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Abstract:   

 Automating the control of therapy administered to a patient requires systems 

which integrate knowledge of experienced physicians. This paper describes NéoGanesh, 

a knowledge-based system which controls, in closed-loop, the mechanical assistance 

provided to patients hospitalized in Intensive Care Units. We report on how new 

advances in knowledge representation techniques have been used to model the medical 

expertise. The clinical evaluation shows that such a system discharges the medical staff 

from routine tasks, improves the patient's care, and efficiently supports medical decision 

regarding weaning. To be able to work in closed-loop and to be tested in real medical 

situations, NéoGanesh deals with a voluntarily limited problem. However, embedded in 

a powerful distributed environment, it is intended to support future extensions and 

refinements and to support reuse of knowledge bases. 

 

Keywords:  Intensive-Care Monitoring, Knowledge Representation, Distributed 

Architecture, Closed-Loop Control, Mechanical Ventilation. 
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1. INTRODUCTION 

 There is a growing need for computerized systems able to assist the clinical staff 

in decision making, especially in medical environments such as operating rooms or 

intensive care units (ICUs), where the flow of information is abundant, false positive 

alarms are common and life-threatening situations should be prevented.  These 

intelligent patient monitoring systems must reason about complex situations under real-

time constraints such as resource limitations and guarantee of timely response.  Building 

such systems is a challenging goal for the emerging research area of real-time Artificial 

Intelligence (AI) [31] and more specifically 'adaptive intelligent systems' [22].  This 

paper describes an intelligent patient monitoring system for the automatic control of 

mechanical ventilation. 

 For a number of reasons, including the complexity of medical reasoning, 

interference from noise, considerations of liability, and social and cultural factors, most 

of intelligent patient monitoring systems are open-loop systems with respect to planning 

and control.  Sepia [38] for monitoring patients hospitalized in hemato-oncology 

departments is a good example of such systems.  However, there are specific well-

defined medical problems, in particular planning drug therapy [11] where closed-loop 

systems can be proposed.  Such closed-loop systems can further improve the 

management of patient's care, because they operate continuously on a daily basis. 

 Computers have been used in clinical practice for traditional tasks such as data-

base management, data acquisition and physiological signal processing.  Sophisticated 

systems which might provide advice in the choice of therapy and assistance in diagnosis 

are not yet widely used.  Several such systems are described in the literature, but only a 

few of them are routinely used in clinical practice.  'Intelligent' decision support systems 
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will help the physician to make better clinical decisions but they have yet to be tested at 

the patient’s bedside. 

 Five years ago in collaboration with the ICU of the Henri Mondor Hospital 

(Créteil, France), we started a project to explore the feasibility and the clinical interest of 

a system providing automated control of mechanical ventilation and decision for 

extubation.  We decided that such an intelligent system should be able to 1) handle in 

real-time a huge mass of information about the patient's state, 2) diagnose observed 

situations, 3) predict the evolution of the patient's state, 4) construct action plans with 

prompt reaction in alarming cases and 5) execute planned actions.   

 In this paper we report how new advances in knowledge representation 

techniques, in particular the association of the object-oriented paradigm with 

production rules, temporal reasoning and distribution of knowledge, have been used to 

design the system.  We report on the clinical results obtained with our prototype, called 

NéoGanesh, which has been used to ventilate a large number of patients in our ICU.  To 

be able to work in closed-loop and to be tested in real medical situations, NéoGanesh 

deals with a voluntarily limited problem.  However, embedded in a powerful 

distributed environment, it is intended to support future extensions and refinements 

and to allow reuse of the knowledge bases developed so far. 

 Our paper is structured as follows.  Section 2 defines the medical problem, details 

the different levels of control for the management of mechanical ventilation and briefly 

outlines several systems that address a similar problem.  Section 3 describes the main 

characteristics of the NéoGanesh system.  Section 4 and Section 5 respectively detail the 

distributed architecture of NéoGanesh and how medical expertise is modeled.  Section 6 

is devoted to the clinical results.  Finally, we conclude on the interest of our approach 

and discuss future extensions of NéoGanesh. 
 



 

5 

2. THE CONTROL OF MECHANICAL VENTILATION 

 The mechanical assistance provided to a patient with respiratory insufficiency 

must be well adapted to his or her physiological needs.  The clinician must assess the 

respiratory comfort of the patient and the time-course of his or her ventilation and must 

set the ventilator parameters accordingly.  A second task of the clinician is to reduce 

mechanical assistance gradually until the patient is able to breathe alone.  This task is 

known as the weaning process.   

 During weaning from mechanical ventilation, the respiratory muscles of the 

patients, who are often weakened by denutrition, sepsis, disuse atrophy or electrolyte 

disorders, have to bear high workloads, due to lung infection, high airway resistance 

and the presence of the endotracheal tube and the ventilator circuit.  Therefore, in most 

instances, failure of weaning from mechanical ventilation results from the inability of 

the respiratory muscles to cope with the imposed workload.  This is why modes of 

ventilation designed to support respiratory muscle work have been developed and used 

as means of gradually separating the patient from the ventilator [3, 4, 30].  In the 

Pressure Support Ventilation (PSV) mode, the patient triggers the assistance 

automatically by his inspiratory effort and switches it off on expiration.  Since its 

introduction, PSV has proved to be a useful and practical mode of ventilation. As a 

result, its physiological effects on the breathing pattern have been described more 

extensively than for any other mode of partial respiratory support.  Some guidelines 

have been proposed to use PSV as a full respiratory support and the level of pressure 

needed by the patient has been proposed as a guide to decide for the right moment to 

perform extubation [5, 19].  In addition, a protocol allowing gradual withdrawal from 

mechanical ventilation using this mode has proved to be particularly useful in difficult-

to-wean patients [18].  At best, these strategies need a constant monitoring of the 

ventilated patient, in order to adjust continuously the ventilator settings to the evolution 

of the patient's respiratory state.  For this reason, they may be hard to use in clinical 



 

6 

practice.  To fill this task, we have designed NéoGanesh, a knowledge-based supervisor 

which controls, in closed-loop, the ventilation in the pressure support mode. 

2.1. Different Levels of Control 

 Recent developments in methods of ventilation and computer technology have 

made closed-loop control of ventilation feasible and have the potential to make 

ventilation and weaning safer and more comfortable [29, 42].  In the context on 

mechanical ventilation we identified three levels of control (see Fig. 1).  The complexity 

of the levels and the response time increase from the lowest to the highest level of 

control.  Each level controls the levels below and is controlled by the levels above: 

• The first level (L1) is the generation of the assistance.  L1 is the basic loop of each 

ventilator: it controls the shape of the flow or the pressure sent to the patient by 

driving a servo-valve.  L1 is designed using methods of classical control theory and 

relies on mathematical models of the physical components of the ventilator.  L1 is 

highly  reactive (response time ≈ 1ms.). 

• The second level (L2) determines the mode of ventilation.  L2 monitors a physiological 

parameter and uses it as a variable for the servo-control of a parameter of the 

ventilator.  For instance, the adjustment of the level of PSV on the ventilator 

maintains either minute volume or spontaneous frequency at a specific target level 

fixed by the clinician.  The response time of L2 is approximately of 1 or 2 cycles (few 

seconds).  

Several modalities of automatic control of PSV have been proposed, such as those of 

Hamilton and Taema, with Veolar (MMV: Mandatory Minute Ventilation) and César 

(VAIV: Ventilation en Aide Inspiratoire Variable VAIV) ventilators respectively, both 

of them based on conventional algorithms.  More sophisticated automatic controllers 

have been proposed (ARIS [7], PAV [47], ALV [28]).  

All these controllers are constructed on a fixed, more or less complex, physiological 

model of the patient using mathematical relations between physiological parameters.  

Clearly, these models cannot be applied to all pathologies and alarming situations 
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where the underlying assumptions of these models are generally no more valid (for 

instance some parameters considered as constant in the model change over time with 

the disease's evolution).  The algorithms they are based on do not reflect the attitude 

of the physician who adapts the therapeutic strategy over time.  

• The third level of control (L3) is the adaptation of the assistance, using information to 

define the current state of the patient and its evolution.  This level of control is 

traditionally realized by the physician and is based on specific medical knowledge 

and is driven by therapeutic strategies.  The response time in this level varies from a 

few seconds in alarming situations to a few minutes in routine patient observation.  

L1 and L2 may be directly assimilated to low-level control and L3 to high-level planning [9].  

 

Models of the Medical Reasoning

L3

Fixed physiological models 

L2Models of control theory
+-

L1

Complexity

Response
Time

ms   1-2
cycles

variable

1 parameter independent
parameters

global view
therapeutic strategies

 
Fig. 1: Different levels of control. 
Thick arrows indicate the control from the highest levels over the lowest levels. Thin arrows indicate the 
information flux (alarms, acknowledgments, ...) which goes through the hierarchy. 
 

 In order to perform a diagnosis, determine a therapy and act on the ventilator, we 

claim that a substantial part of L3 should be integrated in the overall system.  Indeed, 

integrating L3 in the system allows to build a more comprehensive view of the time 

course of the patient's state, thereby giving it the ability to manage several ventilation 

strategies depending on the patient's state.  We show in this paper that a knowledge-

based approach is suitable to model a substantial part of the clinician's expertise 

relevant for L3.  
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2.2. Related research 

 Numerous systems have been proposed in the literature for the management of 

mechanical ventilation.  They  may be classified in two categories:  

- the 'Specialists' try to solve a specific clinical problem.  These systems use clinical 

heuristics and may introduce mathematical models of physiological functions.  Reusing 

these systems in another context could be difficult.  VentEx [39] that recommends 

changes in ventilator settings and Weanpro [45] for the weaning of patients, are recent 

members of this category. 

- the 'General architectures for intelligent monitoring' explore new techniques or concepts 

which might be integrated in future systems.  The short term application of the designed 

prototypes is not envisaged.  VentPlan [37], which combines qualitative and quantitative 

computation in a ventilator-management advisor and Guardian [23], an intelligent agent 

based on a specific control architecture to satisfy real-time constraints, illustrate this 

second category of systems. 

 

 NéoGanesh lies at an intermediate position between these two categories: on one 

hand the goal is to solve a precise clinical problem and to use the system obtained at the 

patient’s bedside; on the other hand the system is constructed on a distributed 

architecture using specific knowledge representation techniques and temporal 

abstractions to facilitate future extensions and reuse of knowledge bases.  

 

3. THE NÉOGANESH SYSTEM 

 NéoGanesh is based on the knowledge of ventilation management acquired by the 

clinical staff of the ICU at the Henri Mondor Hospital (Créteil, France).  In contrast to 

other systems [23, 37], NéoGanesh deals with a voluntarily limited problem: only one 

mode of ventilation is managed by the system, i.e., pressure support ventilation (PSV) 

used to ventilate patients who can have spontaneous respiratory activity.  These 
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limitations allowed us to design a closed-loop system that controls the ventilator without 

any intervention by the clinician and to test it in real clinical situations.  The expected 

advantages of such a system are 1) a 24-hour a day adaptation of respiratory assistance 

to the needs of the patient, 2) a reduced need of monitoring, 3) better weaning 

outcomes, and finally 4) a reduction of the duration of mechanical ventilation. 

3.1. Architecture of  NéoGanesh 

 The global architecture of NéoGanesh, shown on Fig. 2, is designed on the basis 

of the three fundamental abstract tasks in medical reasoning: monitoring, diagnosis and 

therapy planning [35], which may be refined in several subtasks [17].   

 

Ventilator
Data
Processing Classification

Temporal
abstractions

Symbolic
values

Events and States

(Aggregation,...)

RR,Vt
alarms

Actions

Numerical values 

Action
planning

External Information
(about the patient and the therapy )

Gaz Analyzer
PetCO2

 
Fig. 2: Architecture of NéoGanesh. 
 Bold rectangles indicate the different subtasks which constitute NéoGanesh.  
 

NéoGanesh acquires and processes information (data processing subtask) about the 

patient's respiratory state via three parameters: respiratory frequency  (Fr), tidal volume 

(Vt), and end-tidal CO2 pressure (PCO2).  Respiratory frequency is the most important 

index because in many circumstances it is a precise indication of respiratory muscle 

adaptation to the imposed workload [44].  The level of pressure support  provided to the 

patient is used to evaluate the quality of the respiratory system.  All the physiological 

parameters except one, which is obtained from a CO2 analyzer (Novametrics 1260, 

Medical Systems Inc. USA), are measured by the ventilator (Veolar, Hamilton 

Switzerland) which was especially adapted to our study by the manufacturer.  The 

diagnosis task is performed in two subtasks: 1) processed data are classified 
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(classification subtask) to diagnose the current respiratory state of the patient and 2) 

temporal abstractions are then generated (temporal abstraction subtask) to assess the 

time course of the patient's disease.  Finally, the action planning subtask determines the 

therapeutic actions to be performed on the ventilator.  In order to check that the 

therapeutic actions are effective, the planning subtask informs the data processing 

subtask that specific parameters should be acquired.  The actual comparison between 

the expected state of the patient, determined by the planning subtask, and the actual 

state of the patient, as diagnosed by the classification subtask, is performed by the 

temporal abstraction subtask. 

 

Specific information concerning the patient (morphology, type of pathology, ...) and the 

therapy envisaged (kinetic of the decreasing of the assistance, ...) are given by the 

clinician in charge at the initialization of the system.  

3.2. User Interface and Implementation 

 The user interface (see Fig. 3) shows all useful information to the clinical staff i.e. 

respiratory parameters and ventilator settings.  The user interacts with NéoGanesh by 

clicking with a mouse on the buttons of the display. Any action on the keyboard 

receives immediate attention. The interface was kept intentionally simple and 

straightforward, since it has to be used in a real world environment by clinicians who 

are not necessarily familiar with sophisticated user interfaces. 
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Fig. 3 : The user interface of NéoGanesh. 
The window labeled 'Commandes' (Command) is used to start and initialize NéoGanesh. The window 
labeled 'Information Utilisateur' (Information for the Clinician) gives information about the current state of 
the expertise. The window 'Test Communication' (Connected Devices) is used for testing the serial 
communications with the connected devices. The window 'Suivi Patient' (Patient Follow up) consists in 
two parts: 
 - in the left part, the physiological parameters of the patient, Fsp = Respiratory rate, Vt= tidal volume, 
PetCO2= end-expiratory CO2 pressure and Poccl= occlusion pressure (this parameter is monitored but not 
used by the knowledge base in the current version). The number of acquired samples for the calculation of 
a new mean value for each parameter is printed (here equal to 2). 
- in the right part, the settings of the ventilator are shown. Fm (machine frequency) and Vt delivered by the 
machine are nil in the mode chosen i.e. VS, Spontaneous Ventilation with pressure support set to 14 cm 
H2O. 
 
 NéoGanesh runs on a PC-compatible, is implemented using the Smalltalk-80 

language (under Windows 3.1 environment).  It uses the NéOpus system, a first-order 

inference engine embedded in Smalltalk-80 [32] one of the prominent features of which 

is the declarative specification of control with metarules [33].  Every 2 or 5 minutes 

depending on the last action on the ventilator, NéoGanesh diagnoses the current state of 

the patient and may perform an action on the ventilator.  Physiological data are sampled 

at the frequency of 0.1 Hz.  The average duration of one cycle of reasoning is about 1 

second on PC/486 66 MHz.  Technical aspects of NéoGanesh, in particular the 
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satisfaction of real-time constraints, are discussed extensively in [16].  Asynchronous 

communication between independent agents has been implemented using Actalk [2], an 

actor language based on Smalltalk-80.  

 

4. A DISTRIBUTED ARCHITECTURE  

 Distributed Artificial Intelligence and especially multi-agent architecture 

provides a powerful paradigm for the modeling and the development of complex 

systems.  It is based on the decomposition of systems into several interacting and 

autonomous entities.  Recent applications show the growing interest of this paradigm in 

the medical domain [21, 27].  According to the definition of Shoham [40] (1993, p.52), "an 

agent refers to an entity that functions continuously and autonomously in an 

environment in which other processes take place and other agents exist".   To 

facilitate the design and future extensions of NéoGanesh, we have adopted a distributed 

architecture based on the multi-agent paradigm.  Each task of NéoGanesh is associated 

to an agent.  Two agents correspond to tasks not illustrated in Fig. 2 : 

RespiratorManager, which communicates directly with the ventilator, and 

ClinicianAgent which owns information about the patient, the therapeutic strategy 

and exchange information with the real clinician.  Each agent has specific capabilities 

and exchanges information by message-passing.  The Fig. 4a shows the distribution of 

the overall expertise between agents.  The arrows indicate the default flow of 

information between the agents in routine mode, i.e. when no particular alarming event 

occurs.  For example, agent Classifier diagnoses the current state of the patient, and 

indicates to the TemporalReasoner that the current ventilation is Normal.  
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Communication links between agents are dynamically adapted in response to specific 

situations.  For instance the arrows in Fig. 4b show the flow of information in an 

alarming situation: an alarm (no inspiration) is detected by the DataProcessor, then

the Classifier diagnoses an apnea and the ActionPlanner, after receiving this 

information, changes immediately the respiratory mode, initially set to PSV, to 

controlled mechanical ventilation (CMV).   

 

The patient

ActionPlanner

Vt, RR,PCO2

apnea

RespiratorManager

Classifier TemporalReasoner

Respirator

no inspiration CMV mode

DataProcessor

ClinicianAgent

Vt, RR,PCO2

Normal Ventilation Stable ventilation
during the last 2 hours

Decrease the assistance

RespiratorManager

ActionPlanner

Classifier TemporalReasoner

Respirator

The patient

DataProcessor

ClinicianAgent

 

Fig. 4a-4b: Distribution of the medical expertise between agents. 
Fig. 4a (left) : Flow of information in routine mode 
Fig. 4b (right): Flow of information in an alarming situation 
 
All the agents composing NéoGanesh are based on the model detailed below. 

4.1. A Real-Time Agent Model 

 To be useful for real-time domains such as intelligent patient monitoring, multi-

agent systems must (1) handle asynchronous events, (2) manage resource overload and 

time constraints and (3) ensure efficient control of distributed autonomous entities.  

Recently, Z. Guessoum [20] has proposed a hybrid agent model which achieves these 

goals by integrating smoothly so-called reactive abilities (to meet hard deadlines) and 

cognitive abilities (to act rationally by using knowledge and to reach a fixed goal when 

constraints are relaxed).  This model (see Fig. 5) defines agents as 1) a collection of  up to 
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three modules and 2) a supervisor that schedules the interactions between modules.  All 

these modules, as well as the supervisor run concurrently and interact asynchronously.  

Typical modules are the perception module (reactive), the reasoning module (cognitive) 

and the communication/action module (which can be either reactive or cognitive). 

• the perception module manages the interactions between the agent and its 

environment.  It monitors sensors, translates and filters acquired data.  The obtained 

data set is mainly used by the reasoning module. 

• the reasoning module is responsible for generating the adequate answers to the 

messages transmitted by the communication module or to the changes detected by 

the perception module.  It relies on two kinds of capacities: operative, represented by 

the standard behavior of the associated Smalltalk objects, and cognitive, embodied in 

a NéOpus-based asynchronous production system [20].  This production system 

mainly comprises: (1) a rule base which includes objects describing the agent's 

environment and rules representing suitable operations over these objects; (2) an 

inference engine which includes specific coordination mechanisms (see below); and 

(3) a metabase which provides a declarative representation of the control of reasoning. 

• the communication/action module allows the agent to receive and send messages 

asynchronously.  It effects the direct actions (modification of the environment via 

effectors) and indirect actions (information transmission to other agents) as indicated 

by the reasoning module. 
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 Supervision 
Module 

Perception
Module

Reasoning
Module

Environment Agents Environment

Communication
Action 
Module 

 

Fig. 5: The internal architecture of an agent. 
Arrows indicate the flux of information. 
 

The supervisor allows the agent to adapt in real-time its behavior to changes in its 

surrounding world.  It synchronizes the execution of the concurrent actions of the other 

modules.  It is based on states and transitions.  States qualify the context as perceived by 

the other modules, and changes in the context are reflected as transitions between states.  

States and transitions build up an ATN (Augmented Transition Network).  The various 

signals received by the agent's modules represent the conditions of transition and the 

actions of transition change the state of the various modules (activate reasoning, 

terminate reasoning, ...).  When these conditions are satisfied, the transition actions are 

executed and the agent's state is modified.   

  All the agents in NéoGanesh have the same structure described above but they 

differ in several criteria: the presence of a sensor-driving layer, the nature of the know-

how represented, and the domain and control knowledge encoded in the reasoning 

module.  Agents are classified according to these criteria.  The Fig. 6 shows the general 

hierarchy of agent types and indicates the types that correspond to the agents 

composing NéoGanesh.  Note that, for instance, agent DataProcessor has only a simple 

behavior to acquire and process, whereas, agent TemporalReasoner exhibits a complex 
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behavior to appreciate the time-course of the patient's ventilation. 

ActiveObject

BasicAgent

CommunicatingAgent PerceivingAgent

CommunicationReasoningAgent PerceivingReasoningAgent

CommunicationPerceivingReasoningAgent

DataProcessor

ClinicianAgent

TemporalReasoner,  TherapyPlanner, RespiratorManager

Classifier  

Fig. 6: Hierarchy of agents in NéoGanesh. 
Each agent of NéoGanesh (named in italic) belongs to a specific agent type. 
 

4.2. Control Mechanisms 

 We are interested in situations where an agent shares a collection of resources 

with other agents.  Thus, agents must adapt themselves to take advantage of resources 

as needed, but must coordinate their actions to avoid inconsistencies and deadlocks.  

Most recent architectures for patient monitoring [23, 43] are based on the Blackboard 

paradigm.  The control of the reasoning in these systems is centralized: agents (so-called 

knowledge sources) communicate indirectly with each other via a global structure.  We 

consider that the reasoning control strategies must be separated from the domain 

knowledge of each agent and must be managed by the agent itself.  Thus in our model, 

each agent communicates directly with the other agents, and manages its own activity 

(auto-control) while its interactions with the other agents are handled via specific 

coordination mechanisms.  We will now outline these two control levels. 

4.2.1. Auto-Control 
 The auto-control is managed by the supervisor of each agent (adaptative control) 

and the reasoning module (intelligent control).  The supervor uses the ATN described in 
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4.1 to specify the behavior of the agent depending on its internal states and on its 

surouding world.  The reasoning module uses a reflexive architecture to specify 

declaratively the control of the reasoning.  In this reflexive architecture, the execution of 

a rule-base is entirely specified by another rule base called metabase.  The metabase 

provides a declarative specification of rule firing through metarules.  This declarative 

representation of rule firing requires specific control objects  (called Evaluators) which 

reify the state of the reasoning process at a given time [33].  

The Fig. 7 illustrates the two mechanisms used for the auto-control of an agent. 

firing a rule

ATNATNATN

Control
Objects 

 Supervision Module

reading mail box 

Intelligent 
Control

Adaptative 
Control

Perception Module Communication/
Action Module

Rules

Reasoning Module

scanning

Metarules

 

Fig. 7: Control mechanisms internal to the agent. 
The figure shows the two levels of internal control. Arrows indicate the flux of 
information used for controlling the agent's activity. 
 

4.2.2. Coordination Mechanisms 
 At the agents society level between agents, two coordination mechanisms are 

used:  

- a dependency mechanism propagates modifications of information used by several 

agents, 

- an anti-inference mechanism prevents simultaneous modifications of sharable 

information.  Interference exists among two rules if there is a shared object that both 

rules access and at least one of them modifies it.  These mechanisms are detailed in 
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[21].  Briefly, for the dependency mechanism, each agent is provided with a 

dependency graph associating each shared object with the list of other agents which 

use it.  It is updated gradually when rules are triggered and a message is sent to the 

other agents to update their dependency graphs.  For the anti-inference mechanism, we 

add a test in the inference engine of each agent to verify, before triggering a rule, that 

no shared object that is modified by the selected rule is also being modified by some 

other agent.  In this case, the selected rule is triggered, otherwise another fireable rule 

is selected.  The modification of shared objects is apparent from the 'objects-in-use' 

collection owned by each agent and updated before each rule triggering. 

4.3. Concurrency 

 The agent model accommodates several agents and/or modules running on a 

single processor.  To simulate parallelism, we have chosen a process allocation strategy 

at two levels: 1) supervisor level: the agent suspends its activity at the end of each 

transition by the ATN interpreter, and 2) perception, reasoning and communication 

modules level: process control is performed after each rule firing, after each mail box 

reading and at the end of each period of sensor processing. 

 

5. KNOWLEDGE REPRESENTATION IN NÉOGANESH 

 Interpreting data over time is an essential task of diagnostic and control 

processes.  The time course of a process, determined from the evolution of a set of 

representative parameters, is central to predicting its future behavior and to choosing 

actions over time to influence it.  Since the early work in AI, many formal studies have 

been conducted about change and time representation [10, 46].  However, the 
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complexity of temporal constraint propagation algorithms have limited the integration 

of a time manager into real-time systems such as intelligent monitoring systems.  

Moreover, the expressive power of formal approaches is generally insufficient to cope 

for the complexity and variety of real situations.  In the medical domain, specific 

methods may be used for the interpretation of time-ordered physiological data, 

detection of trends or definition of various temporal data abstractions (see [1]).  

5.1. Temporal Reasoning 

 Recently, we have proposed a temporal reasoning model [17], on which 

NéoGanesh is based, in order to introduce an explicit time and change representation 

while ensuring computational tractability.  Our ontology divides the modeled world 

between 'existing' domain atemporal entities that, by essence, have no temporal 

dimension (static description of the world), and temporal entities that are time stamped 

and are used to develop a temporal discourse about the changing world.  We consider 

the recognition of change, which is context-dependent, as the central point in the 

perception of time.  Similarly to Kowalski and Sergot's Event Calculus [25], we consider 

the notions of event, property, time-point and time-interval as primitives and define a 

model of change in which events happen at time-points and initiate and/or terminate 

time-intervals over which some property holds.  We introduce a distinction between 

active proposition (event-type) to represent the occurrence of actions which modify the 

state of the world (such as “increasing the assistance”), and passive properties (state-

type) (such as “patient-is-weanable”).  Thus, we have introduced two basic domain-

independent entities: state and event.  State and Event refine the general concept of

TemporalObject [17] which associates a property with a temporal lapse. They are 
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similar to the notion of time-objects introduced in [24] with a set of temporal, causal and 

structural relations.  A state State(Value, Ival) represents a property whose value 

(Value) holds during the validity interval Ival associated to it.  For instance, an 

assertion such as RespiratoryState(Normal, [t1, t2]) means that the patient's 

ventilation is considered as normal during the period included between the instants t1 

and t2.  The occurrence of an event initiates or terminates a state. According to the 

weak interpretation of Event Calculus, we consider that an event initiates a property if 

this property does not already hold [8].  The assumption of default persistency [25] 

indicates implicitly that all properties are downward-hereditary [41].  In medical 

applications, this is not necessarily true and we introduce the notion of non-convex 

intervals [26] where a property is true but not at each point of the interval.  

 To reason about temporal objects, we introduce two abstraction mechanisms: 

aggregation of similar situations and forgetting of non relevant, redundant, or out-of-date 

information.  These abstractions allow the incremental interpretation of observations as 

they are acquired, and the determination of the expected evolution of the state of the 

patient.  Because perception of changes is context-dependent, these mechanisms are 

activated and adapted depending on the context.  For instance in the context of weaning 

(i.e. the patient is ventilated with a low level of assistance), we tolerate short instabilities 

and interpret situations valid on nonconvex intervals separated by variable gaps. 

5.2. Object-Oriented Rule-Based Programming 

 To represent the medical expertise, including the temporal reasoning aspect, we 

use a hybrid knowledge representation scheme mixing object-oriented programming 

languages and production rules.  By refinement of domain-independent entities and 
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inferences, we added domain-specific knowledge to manage the clinical therapy.  

Thanks to this combination of objects and rules, specific mechanisms allow us to 

represent various dimensions of context-dependency, and facilitate what we have 

defined as limited reuse within a given domain (see details in [14]). 

 Each agent’s reasoning module owns a first order forward chaining rule base 

associated with a metabase.  Classically, classes are used to represent domain concepts 

and relationships among concepts.  For instance, classes Event and State represented 

the basic objects of our temporal ontology, and are subclassed to introduce more specific 

temporal objects (VentDiagnosis or RespiratoryState for instance).  The Fig. 8 shows 

part of the hierarchy of temporal objects, their links and their relations with atemporal 

objects. 

TemporalObject

Event

Action

State Tachypnea

Ventilation

CMV

RespiratoryMode

VentDiagnosis

ActionOnVentilator

Alarm

RespiratoryState

Diagnosis

Bradypnea

VentilatorState

PS

 

Fig. 8: Two hierarchies of temporal and atemporal objects.  
Lines and dashed lines indicate respectively a kind-of relation and a link between temporal and atemporal 
entities. Arrows indicate the relation (initiates or terminates) between Events and States.  
 

 Production rules are used to capture domain knowledge and control knowledge.  

For instance a rule for temporal aggregation may look like the following: 
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Rule aggregation
"The rule indicates that we omit a short instability s2 that
is bounded by two similar states s1 and s3" 

For any s1, s2, s3 instances of RespiratoryState
IF
s3 is persistent.
s1 is similar to s3.
s2 is not similar to s3.
s2 is between s1 and s3.
duration in expertise of s2 <= 1.
duration in expertise of s3 > 1.

then
forget s2.
aggregate s1 and s3

 

 The natural typing mechanism [32] allows the pattern-matcher to consider direct 

instances of a class as well as instances of subclasses to be matched by rule variables for 

a given rule.  Using this mechanism, condition and action parts of rules are dependent 

on the context represented by the set of objects that match the rules.  In our 

representation framework (NéOpus), we transposed the class inheritance mechanism to 

rule bases.  Using this mechanism, called Rule Base Inheritance, a rule base may be 

defined as a sub base of an existing rule base, thereby inheriting all its rules.  Similarly 

to class inheritance, a rule base may only add new rules, or redefine an inherited rule 

into a more specific rule.  Class inheritance and rule base inheritance allow to gradually 

introduce context information in rules, by specifying at each level of the inheritance tree 

only the differences between the rule base and the inherited ruleBase. 

 The declarative control of the reasoning via the use of metarules facilitates the 

specification of the sequencing of tasks and also allow to change the strategy during the 

reasoning [15].  For instance the metarule startWeaning triggers the WeaningPlan 

when specific conditions are met.  In this metarule, c and e represent rule variables, and 

are declared, respectively, as instances of ClinicConflictSet (a specific conflict set) 

and Evaluator (representing the control objects). 
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Metarule startWeaning
"the metarule indicates the conditions to trigger the weaning plan"
For any e instance of Evaluator and c instance of ClinicConflictSet
IF
the status of e is ‘loop’.
c has a rule in protocol ‘startWeaning’.

THEN
c fire rules in protocol ‘startWeaning’.
execute weaning plan. 

 

5.3. The knowledge base in its current state 

 The system includes a representation of every concrete object involved in the 

ventilation process.  We defined 81 classes and about 350 methods to describe the 

medical problem. 

The knowledge of the intensivist is represented by NéOpus rule bases.  The system 

contains eleven rule bases associated to four classes of agents (see Fig. 6).  Seven rule 

bases, containing a total of twenty-one rules, are dedicated to the diagnosis of current 

ventilation and to the definition of therapy.  For these rules, conditions parts typically 

test the values of the physiological data, information about the patient, or the time-

course of the patient's ventilation.  Action parts typically build objects representing the 

diagnosis of the patient or representation of actions on the ventilator.  Rule bases 

dealing with action plans are organized in a rube base inheritance hierarchy.  In this 

hierarchy, five rules are inherited and seven are redefined in sub-bases. 

Four rule bases are dedicated to the representation of temporal reasoning.  These rule 

bases are also organized in an inheritance hierarchy.  They contain a total of twenty 

rules (four are inherited in sub-bases and six are redefined in sub-bases). 

 As outline above, control strategies were introduced explicitly using the 

declarative representation of control and rule base inheritance for metabases.  A total of 

nine metabases were defined.  The control of the diagnosis reasoning and of the 

definition of therapy, is represented by eighteen metarules (five are inherited and nine 

are redefined in sub-bases).  The control of the temporal reasoning requires nineteen 

metarules (five are inherited and eleven are redefined in sub-bases). 
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6. EVALUATION 

 In NéoGanesh, both synchronous communication and asynchronous 

communication between agents are possible, although the latter has not been tested yet 

in a clinical environment.  Preliminary results [21] showed that the response time (the 

elapsed time between the perception of an event and an action on the ventilator) and the 

reaction time (the elapsed time between the perception of an event by DataProcessor 

agent and its processing by the Classifier agent) are shorter with the introduction of 

asynchronous agents than with synchronous communication.  This is reinforced in 

distributing the system on two machines.  

 Automated control systems for mechanical ventilation have the advantage of 

providing 24-hour a day management, potentially allowing continuous adaptation of 

the level of assistance and a reduction of the duration of mechanical ventilation.  It is 

possible to evaluate several aspects of NéoGanesh, reflecting benefits for the patient, 

user or health care institution.  Our evaluation has been a long iterative process.  It 

focused on the quality of the assistance provided by NéoGanesh to the patient and on 

the reliability of the decision about the withdrawal of respiratory assistance.  The 

evaluation of NéoGanesh with synchronous communications between agents has been 

performed at the Henri Mondor Hospital in two steps. 

 The aim of the first step was to evaluate the capability of NéoGanesh to maintain 

the patient in a zone of respiratory comfort defined as: 12 < Respiratory Rate < 28 

cycles/min (or 32 in case of neurologic disorders), tidal volume > 300 ml (or 250 ml for 

patients with weight <= 55 Kg) and end-tidal CO2 pressure < 55 mmHg (or 65 in case of 

COPD).  Patients (n=19) were divided in two groups according to their results to a 
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battery of tests: Group 1 (n=10) which gathered good candidates for the weaning and 

Group 2 (n=9) which gathered more severe patients considered as bad candidates for 

the weaning.  Patients in Group 1 were kept out of critical zones (respiratory rate <12 

breaths/min, or respiratory rate > 35 breaths/min or tidal volume < 300 ml) for 99% of 

the duration of total ventilation and patients in Group 2 for 90% of this duration.  We 

have presented the details of this evaluation in [12]. 

 In a second study, 5 patients were ventilated randomly 24 hours with and 

without NéoGanesh.  Results show (see Fig. 9) that NéoGanesh maintained the patients 

within a comfortable zone of ventilation during 91±8% of the total duration of the 

ventilation, compared to 71±18% without it.  Patients spent 4±7% of the total duration in 

severe situations compared to 18±15% without the use of the system.   
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Fig. 9: Clinical Results 
 

Globally, patients were ventilated with a similar level of pressure support (18±4 cmH2O 

and 17±6 cmH2O with NéoGanesh and without respectively).  Thus, the system reached 

the goal fixed by the clinician.  
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 When the patient is ventilated with a low level of assistance (9 cmH2O or 5 

cmH2O if the patient is tracheotomized), NéoGanesh may recommend to the clinician to 

wean the patient.  The aim of the second step of the clinical evaluation was to test 

whether NéoGanesh could correctly predict the ability of patients to tolerate total 

withdrawal from respiratory support.  In 38 patients, the suggestions of NéoGanesh 

were compared to a conventional procedure (including tolerance of T-piece).  The 

negative predictive value was identical for the two procedures and equal to 100%.  

However, the positive predictive value of NéoGanesh was 89% versus 77% for the 

conventional procedure.  Details concerning this study have been published in [13].  

 Thus, we conclude that NéoGanesh ensures appropriate patient management 

during the weaning period and improves our ability to predict responses to weaning. 

 

7. CONCLUSION 

 NéoGanesh is based on current AI technologies: sophisticated knowledge 

representation and temporal reasoning in a distributed architecture.  We have chosen an 

environment which combines actors, objects, and production rules.  We fully exploit the 

well known mechanisms of object-oriented programming and by using the inheritance 

mechanism our system can be easily extended. 

 Preliminary clinical studies performed at Henri Mondor Hospital have 

demonstrated that patients show less signs of respiratory discomfort with an automatic 

control of the ventilation (the NéoGanesh system) than without it.  Moreover, the 

diagnosis proposed by this system, concerning the capability of the patient to breathe 

without external assistance, is more efficient than with the usual manual procedure.  
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The extensive use of the system will contribute to its improvement (knowledge encoded, 

enhancement of the data interpretation methods) and will fully validate this new 

technique for automatic supervision of assisted ventilation.  It will directly contribute to 

the definition and test of guidelines for the management of assisted ventilation.  

 Because of the extreme difficulty in defining and in validating appropriate 

physiologic models for patient's ventilation, NéoGanesh relies on the representation of 

expertise acquired over the 10 past years about breathing patterns during acute 

respiratory failure and about pressure support ventilation.  It is useful in a restricted 

medical field: for example heart failure, oxygenation and neurologic problems, which 

may influence weaning, are not taken into account.  The limitations of NéoGanesh are 

also its strength.  Compared to other ventilator-management managers such as 

VentPlan [37] which incorporate mathematical models, it may be implemented in ICU.  

It works in closed-loop at the patient's bedside in contrast to Weanpro [45] or VentEx 

[39].  NéoGanesh constitutes a clinically validated module, the first part of a more 

complex patient monitoring system.  

 We are pursuing our research in several directions.  We are exploring the 

integration of new measurements to better characterize the patient's state [6].  A new 

version of the current system used in our Hospital, relying on an asynchronous 

execution of the agents (implemented with a concurrent programming language), has to 

be extensively tested to measure its performance.  Distribution of knowledge raises 

several specific problems such as  synchronization of agents, resolution of conflicts 

between agents viewpoints and coordination of different temporal reasoning 

mechanisms.  
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 Planning capabilities will also be integrated to our temporal model, to improve 

the quality of the system’s predictions and its capability to dynamically adapt the 

therapeutic strategy.  Temporal scenario recognition appears to be an interesting 

method to reason about time in dynamic process supervision when no mathematical 

model of the process is known to determine its behavior [34].  Planning typically 

requires constraint satisfaction techniques, in our case applied to complex object 

structures.  Recent work on the integration of constraint satisfaction with object-oriented 

languages [36] are directly applicable for this purpose. 
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