions part of rules are differently 
interpreted depending on the nature of the matched object representing a PaO2 
reference. 
 

r1 
 | Class1 v1. Class2 v2. Class3 v3 | 
  If  v1 mess1. 
       v2 mess2: v3. 
  Then  v3 mess3. 

Class1  

•   •   

•   •   

Class2  

•   •   
•   •   •   •   

Class3 

•   •   

•   •   •   
mess1 

mess1 

mess1 

mess2: 

mess3 
mess3 mess2: 

mess2: 
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PulmonaryReferences

PaO  Reference2

PaO  Low
2

PaO  High
2

defines:
low, moderate, high

defines:
veryLow, veryHigh

redefines: low, moderate redefines: high, moderate

acceptableOxygenation
|MeasuredVentilation vent. PaO2Reference reference|

vent paO2 > reference low.
vent paO2 < reference moderate.

then
Oxygenation new acceptable.

 
Figure 4: Left: gradual introduction of modification of thresholds for arterial pressure of oxygen 
classification.  Right: an example of rule to classify arterial oxygenation.  Methods low and 
moderate, which return corresponding threshold values, are redefined in subclasses of 
PaO2Reference. 

 
5.3.2. More on Thresholds 
 The thresholds used by the intensivist to classify the ventilation are 
dependent on patient's characteristics, especially the physiological disturbances.  
Figure 5 shows a hierarchy of disorders.  Figure 6 shows a rule that uses this 
hierarchy in combination with the hierarchy of intensivist classes (see Figure 7).  The 
rule indicates that higher respiratory rates should be tolerated in patients with 
conditions that imply neurologic alterations (Cf. method 
frequencyToleranceFor).  This method modifies the ventilation models 
accordingly. Again, inheritance and encapsulation are used to interpret the rule 
depending on the context: here, the context is defined by the set of objects matched 
by the rule, i.e., the intensivist, the patient, and the disorder. 
 

Disorder

RespDisorder

COPD

NeuroDisorder

ARDS Meningitis Coma

Pulmonary
   edema

Asthma

Pneumonia

Pulmonary Tuberculosis

Meningo-
encephalitis

Cerebral
 hemorrhage

MusDisorder

Myopathy

Diaphragm paralysis
HeartDisorder

Cardiogenic shock

Cardiac surgery

Endocarditis Left heart failure

Heart failure

Polyradioculoneuritis

Myasthenia

Aspergillosis

Pneumocystis carinii
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Figure 5: An example of taxonomy of some disorders in intensive care unit patients.  Each class of the 
inheritance tree redefines method impliesNeurologicAlterations, used in rule of Figure 6. 

 
5.3.3. Variations among Physicians 
  Here is a third typical example of the use of natural typing in the 
NéoGanesh knowledge base to represent variations across physicians. 
 

tolerateHighRRForNeuroDisorders 
 |Intensivist expert. Patient patient. Disorder disorder| 

 expert takesCareFor: patient. 
 patient hasDisorder: disorder. 
 disorder impliesNeurologicAlterations. 
then 
 expert frequencyToleranceFor: disorder. 

 
Figure 6: An example of  rule that adapts interpretation for Respiratory Rate (RR) measurement in the 
context of a neurologic disorder.  Note also that method frequencyToleranceFor: is redefined in 
subclasses of class Intensivist. 

 
 Various strategies can be used to adapt the rate of assistance reduction to the 
improvement in the patient's condition.  In VIE-VENT (33), an open-loop system for 
the control of ventilation in paediatrics, three different strategies for withdrawing 
mechanical assistance (called weaning strategies) are available, depending on the 
psychological characteristics of the physician: conservative, normal, or aggressive. In 
each strategy, parameters to be considered, tolerance of variations, and intervals 
between invasive blood gas determinations are different.  
 

Physician

Clinician

diagnosis, ...

Intensivist

observationFor:
minimalAssistanceFor:

observationFor:
minimalAssistanceFor:

CreteilIntensivist

SpecificIntensivist

observationFor:
minimalAssistanceFor:

observationFor:
minimalAssistanceFor:

LDSIntensivist
observationFor:
minimalAssistanceFor:

 
Figure 7: The hierarchy of physicians. 

 
 NéoGanesh offers two weaning strategies.  A patient must tolerate minimal 
assistance during a certain period of time to be declared weanable.  In the first 
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strategy (the standard strategy), the duration of the observation period is fixed 
automatically by checking the level of assistance required by the patient after one 
hour of ventilation: if the level is less than 15 cmH2O the period is 2 hours, or the 
period is 12 hours if the level is higher than 15 cmH2O.  The second strategy is 
"open", i.e. the clinician in charge of the patient can customize the strategy to his/her 
preferences regarding duration, level of assistance, and tolerance of instabilities.   
 

endOfObservation 
 |Intensivist expert. Patient patient. Ventilator ventilator. 
 Local state| 
 ventilator connectedTo: patient. 
 expert takesCareOf: patient. 
 state := expert expectedStatefor: patient. 
 state isPersistent. 
 state class = PreWeanable. 
 state duration > expert observationFor: patient. 
 ventilator levelOfAssistance = expert minimalAssistanceFor: 
patient. 
then 
 expert expectedFor: patient state: Weanable new. 

Figure 8: An example of rule for the weaning strategy.  The methods observationFor: and 
minimalAssistanceFor: are redefined in subclasses of  Intensivist. 

 
 These two strategies are represented by two different subclasses of class 
Intensivist: CreteilIntensivist for the standard strategy and 
SpecificIntensivist for the open strategy (see Figure 7). These two subclasses 
redefine the methods understood by intensivist objects that appear in the condition 
parts of observation strategy rules (see Figure 8 for an example). Note that the same 
design could be used to represent the three strategies of VIE-VENT. 
 
5.3.4. Another Example of Natural Typing: Management of Time 
 In most medical knowledge-based systems, the course of the disease is 
divided into several phases.  These phases may correspond to steps in the treatment 
(e.g., in cholesterol-lowering treatment (47) or respiratory assistance (20)) or to 
various states of time-course of the patient's condition (such as hemodynamic states 
(12), (32)).  In each phase, specific rules are applied. 
 Recently, we have proposed a model for temporal reasoning representation in 
real-time systems (17).  This model is based on temporal abstractions that allow 
observations to be interpreted incrementally as they are acquired.  Two mechanisms 
are used: aggregation of similar situations and forgetting non-relevant, redundant, or 
out of date information.  Activation of these two mechanisms is context-dependent.   
 Context change and time management are taken into account using our 
combination of class inheritance and rules.  This is achieved by 1) reifying phases to 
build a hierarchy of classes representing various significant phases in the course of 
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the disease and, 2) introducing an explicit management of time that accounts for 
state changes and time-courses. 
 

TemporalObject

State

RespiratoryState

PreWeanable

ExpectedState

Maintain

Weanable

Restoration

 
Figure 9: Part of the hierarchy of temporal objects in NéoGanesh. 
 

 Temporal objects are time-stamped entities, used to develop a temporal 
discourse about the time-course of the patient's ventilation.   One of the goals of 
medical reasoning is to assess the stability of ventilation over periods of time, the 
duration of instabilities, and the persistence of inadequate therapies. Thus, the 
clinician seeks to perceive significant changes between successive observed states or 
successive expected states. This perception of changes is, of course, context-
dependent: for instance, the notions of similarity and dissimilarity  between states 
depends on the class of the states compared. This is, once again, represented by 
methods attached to the corresponding subclasses of TemporalObject.  Figure 9 
shows parts of the hierarchy of temporal objects used in NéoGanesh. 
RespiratoryState represents the ventilation status of the patient.  
ExpectedState represents the future patient respiratory state anticipated by the 
physician.  Figure 10 shows a rule taken from the rule base that handles perception 
of change. 
 

partialContinuity 
|State s1 s2 s3. Duration d1| 
 s3 persistent. 
 s1 similarTo: s3. 
 s2 dissimilarTo: s3. 
 s2 between: s1 and: s3. 
 s2 duration <= d1. 
then 
 s1 validDuring: s3 duration. 

Figure 10: A rule that aggregates two disjoint states (s1 and s3), separated by an instability (s2) 
considered short enough to be discarded.  This rule matches all the instances of State and of its 
subclasses. 
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5.4. Representing Control 
 
 Decision-making models are usually structured as a sequence of tasks.  
Oxygenation protocols for controlled positive pressure ventilation (18) require a 
sequence of tasks, e.g., data acquisition, oxygenation classification protocol, core 
protocol, and therapy instruction for the user.  Similarly, the treatment of anemic 
patients is organized into several steps.  In Therapy Advisor (44), a system applied 
to this complex therapeutic problem, each inferential step of the model of therapy 
planning is represented by a frame, which i placed inside an agenda, and metarules 
manage the execution of each inferential step.  NéoGanesh contains a complex 
sequencing function for reasoning (see details in the section 6.2.3).  However, the 
normative sequence can be broken by heuristics in specific situations.  Thus, 
availability of an explicit representation of the sequence is important to allow 
modification of the sequence according to the context.  
 
 

badTherapy 
 |ClinicEvaluator evaluator.| 
 evaluator status =#loop. 
 evaluator currentStrategy = #standard. 
 evaluator case class = Restoration. 
 evaluator case durationInExpertise > e case diagostician 
toleranceInstabilities.  
 
then 
 evaluator case diagnostician changesTherapyTo: #specific 

 
pbWithClassification 
 |ClinicEvaluator evaluator | 
 evaluator status = #loop. 
 evaluator currentStrategy = #specific. 
 evaluator case class = Restoration. 
 evaluator case durationInExpertise > e case diagostician 
toleranceInstabilities. 
then 
 evaluator case diagnostician checkModelsForClassification. 

Figure 11: The metarule badTherapy states that when a expected state (restoration of a normal 
ventilation) is not reached despite some actions, the clinician in charge has to change his/her therapy.  
The metarule pbWithClassification indicates that if the problem is persistent in spite of a 
modification of the therapy, the clinician must verify the model used to classify the ventilation in 
order to adapt it if needed the observed data. 

 
 We use objects called Evaluators to reify the state of the current reasoning 
process at a given time and production rules (called metarules) to represent the 
control inference.  In reifying the control, several aspects of the control can be 
explicitly specified.  Metarules match evaluator objects to intervene on the deductive 
process.   
 Stop-rules controlling termination of a search are not usually formulated 
explicitly (46).  When evaluator objects are used, this is no longer the case. 
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Evaluators own a specific stop condition.  Thus, a metarule can stop the reasoning 
process when a stop condition is satisfied.  In the ventilation classification, a stop 
condition, which is true when the input data match a respiratory model, is attached 
to an evaluator.  Classification is stopped when the evaluator condition is true as 
indicated by a metarule (see Figure 11).  By subclassing class Evaluator, specific 
control objects can be introduced.  For instance, EvaluatorAgenda contains a list 
of packs of rules that represents the sequencing of inferential steps.  Meta-rules are 
used to recognize whether or not a step has been performed, the outcome, and 
which step must be taken next.   
 An expert switches between different strategies by transitions that are cued by 
observed data. At the meta level, we describe the change of strategy.  Thus, the 
strategies change dynamically during the decision process (see Figure 11).  
 
 

5.5. Rule Base Inheritance 
 
 We introduce a third level of representation of limited reuse: Rule Base 
Inheritance (RBI).  RBI allows to gradually specify the context of application of rules 
by matching objects that are relevant for this context. 
 
5.5.1. The Mechanism 
 In our representation framework (NéOpus), rules are grouped in rule bases, 
which are represented as abstract classes. The idea of transposing the class 
inheritance mechanism to rule bases flows naturally from this. In an earlier paper 
(40), we described a scheme for transposing the intuition of class inheritance to rule 
bases. In this scheme, each rule base can be defined as a sub-base of an existing rule 
base, and therefore inherits all its rules. An overriding mechanism, based on rule 
names, allows a rule base to redefine an inherited rule into a more specific rule. This 
scheme is based on static propagation of rule compilation to sub-bases, together with 
a particular control strategy (RBI strategy) aimed at ensuring that, in case of conflict, 
rules defined in the lowest sub-base will be selected. 
 There are indeed several advantages in providing rule bases with an inheritance 
mechanism. This approach provides a high level scheme for organizing rules, allows 
to factor out common rules, and simplifies control strategy specification. We will 
show here how RBI can be used to provide explicit contextual dependency of 
medical knowledge. 
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5.5.2. RBI for Context Dependency in Temporal Reasoning 
 Figure 12 shows an example of a rule base inheritance tree in NéoGanesh.  In 
this example, inheritance is used to gradually introduce context-dependency in 
temporal reasoning. 
 

 NéOpusRuleBas

TemporalManageme
continuity 
partialContinuity ... 

VentilationEvolutio

extendedAggregation 

extendedAggregatio
successfulWeaning 

WeaningEvolutio

partialContinuity 

 
Figure 12: An inheritance tree of rule bases. 

 
 At the highest level, rule base TemporalManagement contains rules that 
define the perception of time (continuity and discontinuity between successive 
events) in a use-neutral manner.  These rules match general temporal objects 
(instances of class State).  Rule base VentilationEvolution is then introduced to 
refine this general-purpose temporal reasoning in a way that is specific to ventilation 
management.  VentilationEvolution is defined as a sub-base of 
TemporalManagement, and therefore inherits all the general-purpose rules, via the 
RBI mechanism.  Moreover, VentilationEvolution redefines some inherited 
rules (such as partialContinuity) and adds specific rules (such as 
extendedAggregation).  Rules defined or redefined in 
VentilationEvolution match more specific objects (instances of class 
RespiratoryState instead of the general State class, see Figure 13). 
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partialContinuity (redefined in VentilationEvolution) 
 |RespiratoryState s1 s2 s3| 
 s3 persistent. 
 s1 similarTo: s3. 
 s2 dissimilarTo: s3. 
 s2 between: s1 and: s3. 
 s2 durationInExpertise <= 1. 
 s3 durationInExpertise > 1. 
then 
 s1 validDuring: s3 duration. 

Figure 13: Rule partialContinuity is redefined in a sub-base of TemporalManagement.  The 
rule matches specialized objects (RespiratoryState instead of State in the first version of the 
rule) and redefines the condition part.  The rule indicates that two disjoint respiratory states, 
separated by an instability that lasts less than 1 expertise cycle, can be aggregated. 

 
 Similarly, the rule base WeaningEvolution applies to situations (modelled 
by Weanable class, a subclass of RespiratoryState) in which the patient is on 
the verge of breathing without assistance, and is therefore a sub-base of 
VentilationEvolution.  The rule extendedAggregation (inherited from 
VentilationEvolution) is redefined to tolerate moderate ventilation 
instabilities.  Rule successfulWeaning indicates that the patient can be extubated.  
At this level, rules match only instances of class Weanable. 
 
5.5.3. Example: Variations in the Therapy (planification of actions) 
 RBI is also used to represent different therapeutic strategies depending on the 
context.  In NéoGanesh, rule base TherapeuticActionRules (see Figure 14) 
represents the standard therapy.  It groups the rules that define the specific actions 
to be performed on the ventilator at the end of the reasoning.  Rules ActTachypnea 
and ActInsufficient increase the level of assistance in the event of tachypnea or 
insufficient ventilation, respectively; rule ActHyperventilation decreases 
assistance in the event of hyperventilation; and so on.  Rule ActNormal maintains 
the current level of assistance if the patient's ventilation is normal.   
 

 NéOpusRuleSe

TherapeuticActionRule

PreWeaningActionRule

WeaningActionRule

ActInsufficient 
ActTachypnea 
ActHyperventilation 
ActSeveraTachypnea 
ActNormal 

ActNormal 
MinimalAssistance 

ActNormal 
MinimalAssistance 

SpecificActionRules 
ActInsufficient 
ActTachypnea 

 
Figure 14: An inheritance tree of rule bases for therapeutic actions. 
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 However, some strategies must redefine some actions on the ventilator.  For 
instance, the Preweaning strategy is used to test the ability of the patient to breathe 
without external assistance.  When Preweaning is active, the level of assistance must 
be set to the minimal value, if the patient's ventilation is normal.  This peculiarity is 
represented simply by using RBI.  PreweaningActionRules is defined as a sub-
base of TherapeuticActions (see Figure 14), and therefore inherits all rules that 
represent the standard therapy. The rule base redefines rule ActNormal (see Figure 
15). 
 Similarly, rule base WeaningActionRules contains knowledge to be used 
when ventilation deteriorates suddenly after the patient was declared weanable. 
SpecificActions represents a strategy to accentuate assistance modifications in 
specific situations. These variations are also represented using RBI and rule 
redefinition. 
 

actNormal (TherapeuticActionRules) 
|Intensivist expert. Patient patient. Ventilator ventilator| 
ventilator connectedTo: patient. 
expert takesCareOf: patient. 
patient ventilation isNormal. 
then 
expert doeNotChangeAssistanceOn: ventilator. 

 
actNormal (PreweaningActionRules) 
|Intensivist expert. Patient patient. Ventilator ventilator| 
ventilator connectedTo: patient. 
expert takesCareOf: patient. 
patient ventilation isNormal. 
ventilator levelOfAssistance > expert minimalAssistanceFor:patient 
then 
expert placesMinimumAssistanceFor: patient on: ventilator. 

Figure 15: Rule ActNormal inherits from TherapeuticActionRules is redefined in 
PreweaningActionRules rule base. 

 
 

6. Application of our Methodology: the NéoGanesh System 
 
 To demonstrate that our methodology is practical, we will supply additional 
concrete details on the NéoGanesh system in this section. 
 

6.1. The NéoGanesh System 
 
 NéoGanesh continuously monitors ventilation, respiratory rate (RR), tidal 
volume (Vt), and end-tidal CO2 pressure (PetCO2).  The level of pressure support 
(PS) provided to the patient is used to evaluate the quality of the respiratory system.  
All these parameters are obtained from external devices via serial communication 
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(Rr, Vt, PS are obtained from a ventilator and PetCO2, from a CO2 analyzer).  The 
system modifies the ventilator settings (PS and ventilatory mode), also via serial 
communication.  It is connected to a ventilator Veolar [Hamilton Switzerland] and a 
CO2 analyzer (Novametrics 1250, US). NéoGanesh works on a PC compatible using 
Smalltalk-80 (under Windows 3.1 environment) with NéOpus.  The interface was 
designed using the Model View Controller paradigm (22).  By acting on the mouse, 
the user feeds information about the patient into the system and launches a 
ventilation expert consultation.  A simulation mode is also available to enable the 
user to interact with the system and to modify physiological parameters, in order to 
test typical situations.   
 The average duration of one cycle of reasoning is about 1 second on a PC/486, 
and 2 minutes are required for data acquisition (sample frequency 0.1 Hz).  A typical 
session with a patient controlled by the system involves about 350 reasoning cycles 
(one day).  
 
6.1.1. Clinical Results 
 NéoGanesh is a prototype in use at the Henri Mondor Hospital.  NéoGanesh 
has ventilated more than sixty patients with promising clinical results.  A first 
clinical study (19 patients) showed that the system was able to adapt assistance to 
patients' needs while gradually lowering the level of assistance, thereby facilitating 
the weaning process (14).  In second study (38 patients), NéoGanesh improved the 
prediction of weaning outcomes, as compared with conventional practice (16).  
These results incited us to undertake our current clinical studies in larger 
populations of patients to confirm the validity of our approach. 
 

6.2. Knowledge Representation 
 
 In conformity with our epistemological position (see §3), our system design is 
based on three knowledge layers: the domain layer, which includes objects defined 
by Smalltalk classes; the inference layer, represented by forward-chaining rules; and 
the control layer represented by metarules used to control the firing of rules. 
 
6.2.1. The domain objects 
 The system includes a representation of every real object involved in the 
ventilation process.  We defined 81 classes and about 350 methods to describe the 
medical problem. We will now describe the most important class, i.e., the 
Intensivist class, a subclass of the Clinician class. 
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The intensivist can modify the settings of the ventilator. His/her knowledge is 
represented by production rules, as explained in the next section.  The intensivist 
object responds to messages that evaluate the patient's status, such as 
currentDiagnosis, which represents the state of ventilation (an instance of class 
Normal, Tachypnea, ...), and severity, which depends on the level of assistance 
needed by the patient.  The intensivist object also manages various thresholds 
needed to qualify correct ventilation (e.g., frequencyReference that returns an 
interval with the lower and upper limits for the considered patient, or 
observationFor that defines the duration of observation before decreasing 
assistance; see Figure 8).  These messages are used in the conditions parts of the rules 
that implement the intensivist’s knowledge. 
 
 
6.2.2. The Rules  
 In our system, the knowledge of the intensivist is represented by NéOpus 
rules, operating in forward-chaining and grouped in rule bases.  The system contains 
eleven rule bases.  Seven rule bases, containing a total of twenty-one rules, are 
dedicated to the diagnosis of current ventilation and to the definition of therapy.  
For these rules, conditions parts typically test the values of the physiological data, 
information about the patient, or the time-course of the patient's ventilation (see 
Figures 6, 8, and 15), using the messages defined in the corresponding classes.  The 
rule actions set the intensivist object in motion, leading to side-effects, such as 
modifications of the overall check-up and adaptation of assistance (see Figure 14).  
Rule bases dealing with planification of actions are organized in an RBI hierarchy 
(Cf. Section 5.5.3).  In this hierarchy, five rules are inherited and seven are redefined 
in sub-bases. 
Four rule bases are dedicated to the representation of temporal reasoning.  These 
rule bases are organized in an RBI hierarchy (Cf. Section 5.5.2).  They contain a total 
of twenty rules (four are inherited in sub-bases and six are redefined in sub-bases). 
 
6.2.3. The  Control 
 In NéoGanesh, the control of reasoning is a complex task.  The reasoning has 
a sequential structure and several tasks must be ordered.  However, in alarming 
situations (bradypnea, persistent apnea, and patient disconnection) the sequencing 
must be broken and a set of heuristic is used to short-cut several inferential steps.  
The control strategies were introduced explicitly using the declarative representation 
of control and RBI for meta bases.  A total of nine meta bases were defined.  Figure 
16 shows a part of the inheritance tree of rule bases and meta bases.  The metarules 
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at the lowest level (MetaClinicAlarms) are triggered preferentially to rules from 
higher levels.  They represent control metarules for alarming situations.  Meta base 
MetaClinicProtocols contains metarules that deal with the sequencing of the 
reasoning.  Note that the three first levels are independent of the application. 

RespiratoryAnalysis MetaAlarms

MetaClinicProtocol

MetaProtocols

Control
[ domain rules ]

[alarm meta-rules]

[ handles dynamic sequencing ]

[ handles sequencing with protocols ]

Rule base
Inheritance DefaultMeta

[ default meta behavior ]

controls

MetaProtocolsOneShot

[ handles one shot firing for 
rules in protocols ]

NeOpusRuleBase

Procedural
control

 
Figure 16: This figure shows an excerpt of the hierarchy of meta bases (at right) and the hierarchy of 
rule bases (at left) in NéoGanesh.  Bold rectangles indicate rule bases specific to the domain.  Other 
rule bases and meta bases are generic. 

 
 To control reasoning for diagnosis and definition of therapy, eighteen 
metarules are defined (five are inherited and nine are redefined in sub-bases).  For 
control of temporal reasoning nineteen metarules are defined (five are inherited and 
eleven are redefined in sub-bases). 
 
 

7. Discussion 
 
 We will discuss the disadvantages and advantages of our methodology as 
compared with other approaches. 
 

7.1. Problems with Declarative Knowledge Representation 
 
 Our approach directed by the classical object-oriented perspective (so-called 
message passing) has been challenged by knowledge representation specialists (for 
ex., see (38,43)).  Objects are viewed as closed entities that can be addressed only via 
the interface defined by their class.  In particular, obtaining the logical value of their 
properties requires the use of procedures that must be explicitly defined in their 
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class, whereas in a frame-based model one has direct access to the slots, which are 
felt to carry semantic information. 
 Indeed, the encapsulation principle gets in the way by hiding the object 
structure (looked upon as mere implementation detail by software engineers) and 
hampers the declarative and explicative capacities of the system.  This problem is 
visible in at least two places in the NéOpus system and requires additional 
information from the programmer: 1) it creates a need for declaring explicitly which 
objects have significantly changed their state as a consequence of rule firing (the 
modified action) (41) and 2) it makes it impossible to elicit the goal of a rule from 
its text, creating a need for an additional field in the rule format to provide this type 
of information (which we have called an assertion in (41)).  These characteristics are 
clearly at variance with the principles of declarative knowledge representation.  
However, we feel that the benefit gained from potentially applying rules to the 
whole universe of object-oriented models created by object-oriented programmers 
justifies these departures from generally accepted principles. 
 

7.2. Real-Time Aspects 
 
 Intelligent monitoring systems must work in real time. In our application, 
time constraints are weak because ventilation processes are slow (respiratory rate is 
less than 0,5 Hz; in alarming cases, a response time of 1 or 2 seconds is tolerated).  
Thus, the sophisticated management of memory (automatic garbage collection) 
implemented in the current version of Smalltalk (ParcPlace Smalltalk) is sufficient 
for our application because no unexpected garbage collecting disturbs the working 
process. 
 

7.3. Uniformity of the representation framework 
 
 It is now commonplace in AI applications to mix different orthogonal 
representation or programming languages.  In the Protégé-II project, Shahar et al. 
(49) used CLIPS to represent planning and temporal abstractions by production 
rules, as well as the CLIPS object-oriented language extension (COOL) to represent 
the planning-entity and parameters-properties ontology, and the C language to 
develop an interface with an external database.  Quaglini et al. (44) combined KEE 
production rules and Common Lisp to represent domain knowledge, as well as an 
extra language (TellAndAsk) to represent control knowledge. 
 Linking different representation formalisms introduces a well known 
"language mismatch" that seriously hampers the declarative aspects of the resulting 
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system, as well as its capacity to be extended.  Our representation framework, based 
on Smalltalk, reduces this language mismatch problem via thorough integration of 
the underlying language and the rules.  Our choice of the Smalltalk language also 
allows us to benefit from a fast-growing set of standard interfaces to the external 
world.  In particular, the VisualWorks environment (based on the Smalltalk 
language) provides interface for communication with standard databases, such as 
Oracle, Sybase, or ObjectStore, from a Smalltalk application, using standard query 
languages such as SQL.  
 The programming environment we have described was self-sufficient for the 
design of our application, and we point out that domain and control knowledge are 
expressed with the same formalism. 
 

7.4. Factorization and account for limited reuse and context-dependency 
 
 Via factorization, inheritance can substantially reduce the quantity of 
information needed.  Bagenholm et al. (1) have developed tools and methods for 
creating modular independent knowledge units according to the Arden syntax1. 
They have reported that identical medical knowledge is frequently used in many 
modules.  Without inheritance, authors are confronted with redundancy problems.   
 The importance of "limited reuse" in medical systems encompasses two 
aspects.  First, design and evaluation of medical knowledge-based systems is a long 
iterative process that implies continuous interaction between computer scientists 
and health-care personnel.  Changes in data processing (new physiological 
information required and new algorithms developed), the discovery of deficiencies, 
the development of new strategies for specific medical situations, and user interface 
adaptation, give rise to a large number of limited software modifications.  Second, 
we doubt that it would be feasible (or worthwhile) to achieve strong standardization 
of medical expertise because of 1) the impossibility of justifying all details of an 
expertise based on scientific considerations; 2) the marked domain flexibility of 
variations in vital parameters in response to changes (adaptation); and 3) the human 
tendency to reject excessively narrow frames. 
 Rule-based object-oriented programming offers a suitable representation 
framework for implementing medical applications because of its adaptability to 
small changing requirements.  It allows the integration and the coexistence of 
standardized stable concepts and limited clinical team preferences.   

                                                 
1 The Arden syntax is an attempt to define a standard formalism for representing modular medical 

knowledge bases. 
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 Our representation language is less powerful than more sophisticated design 
formalisms such as KADS, KREST, 1st order logic, or conceptual graphs.  It has the 
disadvantage of precluding "design reuse" (5), since design and implementation are 
combined in a single formalism.  However, since only practically achievable 
functions are designed (and therefore implemented), it does achieve a satisfactory 
level of actual limited reuse, at the code level. 
 

7.5. Epistemological integrity 
 
 Most medical expert systems use frame-based knowledge representation 
environments, such as KEE or ART.  Frames are an object-based formalism that was 
especially defined to represent knowledge declaratively.  In this respect, they are 
more complex structures than those used in object-oriented programming 
languages. However, by definition, attached to each frame are several kinds of 
information, such as information about how to use the frame (35).  Thus, the reified 
world (frames) and the discourse about it (inferences) are closely connected.  We 
believe that, with this approach, the computational level violates the initial 
epistemological requirements about the clear separation between ontology (the 
representation of the medical domain) and the different types of inferences that 
would reflect the proposed epistemological model.  We will illustrate this point with 
an example.  Ramoni et al. (45) have argued that a unique inference model working 
on different ontologies, which represent the conceptual model of entities and 
relationships composing the domain knowledge, can be used to represent medical 
tasks.  In (44), Quaglini et al. applied this model to hematology for the therapy of 
anemic patients. Each therapeutic problem and each therapy is represented by a 
frame.  One of the frame's slots contains the name of the rule class to be invoked for 
assessing the frame's occurrence and testing the frame's appropriateness, 
respectively.  A slot can also contain the name of a metarule class to be triggered.  
Rules present in slots can use values contained in other slots.  Thus, implementation 
introduces complex links between the levels, instead of maintaining a clear 
separation.  We believe that rules should be separated from therapies 1) to make a 
clear distinction between a therapy and its use, which may vary; and 2) to facilitate 
refining or reusing taxonomies of medical entities specific to hematology and 
general knowledge for therapy planning. 
 Thus, rule based object-oriented programming offers an interesting 
alternative to frames in which the separation between levels is enforced.  Moreover, 
simulation - the key principle of object-oriented programming - can be used to 
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evaluate a hypothesis for predicting possible consequences of each plausible therapy 
plan for the patient (31).  
 
 

7.6. Separation of control knowledge 
 
 The control tasks are essential in patient care activities, especially in real time 
domains like intensive care or anaesthesia (13), (51).  It is the clinical context that 
allows clinicians to evaluate therapeutic choices, the acceptability of some 
discrepancies between observed physiological values and normal values, or the total 
modification of actual therapy.  Reification of control objects and inheritance of 
control knowledge allows to adapt individual diagnoses or to switch carefully from 
one action plan to another.  We have proposed an architecture in which control 
knowledge is separated from domain knowledge.  This separation is particularly 
useful in medicine where the same (or almost the same) control knowledge can be 
applied to different domain knowledge modules (e.g., application concerning 
adverse drug ordering (1)).   
 Moreover, an important characteristic of our control architecture is that, by 
construction, meta level for control always prefers control rules (metarules) to 
domain rules.  The basic control loop simply alternates sets of control actions with 
single domain actions.  Hayes-Roth (24) raised several objections to systematic 
preference of control over domain.  At the opposite in blackboard architecture for 
control, knowledge sources of control and knowledge sources of domain 
continuously compete, and no specific priority is given a priori to control.  In practice 
however, problems caused by this flexibility seem to outweigh beneficial aspects. 
 
 

8. Conclusion 
 
 Because we seek to apply AI techniques to the clinical field, where no 
consensus in patient care is presently available, the strategies we use must be 
compared, exchanged, and discussed with the clinical staff of other hospitals with 
different cultures.  Thus, we need an environment where we can integrate, reuse, 
modify, or refine different strategies and test the performances of each.  We propose 
a framework that combines object-oriented programming and production rules to 
achieve this goal. 
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 Few systems provide precise descriptions of the implementation level and of 
practical means used to achieve some forms of reuse.  In this paper, we have shown 
with examples extracted from real clinical expertise 1) how we facilitate reuse of 
critical software components and introduce small variations, which are useful in 
medical contexts; 2) how several expertise areas cohabit for a given model; and 3) 
how the integrity of the conceptual level is preserved. 
 Object-oriented programming can be used successfully to describe rigorously 
some parts of clinical activities, allowing panels of clinical experts to achieve a 
consensus (51).  This reinforces the potential interest of the object-oriented paradigm 
and of production rules association.  The development of large, open health care 
systems might benefit from this approach. 
 The introduction of asynchronous communications between independent 
autonomous reasoning modules may be of interest for a framework for real-time 
intelligent monitoring.  Object-oriented programming can be extended to integrate 
actor language characteristics (for instance (6,28,54) propose actor languages based 
on Smalltalk-80).  We are studying such an extension for the NéoGanesh system. 
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