
Dojat M. et al. NéoGanesh: a Working System for the Automated Control of Assisted Ventilation in ICUs, Artif. Intell.
in Med., 11 (1997) 97-117.

NéoGanesh: a Working System for the Automated Control of Assisted
Ventilation in ICUs

M. DOJATa, F. PACHETb, Z. GUESSOUMb, D. TOUCHARDa, A. HARFa,c, L.
BROCHARDa,d

aInstitut National de la Santé et de la Recherche Médicale, U.296, Faculté de Médecine 8,
rue du Gal Sarrail 94010 Créteil Cedex, France
bLaboratoire Formes et Intelligence Artificielle, LAFORIA-IBP, Université Paris 6, Boite
169, 4, Place Jussieu, 75252 Paris Cedex, France
cDépartement de Physiologie; dService de Réanimation Médicale, Hôpital Henri
Mondor, Créteil, 51, avenue de Mal de Lattre de Tassigny 94010 Créteil Cedex, France.

Address for correspondence: M. Dojat

INSERM U296 Faculté de Médecine
8, rue du Général Sarrail
94010 Créteil Cedex FRANCE
phone: 33 1 48 98 46 03
fax: 33 1 48 98 17 77
email: dojat@im3.inserm.fr

2

Abstract:

 Automating the control of therapy administered to a patient requires systems

which integrate knowledge of experienced physicians. This paper describes NéoGanesh,

a knowledge-based system which controls, in closed-loop, the mechanical assistance

provided to patients hospitalized in Intensive Care Units. We report on how new

advances in knowledge representation techniques have been used to model the medical

expertise. The clinical evaluation shows that such a system discharges the medical staff

from routine tasks, improves the patient's care, and efficiently supports medical decision

regarding weaning. To be able to work in closed-loop and to be tested in real medical

situations, NéoGanesh deals with a voluntarily limited problem. However, embedded in

a powerful distributed environment, it is intended to support future extensions and

refinements and to support reuse of knowledge bases.

Keywords: Intensive-Care Monitoring, Knowledge Representation, Distributed

Architecture, Closed-Loop Control, Mechanical Ventilation.

3

1. INTRODUCTION

 There is a growing need for computerized systems able to assist the clinical staff

in decision making, especially in medical environments such as operating rooms or

intensive care units (ICUs), where the flow of information is abundant, false positive

alarms are common and life-threatening situations should be prevented. These

intelligent patient monitoring systems must reason about complex situations under real-

time constraints such as resource limitations and guarantee of timely response. Building

such systems is a challenging goal for the emerging research area of real-time Artificial

Intelligence (AI) [31] and more specifically 'adaptive intelligent systems' [22]. This

paper describes an intelligent patient monitoring system for the automatic control of

mechanical ventilation.

 For a number of reasons, including the complexity of medical reasoning,

interference from noise, considerations of liability, and social and cultural factors, most

of intelligent patient monitoring systems are open-loop systems with respect to planning

and control. Sepia [38] for monitoring patients hospitalized in hemato-oncology

departments is a good example of such systems. However, there are specific well-

defined medical problems, in particular planning drug therapy [11] where closed-loop

systems can be proposed. Such closed-loop systems can further improve the

management of patient's care, because they operate continuously on a daily basis.

 Computers have been used in clinical practice for traditional tasks such as data-

base management, data acquisition and physiological signal processing. Sophisticated

systems which might provide advice in the choice of therapy and assistance in diagnosis

are not yet widely used. Several such systems are described in the literature, but only a

few of them are routinely used in clinical practice. 'Intelligent' decision support systems

4

will help the physician to make better clinical decisions but they have yet to be tested at

the patient’s bedside.

 Five years ago in collaboration with the ICU of the Henri Mondor Hospital

(Créteil, France), we started a project to explore the feasibility and the clinical interest of

a system providing automated control of mechanical ventilation and decision for

extubation. We decided that such an intelligent system should be able to 1) handle in

real-time a huge mass of information about the patient's state, 2) diagnose observed

situations, 3) predict the evolution of the patient's state, 4) construct action plans with

prompt reaction in alarming cases and 5) execute planned actions.

 In this paper we report how new advances in knowledge representation

techniques, in particular the association of the object-oriented paradigm with

production rules, temporal reasoning and distribution of knowledge, have been used to

design the system. We report on the clinical results obtained with our prototype, called

NéoGanesh, which has been used to ventilate a large number of patients in our ICU. To

be able to work in closed-loop and to be tested in real medical situations, NéoGanesh

deals with a voluntarily limited problem. However, embedded in a powerful

distributed environment, it is intended to support future extensions and refinements

and to allow reuse of the knowledge bases developed so far.

 Our paper is structured as follows. Section 2 defines the medical problem, details

the different levels of control for the management of mechanical ventilation and briefly

outlines several systems that address a similar problem. Section 3 describes the main

characteristics of the NéoGanesh system. Section 4 and Section 5 respectively detail the

distributed architecture of NéoGanesh and how medical expertise is modeled. Section 6

is devoted to the clinical results. Finally, we conclude on the interest of our approach

and discuss future extensions of NéoGanesh.

5

2. THE CONTROL OF MECHANICAL VENTILATION

 The mechanical assistance provided to a patient with respiratory insufficiency

must be well adapted to his or her physiological needs. The clinician must assess the

respiratory comfort of the patient and the time-course of his or her ventilation and must

set the ventilator parameters accordingly. A second task of the clinician is to reduce

mechanical assistance gradually until the patient is able to breathe alone. This task is

known as the weaning process.

 During weaning from mechanical ventilation, the respiratory muscles of the

patients, who are often weakened by denutrition, sepsis, disuse atrophy or electrolyte

disorders, have to bear high workloads, due to lung infection, high airway resistance

and the presence of the endotracheal tube and the ventilator circuit. Therefore, in most

instances, failure of weaning from mechanical ventilation results from the inability of

the respiratory muscles to cope with the imposed workload. This is why modes of

ventilation designed to support respiratory muscle work have been developed and used

as means of gradually separating the patient from the ventilator [3, 4, 30]. In the

Pressure Support Ventilation (PSV) mode, the patient triggers the assistance

automatically by his inspiratory effort and switches it off on expiration. Since its

introduction, PSV has proved to be a useful and practical mode of ventilation. As a

result, its physiological effects on the breathing pattern have been described more

extensively than for any other mode of partial respiratory support. Some guidelines

have been proposed to use PSV as a full respiratory support and the level of pressure

needed by the patient has been proposed as a guide to decide for the right moment to

perform extubation [5, 19]. In addition, a protocol allowing gradual withdrawal from

mechanical ventilation using this mode has proved to be particularly useful in difficult-

to-wean patients [18]. At best, these strategies need a constant monitoring of the

ventilated patient, in order to adjust continuously the ventilator settings to the evolution

of the patient's respiratory state. For this reason, they may be hard to use in clinical

6

practice. To fill this task, we have designed NéoGanesh, a knowledge-based supervisor

which controls, in closed-loop, the ventilation in the pressure support mode.

2.1. Different Levels of Control

 Recent developments in methods of ventilation and computer technology have

made closed-loop control of ventilation feasible and have the potential to make

ventilation and weaning safer and more comfortable [29, 42]. In the context on

mechanical ventilation we identified three levels of control (see Fig. 1). The complexity

of the levels and the response time increase from the lowest to the highest level of

control. Each level controls the levels below and is controlled by the levels above:

• The first level (L1) is the generation of the assistance. L1 is the basic loop of each

ventilator: it controls the shape of the flow or the pressure sent to the patient by

driving a servo-valve. L1 is designed using methods of classical control theory and

relies on mathematical models of the physical components of the ventilator. L1 is

highly reactive (response time ≈ 1ms.).

• The second level (L2) determines the mode of ventilation. L2 monitors a physiological

parameter and uses it as a variable for the servo-control of a parameter of the

ventilator. For instance, the adjustment of the level of PSV on the ventilator

maintains either minute volume or spontaneous frequency at a specific target level

fixed by the clinician. The response time of L2 is approximately of 1 or 2 cycles (few

seconds).

Several modalities of automatic control of PSV have been proposed, such as those of

Hamilton and Taema, with Veolar (MMV: Mandatory Minute Ventilation) and César

(VAIV: Ventilation en Aide Inspiratoire Variable VAIV) ventilators respectively, both

of them based on conventional algorithms. More sophisticated automatic controllers

have been proposed (ARIS [7], PAV [47], ALV [28]).

All these controllers are constructed on a fixed, more or less complex, physiological

model of the patient using mathematical relations between physiological parameters.

Clearly, these models cannot be applied to all pathologies and alarming situations

7

where the underlying assumptions of these models are generally no more valid (for

instance some parameters considered as constant in the model change over time with

the disease's evolution). The algorithms they are based on do not reflect the attitude

of the physician who adapts the therapeutic strategy over time.

• The third level of control (L3) is the adaptation of the assistance, using information to

define the current state of the patient and its evolution. This level of control is

traditionally realized by the physician and is based on specific medical knowledge

and is driven by therapeutic strategies. The response time in this level varies from a

few seconds in alarming situations to a few minutes in routine patient observation.

L1 and L2 may be directly assimilated to low-level control and L3 to high-level planning [9].

Models of the Medical Reasoning

L3

Fixed physiological models

L2Models of control theory
+-

L1

Complexity

Response
Time

ms 1-2
cycles

variable

1 parameter independent
parameters

global view
therapeutic strategies

Fig. 1: Different levels of control.
Thick arrows indicate the control from the highest levels over the lowest levels. Thin arrows indicate the
information flux (alarms, acknowledgments, ...) which goes through the hierarchy.

 In order to perform a diagnosis, determine a therapy and act on the ventilator, we

claim that a substantial part of L3 should be integrated in the overall system. Indeed,

integrating L3 in the system allows to build a more comprehensive view of the time

course of the patient's state, thereby giving it the ability to manage several ventilation

strategies depending on the patient's state. We show in this paper that a knowledge-

based approach is suitable to model a substantial part of the clinician's expertise

relevant for L3.

8

2.2. Related research

 Numerous systems have been proposed in the literature for the management of

mechanical ventilation. They may be classified in two categories:

- the 'Specialists' try to solve a specific clinical problem. These systems use clinical

heuristics and may introduce mathematical models of physiological functions. Reusing

these systems in another context could be difficult. VentEx [39] that recommends

changes in ventilator settings and Weanpro [45] for the weaning of patients, are recent

members of this category.

- the 'General architectures for intelligent monitoring' explore new techniques or concepts

which might be integrated in future systems. The short term application of the designed

prototypes is not envisaged. VentPlan [37], which combines qualitative and quantitative

computation in a ventilator-management advisor and Guardian [23], an intelligent agent

based on a specific control architecture to satisfy real-time constraints, illustrate this

second category of systems.

 NéoGanesh lies at an intermediate position between these two categories: on one

hand the goal is to solve a precise clinical problem and to use the system obtained at the

patient’s bedside; on the other hand the system is constructed on a distributed

architecture using specific knowledge representation techniques and temporal

abstractions to facilitate future extensions and reuse of knowledge bases.

3. THE NÉOGANESH SYSTEM

 NéoGanesh is based on the knowledge of ventilation management acquired by the

clinical staff of the ICU at the Henri Mondor Hospital (Créteil, France). In contrast to

other systems [23, 37], NéoGanesh deals with a voluntarily limited problem: only one

mode of ventilation is managed by the system, i.e., pressure support ventilation (PSV)

used to ventilate patients who can have spontaneous respiratory activity. These

9

limitations allowed us to design a closed-loop system that controls the ventilator without

any intervention by the clinician and to test it in real clinical situations. The expected

advantages of such a system are 1) a 24-hour a day adaptation of respiratory assistance

to the needs of the patient, 2) a reduced need of monitoring, 3) better weaning

outcomes, and finally 4) a reduction of the duration of mechanical ventilation.

3.1. Architecture of NéoGanesh

 The global architecture of NéoGanesh, shown on Fig. 2, is designed on the basis

of the three fundamental abstract tasks in medical reasoning: monitoring, diagnosis and

therapy planning [35], which may be refined in several subtasks [17].

Ventilator
Data
Processing Classification

Temporal
abstractions

Symbolic
values

Events and States

(Aggregation,...)

RR,Vt
alarms

Actions

Numerical values

Action
planning

External Information
(about the patient and the therapy)

Gaz Analyzer
PetCO2

Fig. 2: Architecture of NéoGanesh.
 Bold rectangles indicate the different subtasks which constitute NéoGanesh.

NéoGanesh acquires and processes information (data processing subtask) about the

patient's respiratory state via three parameters: respiratory frequency (Fr), tidal volume

(Vt), and end-tidal CO2 pressure (PCO2). Respiratory frequency is the most important

index because in many circumstances it is a precise indication of respiratory muscle

adaptation to the imposed workload [44]. The level of pressure support provided to the

patient is used to evaluate the quality of the respiratory system. All the physiological

parameters except one, which is obtained from a CO2 analyzer (Novametrics 1260,

Medical Systems Inc. USA), are measured by the ventilator (Veolar, Hamilton

Switzerland) which was especially adapted to our study by the manufacturer. The

diagnosis task is performed in two subtasks: 1) processed data are classified

10

(classification subtask) to diagnose the current respiratory state of the patient and 2)

temporal abstractions are then generated (temporal abstraction subtask) to assess the

time course of the patient's disease. Finally, the action planning subtask determines the

therapeutic actions to be performed on the ventilator. In order to check that the

therapeutic actions are effective, the planning subtask informs the data processing

subtask that specific parameters should be acquired. The actual comparison between

the expected state of the patient, determined by the planning subtask, and the actual

state of the patient, as diagnosed by the classification subtask, is performed by the

temporal abstraction subtask.

Specific information concerning the patient (morphology, type of pathology, ...) and the

therapy envisaged (kinetic of the decreasing of the assistance, ...) are given by the

clinician in charge at the initialization of the system.

3.2. User Interface and Implementation

 The user interface (see Fig. 3) shows all useful information to the clinical staff i.e.

respiratory parameters and ventilator settings. The user interacts with NéoGanesh by

clicking with a mouse on the buttons of the display. Any action on the keyboard

receives immediate attention. The interface was kept intentionally simple and

straightforward, since it has to be used in a real world environment by clinicians who

are not necessarily familiar with sophisticated user interfaces.

11

Fig. 3 : The user interface of NéoGanesh.
The window labeled 'Commandes' (Command) is used to start and initialize NéoGanesh. The window
labeled 'Information Utilisateur' (Information for the Clinician) gives information about the current state of
the expertise. The window 'Test Communication' (Connected Devices) is used for testing the serial
communications with the connected devices. The window 'Suivi Patient' (Patient Follow up) consists in
two parts:
 - in the left part, the physiological parameters of the patient, Fsp = Respiratory rate, Vt= tidal volume,
PetCO2= end-expiratory CO2 pressure and Poccl= occlusion pressure (this parameter is monitored but not
used by the knowledge base in the current version). The number of acquired samples for the calculation of
a new mean value for each parameter is printed (here equal to 2).
- in the right part, the settings of the ventilator are shown. Fm (machine frequency) and Vt delivered by the
machine are nil in the mode chosen i.e. VS, Spontaneous Ventilation with pressure support set to 14 cm
H2O.

 NéoGanesh runs on a PC-compatible, is implemented using the Smalltalk-80

language (under Windows 3.1 environment). It uses the NéOpus system, a first-order

inference engine embedded in Smalltalk-80 [32] one of the prominent features of which

is the declarative specification of control with metarules [33]. Every 2 or 5 minutes

depending on the last action on the ventilator, NéoGanesh diagnoses the current state of

the patient and may perform an action on the ventilator. Physiological data are sampled

at the frequency of 0.1 Hz. The average duration of one cycle of reasoning is about 1

second on PC/486 66 MHz. Technical aspects of NéoGanesh, in particular the

12

satisfaction of real-time constraints, are discussed extensively in [16]. Asynchronous

communication between independent agents has been implemented using Actalk [2], an

actor language based on Smalltalk-80.

4. A DISTRIBUTED ARCHITECTURE

 Distributed Artificial Intelligence and especially multi-agent architecture

provides a powerful paradigm for the modeling and the development of complex

systems. It is based on the decomposition of systems into several interacting and

autonomous entities. Recent applications show the growing interest of this paradigm in

the medical domain [21, 27]. According to the definition of Shoham [40] (1993, p.52), "an

agent refers to an entity that functions continuously and autonomously in an

environment in which other processes take place and other agents exist". To

facilitate the design and future extensions of NéoGanesh, we have adopted a distributed

architecture based on the multi-agent paradigm. Each task of NéoGanesh is associated

to an agent. Two agents correspond to tasks not illustrated in Fig. 2 :

RespiratorManager, which communicates directly with the ventilator, and

ClinicianAgent which owns information about the patient, the therapeutic strategy

and exchange information with the real clinician. Each agent has specific capabilities

and exchanges information by message-passing. The Fig. 4a shows the distribution of

the overall expertise between agents. The arrows indicate the default flow of

information between the agents in routine mode, i.e. when no particular alarming event

occurs. For example, agent Classifier diagnoses the current state of the patient, and

indicates to the TemporalReasoner that the current ventilation is Normal.

13

Communication links between agents are dynamically adapted in response to specific

situations. For instance the arrows in Fig. 4b show the flow of information in an

alarming situation: an alarm (no inspiration) is detected by the DataProcessor, then

the Classifier diagnoses an apnea and the ActionPlanner, after receiving this

information, changes immediately the respiratory mode, initially set to PSV, to

controlled mechanical ventilation (CMV).

The patient

ActionPlanner

Vt, RR,PCO2

apnea

RespiratorManager

Classifier TemporalReasoner

Respirator

no inspiration CMV mode

DataProcessor

ClinicianAgent

Vt, RR,PCO2

Normal Ventilation Stable ventilation
during the last 2 hours

Decrease the assistance

RespiratorManager

ActionPlanner

Classifier TemporalReasoner

Respirator

The patient

DataProcessor

ClinicianAgent

Fig. 4a-4b: Distribution of the medical expertise between agents.
Fig. 4a (left) : Flow of information in routine mode
Fig. 4b (right): Flow of information in an alarming situation

All the agents composing NéoGanesh are based on the model detailed below.

4.1. A Real-Time Agent Model

 To be useful for real-time domains such as intelligent patient monitoring, multi-

agent systems must (1) handle asynchronous events, (2) manage resource overload and

time constraints and (3) ensure efficient control of distributed autonomous entities.

Recently, Z. Guessoum [20] has proposed a hybrid agent model which achieves these

goals by integrating smoothly so-called reactive abilities (to meet hard deadlines) and

cognitive abilities (to act rationally by using knowledge and to reach a fixed goal when

constraints are relaxed). This model (see Fig. 5) defines agents as 1) a collection of up to

14

three modules and 2) a supervisor that schedules the interactions between modules. All

these modules, as well as the supervisor run concurrently and interact asynchronously.

Typical modules are the perception module (reactive), the reasoning module (cognitive)

and the communication/action module (which can be either reactive or cognitive).

• the perception module manages the interactions between the agent and its

environment. It monitors sensors, translates and filters acquired data. The obtained

data set is mainly used by the reasoning module.

• the reasoning module is responsible for generating the adequate answers to the

messages transmitted by the communication module or to the changes detected by

the perception module. It relies on two kinds of capacities: operative, represented by

the standard behavior of the associated Smalltalk objects, and cognitive, embodied in

a NéOpus-based asynchronous production system [20]. This production system

mainly comprises: (1) a rule base which includes objects describing the agent's

environment and rules representing suitable operations over these objects; (2) an

inference engine which includes specific coordination mechanisms (see below); and

(3) a metabase which provides a declarative representation of the control of reasoning.

• the communication/action module allows the agent to receive and send messages

asynchronously. It effects the direct actions (modification of the environment via

effectors) and indirect actions (information transmission to other agents) as indicated

by the reasoning module.

15

 Supervision
Module

Perception
Module

Reasoning
Module

Environment Agents Environment

Communication
Action
Module

Fig. 5: The internal architecture of an agent.
Arrows indicate the flux of information.

The supervisor allows the agent to adapt in real-time its behavior to changes in its

surrounding world. It synchronizes the execution of the concurrent actions of the other

modules. It is based on states and transitions. States qualify the context as perceived by

the other modules, and changes in the context are reflected as transitions between states.

States and transitions build up an ATN (Augmented Transition Network). The various

signals received by the agent's modules represent the conditions of transition and the

actions of transition change the state of the various modules (activate reasoning,

terminate reasoning, ...). When these conditions are satisfied, the transition actions are

executed and the agent's state is modified.

 All the agents in NéoGanesh have the same structure described above but they

differ in several criteria: the presence of a sensor-driving layer, the nature of the know-

how represented, and the domain and control knowledge encoded in the reasoning

module. Agents are classified according to these criteria. The Fig. 6 shows the general

hierarchy of agent types and indicates the types that correspond to the agents

composing NéoGanesh. Note that, for instance, agent DataProcessor has only a simple

behavior to acquire and process, whereas, agent TemporalReasoner exhibits a complex

16

behavior to appreciate the time-course of the patient's ventilation.

ActiveObject

BasicAgent

CommunicatingAgent PerceivingAgent

CommunicationReasoningAgent PerceivingReasoningAgent

CommunicationPerceivingReasoningAgent

DataProcessor

ClinicianAgent

TemporalReasoner, TherapyPlanner, RespiratorManager

Classifier

Fig. 6: Hierarchy of agents in NéoGanesh.
Each agent of NéoGanesh (named in italic) belongs to a specific agent type.

4.2. Control Mechanisms

 We are interested in situations where an agent shares a collection of resources

with other agents. Thus, agents must adapt themselves to take advantage of resources

as needed, but must coordinate their actions to avoid inconsistencies and deadlocks.

Most recent architectures for patient monitoring [23, 43] are based on the Blackboard

paradigm. The control of the reasoning in these systems is centralized: agents (so-called

knowledge sources) communicate indirectly with each other via a global structure. We

consider that the reasoning control strategies must be separated from the domain

knowledge of each agent and must be managed by the agent itself. Thus in our model,

each agent communicates directly with the other agents, and manages its own activity

(auto-control) while its interactions with the other agents are handled via specific

coordination mechanisms. We will now outline these two control levels.

4.2.1. Auto-Control
 The auto-control is managed by the supervisor of each agent (adaptative control)

and the reasoning module (intelligent control). The supervor uses the ATN described in

17

4.1 to specify the behavior of the agent depending on its internal states and on its

surouding world. The reasoning module uses a reflexive architecture to specify

declaratively the control of the reasoning. In this reflexive architecture, the execution of

a rule-base is entirely specified by another rule base called metabase. The metabase

provides a declarative specification of rule firing through metarules. This declarative

representation of rule firing requires specific control objects (called Evaluators) which

reify the state of the reasoning process at a given time [33].

The Fig. 7 illustrates the two mechanisms used for the auto-control of an agent.

firing a rule

ATNATNATN

Control
Objects

 Supervision Module

reading mail box

Intelligent
Control

Adaptative
Control

Perception Module Communication/
Action Module

Rules

Reasoning Module

scanning

Metarules

Fig. 7: Control mechanisms internal to the agent.
The figure shows the two levels of internal control. Arrows indicate the flux of
information used for controlling the agent's activity.

4.2.2. Coordination Mechanisms
 At the agents society level between agents, two coordination mechanisms are

used:

- a dependency mechanism propagates modifications of information used by several

agents,

- an anti-inference mechanism prevents simultaneous modifications of sharable

information. Interference exists among two rules if there is a shared object that both

rules access and at least one of them modifies it. These mechanisms are detailed in

18

[21]. Briefly, for the dependency mechanism, each agent is provided with a

dependency graph associating each shared object with the list of other agents which

use it. It is updated gradually when rules are triggered and a message is sent to the

other agents to update their dependency graphs. For the anti-inference mechanism, we

add a test in the inference engine of each agent to verify, before triggering a rule, that

no shared object that is modified by the selected rule is also being modified by some

other agent. In this case, the selected rule is triggered, otherwise another fireable rule

is selected. The modification of shared objects is apparent from the 'objects-in-use'

collection owned by each agent and updated before each rule triggering.

4.3. Concurrency

 The agent model accommodates several agents and/or modules running on a

single processor. To simulate parallelism, we have chosen a process allocation strategy

at two levels: 1) supervisor level: the agent suspends its activity at the end of each

transition by the ATN interpreter, and 2) perception, reasoning and communication

modules level: process control is performed after each rule firing, after each mail box

reading and at the end of each period of sensor processing.

5. KNOWLEDGE REPRESENTATION IN NÉOGANESH

 Interpreting data over time is an essential task of diagnostic and control

processes. The time course of a process, determined from the evolution of a set of

representative parameters, is central to predicting its future behavior and to choosing

actions over time to influence it. Since the early work in AI, many formal studies have

been conducted about change and time representation [10, 46]. However, the

19

complexity of temporal constraint propagation algorithms have limited the integration

of a time manager into real-time systems such as intelligent monitoring systems.

Moreover, the expressive power of formal approaches is generally insufficient to cope

for the complexity and variety of real situations. In the medical domain, specific

methods may be used for the interpretation of time-ordered physiological data,

detection of trends or definition of various temporal data abstractions (see [1]).

5.1. Temporal Reasoning

 Recently, we have proposed a temporal reasoning model [17], on which

NéoGanesh is based, in order to introduce an explicit time and change representation

while ensuring computational tractability. Our ontology divides the modeled world

between 'existing' domain atemporal entities that, by essence, have no temporal

dimension (static description of the world), and temporal entities that are time stamped

and are used to develop a temporal discourse about the changing world. We consider

the recognition of change, which is context-dependent, as the central point in the

perception of time. Similarly to Kowalski and Sergot's Event Calculus [25], we consider

the notions of event, property, time-point and time-interval as primitives and define a

model of change in which events happen at time-points and initiate and/or terminate

time-intervals over which some property holds. We introduce a distinction between

active proposition (event-type) to represent the occurrence of actions which modify the

state of the world (such as “increasing the assistance”), and passive properties (state-

type) (such as “patient-is-weanable”). Thus, we have introduced two basic domain-

independent entities: state and event. State and Event refine the general concept of

TemporalObject [17] which associates a property with a temporal lapse. They are

20

similar to the notion of time-objects introduced in [24] with a set of temporal, causal and

structural relations. A state State(Value, Ival) represents a property whose value

(Value) holds during the validity interval Ival associated to it. For instance, an

assertion such as RespiratoryState(Normal, [t1, t2]) means that the patient's

ventilation is considered as normal during the period included between the instants t1

and t2. The occurrence of an event initiates or terminates a state. According to the

weak interpretation of Event Calculus, we consider that an event initiates a property if

this property does not already hold [8]. The assumption of default persistency [25]

indicates implicitly that all properties are downward-hereditary [41]. In medical

applications, this is not necessarily true and we introduce the notion of non-convex

intervals [26] where a property is true but not at each point of the interval.

 To reason about temporal objects, we introduce two abstraction mechanisms:

aggregation of similar situations and forgetting of non relevant, redundant, or out-of-date

information. These abstractions allow the incremental interpretation of observations as

they are acquired, and the determination of the expected evolution of the state of the

patient. Because perception of changes is context-dependent, these mechanisms are

activated and adapted depending on the context. For instance in the context of weaning

(i.e. the patient is ventilated with a low level of assistance), we tolerate short instabilities

and interpret situations valid on nonconvex intervals separated by variable gaps.

5.2. Object-Oriented Rule-Based Programming

 To represent the medical expertise, including the temporal reasoning aspect, we

use a hybrid knowledge representation scheme mixing object-oriented programming

languages and production rules. By refinement of domain-independent entities and

21

inferences, we added domain-specific knowledge to manage the clinical therapy.

Thanks to this combination of objects and rules, specific mechanisms allow us to

represent various dimensions of context-dependency, and facilitate what we have

defined as limited reuse within a given domain (see details in [14]).

 Each agent’s reasoning module owns a first order forward chaining rule base

associated with a metabase. Classically, classes are used to represent domain concepts

and relationships among concepts. For instance, classes Event and State represented

the basic objects of our temporal ontology, and are subclassed to introduce more specific

temporal objects (VentDiagnosis or RespiratoryState for instance). The Fig. 8 shows

part of the hierarchy of temporal objects, their links and their relations with atemporal

objects.

TemporalObject

Event

Action

State Tachypnea

Ventilation

CMV

RespiratoryMode

VentDiagnosis

ActionOnVentilator

Alarm

RespiratoryState

Diagnosis

Bradypnea

VentilatorState

PS

Fig. 8: Two hierarchies of temporal and atemporal objects.
Lines and dashed lines indicate respectively a kind-of relation and a link between temporal and atemporal
entities. Arrows indicate the relation (initiates or terminates) between Events and States.

 Production rules are used to capture domain knowledge and control knowledge.

For instance a rule for temporal aggregation may look like the following:

22

Rule aggregation
"The rule indicates that we omit a short instability s2 that
is bounded by two similar states s1 and s3"

For any s1, s2, s3 instances of RespiratoryState
IF
s3 is persistent.
s1 is similar to s3.
s2 is not similar to s3.
s2 is between s1 and s3.
duration in expertise of s2 <= 1.
duration in expertise of s3 > 1.

then
forget s2.
aggregate s1 and s3

 The natural typing mechanism [32] allows the pattern-matcher to consider direct

instances of a class as well as instances of subclasses to be matched by rule variables for

a given rule. Using this mechanism, condition and action parts of rules are dependent

on the context represented by the set of objects that match the rules. In our

representation framework (NéOpus), we transposed the class inheritance mechanism to

rule bases. Using this mechanism, called Rule Base Inheritance, a rule base may be

defined as a sub base of an existing rule base, thereby inheriting all its rules. Similarly

to class inheritance, a rule base may only add new rules, or redefine an inherited rule

into a more specific rule. Class inheritance and rule base inheritance allow to gradually

introduce context information in rules, by specifying at each level of the inheritance tree

only the differences between the rule base and the inherited ruleBase.

 The declarative control of the reasoning via the use of metarules facilitates the

specification of the sequencing of tasks and also allow to change the strategy during the

reasoning [15]. For instance the metarule startWeaning triggers the WeaningPlan

when specific conditions are met. In this metarule, c and e represent rule variables, and

are declared, respectively, as instances of ClinicConflictSet (a specific conflict set)

and Evaluator (representing the control objects).

23

Metarule startWeaning
"the metarule indicates the conditions to trigger the weaning plan"
For any e instance of Evaluator and c instance of ClinicConflictSet
IF
the status of e is ‘loop’.
c has a rule in protocol ‘startWeaning’.

THEN
c fire rules in protocol ‘startWeaning’.
execute weaning plan.

5.3. The knowledge base in its current state

 The system includes a representation of every concrete object involved in the

ventilation process. We defined 81 classes and about 350 methods to describe the

medical problem.

The knowledge of the intensivist is represented by NéOpus rule bases. The system

contains eleven rule bases associated to four classes of agents (see Fig. 6). Seven rule

bases, containing a total of twenty-one rules, are dedicated to the diagnosis of current

ventilation and to the definition of therapy. For these rules, conditions parts typically

test the values of the physiological data, information about the patient, or the time-

course of the patient's ventilation. Action parts typically build objects representing the

diagnosis of the patient or representation of actions on the ventilator. Rule bases

dealing with action plans are organized in a rube base inheritance hierarchy. In this

hierarchy, five rules are inherited and seven are redefined in sub-bases.

Four rule bases are dedicated to the representation of temporal reasoning. These rule

bases are also organized in an inheritance hierarchy. They contain a total of twenty

rules (four are inherited in sub-bases and six are redefined in sub-bases).

 As outline above, control strategies were introduced explicitly using the

declarative representation of control and rule base inheritance for metabases. A total of

nine metabases were defined. The control of the diagnosis reasoning and of the

definition of therapy, is represented by eighteen metarules (five are inherited and nine

are redefined in sub-bases). The control of the temporal reasoning requires nineteen

metarules (five are inherited and eleven are redefined in sub-bases).

24

6. EVALUATION

 In NéoGanesh, both synchronous communication and asynchronous

communication between agents are possible, although the latter has not been tested yet

in a clinical environment. Preliminary results [21] showed that the response time (the

elapsed time between the perception of an event and an action on the ventilator) and the

reaction time (the elapsed time between the perception of an event by DataProcessor

agent and its processing by the Classifier agent) are shorter with the introduction of

asynchronous agents than with synchronous communication. This is reinforced in

distributing the system on two machines.

 Automated control systems for mechanical ventilation have the advantage of

providing 24-hour a day management, potentially allowing continuous adaptation of

the level of assistance and a reduction of the duration of mechanical ventilation. It is

possible to evaluate several aspects of NéoGanesh, reflecting benefits for the patient,

user or health care institution. Our evaluation has been a long iterative process. It

focused on the quality of the assistance provided by NéoGanesh to the patient and on

the reliability of the decision about the withdrawal of respiratory assistance. The

evaluation of NéoGanesh with synchronous communications between agents has been

performed at the Henri Mondor Hospital in two steps.

 The aim of the first step was to evaluate the capability of NéoGanesh to maintain

the patient in a zone of respiratory comfort defined as: 12 < Respiratory Rate < 28

cycles/min (or 32 in case of neurologic disorders), tidal volume > 300 ml (or 250 ml for

patients with weight <= 55 Kg) and end-tidal CO2 pressure < 55 mmHg (or 65 in case of

COPD). Patients (n=19) were divided in two groups according to their results to a

25

battery of tests: Group 1 (n=10) which gathered good candidates for the weaning and

Group 2 (n=9) which gathered more severe patients considered as bad candidates for

the weaning. Patients in Group 1 were kept out of critical zones (respiratory rate <12

breaths/min, or respiratory rate > 35 breaths/min or tidal volume < 300 ml) for 99% of

the duration of total ventilation and patients in Group 2 for 90% of this duration. We

have presented the details of this evaluation in [12].

 In a second study, 5 patients were ventilated randomly 24 hours with and

without NéoGanesh. Results show (see Fig. 9) that NéoGanesh maintained the patients

within a comfortable zone of ventilation during 91±8% of the total duration of the

ventilation, compared to 71±18% without it. Patients spent 4±7% of the total duration in

severe situations compared to 18±15% without the use of the system.

D
ur

at
io

n
of

 c
om

fo
rt

ab
le

 v
en

til
at

io
n

(in
 %

of
 th

e
to

ta
l d

ur
at

io
n

of
 th

e
ve

nt
ila

tio
n)

0

20

40

60

80

100

1 2 3 4 5
Patients

D
ur

at
io

n
of

 v
en

til
at

io
n

in
 c

ri
tic

al
 si

tu
at

io
ns

(in
 %

 o
f t

he
 to

ta
l d

ur
at

io
n

of
 th

e
ve

nt
ila

tio
n)

Patients

0

10

20

30

40

50

1 2 3 4 5

Fig. 9: Clinical Results

Globally, patients were ventilated with a similar level of pressure support (18±4 cmH2O

and 17±6 cmH2O with NéoGanesh and without respectively). Thus, the system reached

the goal fixed by the clinician.

26

 When the patient is ventilated with a low level of assistance (9 cmH2O or 5

cmH2O if the patient is tracheotomized), NéoGanesh may recommend to the clinician to

wean the patient. The aim of the second step of the clinical evaluation was to test

whether NéoGanesh could correctly predict the ability of patients to tolerate total

withdrawal from respiratory support. In 38 patients, the suggestions of NéoGanesh

were compared to a conventional procedure (including tolerance of T-piece). The

negative predictive value was identical for the two procedures and equal to 100%.

However, the positive predictive value of NéoGanesh was 89% versus 77% for the

conventional procedure. Details concerning this study have been published in [13].

 Thus, we conclude that NéoGanesh ensures appropriate patient management

during the weaning period and improves our ability to predict responses to weaning.

7. CONCLUSION

 NéoGanesh is based on current AI technologies: sophisticated knowledge

representation and temporal reasoning in a distributed architecture. We have chosen an

environment which combines actors, objects, and production rules. We fully exploit the

well known mechanisms of object-oriented programming and by using the inheritance

mechanism our system can be easily extended.

 Preliminary clinical studies performed at Henri Mondor Hospital have

demonstrated that patients show less signs of respiratory discomfort with an automatic

control of the ventilation (the NéoGanesh system) than without it. Moreover, the

diagnosis proposed by this system, concerning the capability of the patient to breathe

without external assistance, is more efficient than with the usual manual procedure.

27

The extensive use of the system will contribute to its improvement (knowledge encoded,

enhancement of the data interpretation methods) and will fully validate this new

technique for automatic supervision of assisted ventilation. It will directly contribute to

the definition and test of guidelines for the management of assisted ventilation.

 Because of the extreme difficulty in defining and in validating appropriate

physiologic models for patient's ventilation, NéoGanesh relies on the representation of

expertise acquired over the 10 past years about breathing patterns during acute

respiratory failure and about pressure support ventilation. It is useful in a restricted

medical field: for example heart failure, oxygenation and neurologic problems, which

may influence weaning, are not taken into account. The limitations of NéoGanesh are

also its strength. Compared to other ventilator-management managers such as

VentPlan [37] which incorporate mathematical models, it may be implemented in ICU.

It works in closed-loop at the patient's bedside in contrast to Weanpro [45] or VentEx

[39]. NéoGanesh constitutes a clinically validated module, the first part of a more

complex patient monitoring system.

 We are pursuing our research in several directions. We are exploring the

integration of new measurements to better characterize the patient's state [6]. A new

version of the current system used in our Hospital, relying on an asynchronous

execution of the agents (implemented with a concurrent programming language), has to

be extensively tested to measure its performance. Distribution of knowledge raises

several specific problems such as synchronization of agents, resolution of conflicts

between agents viewpoints and coordination of different temporal reasoning

mechanisms.

28

 Planning capabilities will also be integrated to our temporal model, to improve

the quality of the system’s predictions and its capability to dynamically adapt the

therapeutic strategy. Temporal scenario recognition appears to be an interesting

method to reason about time in dynamic process supervision when no mathematical

model of the process is known to determine its behavior [34]. Planning typically

requires constraint satisfaction techniques, in our case applied to complex object

structures. Recent work on the integration of constraint satisfaction with object-oriented

languages [36] are directly applicable for this purpose.

ACKNOWLEDGMENTS: This work has been partially financially supported by

Hamilton AG company. We wish to thank Professor Jean-François Perrot for his

stimulating advice and constant encouragement that significantly influenced this work.

8. REFERENCES

[1] Artificial Intelligence in Medicine journal Special Issue on Temporal Reasoning in

Medicine, 8 (1996)

[2] J. P. Briot, Actalk: a testbed for classifying and designing actor languages in the

Smalltalk-80 environment, Proceedings of the European Conference on Object-Oriented

Programming (ECOOP'89) (1989), 109-130.

[3] L. Brochard, A. Harf, H. Lorino and F. Lemaire, Inspiratory pressure support

prevents diaphragmatic fatigue during weaning from mechanical ventilation, Am. Rev.

Respir. Dis. 139 (1989) 513-521.

[4] L. Brochard, F. Pluskwa and F. Lemaire, Improved efficacy of spontaneous breathing

with inspiratory pressure support, Am. Rev. Respir. Dis. 136 (1987) 411-415.

29

[5] L. Brochard, A. Rauss, S. Benito, G. Conti, J. Mancebo, N. Rekik, A. Gasparetto and F.

Lemaire, Comparison of three methods of gradual withdrawal from ventilatory support

during weaning from mechanical ventilation, Am. J. Respir. Crit. Care Med. 150 (1994)

896-903.

[6] J. Carrive, B. Louis, A. Harf and M. Dojat, BioPhony: An open system to measure the

airway area by acoustic reflexion, Proceedings of the eighteenth conference IEEE-EMBS

(1996), 64-65.

[7] M.-C. Chambrin, C. Chopin and K. H. Mangalaboyi, Autoregulated inspiratory

support system, Proceedings of the fourteenth conference IEEE-EMBS (1992), 2419-2420.

[8] L. Chittaro and M. Dojat, Using a general theory of time and change in patient

monitoring: experiment and evaluation, Comput. Biol. Med. (1996) In Press.

[9] T. L. Dean and M. P. Wellman, Planning and control (Morgan Kaufmann, San Mateo

(Ca), 1991).

[10] R. Dechter, I. Meiri and P. Judea, Temporal constraints networks, Artif. Intell., 4

(1991) 61-95.

[11] T. Deutsch, E. Carson and E. Ludwig, Dealing with medical knowledge. Computers in

clinical decision making (Plenum Press, New York, 1994).

[12] M. Dojat, L. Brochard, F. Lemaire and A. Harf, A knowledge-based system for

assisted ventilation of patients in intensive care units, Int. J. Clin. Monit. Comput. 9 (1992)

239-250.

[13] M. Dojat, A. Harf, D. Touchard, M. Laforest, F. Lemaire and L. Brochard, Evaluation

of a knowledge-based system providing ventilatory management and decision for

extubation, Am. J. Respir. Crit. Care Med., 153 (1996) 997-1004.

30

[14] M. Dojat and F. Pachet, Effective domain-dependent reuse in medical knowledge

bases, Comput. Biomed. Res. 28 (1995) 403-432.

[15] M. Dojat and F. Pachet, An extendable knowledge-based system for the control of

mechanical ventilation, Proceedings of the fourteenth conference IEEE-EMBS (1992), 920-921.

[16] M. Dojat and F. Pachet, Representation of a medical expertise using the Smalltalk

environment: putting a prototype to work, in: G. Heeg, B. Magnusson and B. Meyer,

eds., TOOLS 7 (Prentice Hall, New York, 1992) 379-389.

[17] M. Dojat and C. Sayettat, A realistic model for temporal reasoning in real-time

patient monitoring, Appl. Artif. Intell. 10 (1996) 121-143.

[18] P. Ershowsky and B. Krieger, Changes in breathing pattern during pressure support

ventilation, Respir. Care 32 (1987) 1011-1016.

[19] J. F. Fiastro, M. P. Habib and S. F. Quan, Pressure support compensation for

inspiratory work due to endotracheal tubes and demand continuous positive airway

pressure, Chest 93 (1988) 499-505.

[20] Z. Guessoum, Un environnement opérationnel de conception et de réalisation de

systèmes multi-agents, PhD Thesis in Computer Science, University Paris 6, 1996.

[21] Z. Guessoum and M. Dojat, A real-time agent model in an asynchronous object

environment, in: W. Van de Velde and J. W. Perram, eds., Agents Breaking Away

(Springer, Berlin, 1996) 190-203.

[22] B. Hayes-Roth, An architecture for adaptive intelligent systems, Artif. Intell. 72

(1995) 329-365.

31

[23] B. Hayes-Roth, R. Washington, D. Ash, R. Hewett, A. Collinot, A. Vina and A.

Seiver, Guardian: a prototype intelligent agent for intensive care monitoring, Artif. Intell.

in Med. 4 (1992) 165-185.

[24] E. T. Keravnou, Temporal diagnosis reasoning based on time-objects, Artif. Intell. in

Med. 8 (1996) 235-265.

[25] R. A. Kowalski and M. J. Sergot, A logic-based calculus of events, New generation

computing, 4 (1986) 67-95.

[26] P. Ladkin, Time representation: A taxonomy of interval relations, Proceedings of the

sixth National Conference on Artificial Intelligence (1986), Philadelphia, PA, 360-366.

[27] G. Lanzola, S. Falasconi and M. Stefanelli, Cooperative software agents for patient

management, Proceedings of the fifth conference on Artificial Intelligence in Medicine Europe,

AIME'95 (1995), Pavia (It), 25-28 June, 173-184.

[28] T. P. Laubscher, W. Heinrichs, N. Weiler, G. Hartmann and J. X. Brunner, An

adaptive lung ventilation controller, IEEE Trans. Bio. Eng. 41 (1994) 51-58.

[29] D. M. Linton, P. D. Potgieter, S. Davis, A. T. J. Fourie, J. X. Brunner and T. P.

Laubscher, Automatic weaning from mechanical ventilation using an adaptative lung

ventilation controller, Chest 106 (1994) 1843-1850.

[30] N. R. MacIntyre, Respiratory function during pressure support ventilation, Chest 89

(1989) 677-683.

[31] D. J. Musliner, J. A. Hendler, A. K. Agrawala, E. H. Durfee, J. K. Strosnider and C. J.

Paul, The Challenge of Real-Time AI, Computer (1995) 58-66.

[32] F. Pachet, On the embeddability of production rules in object-oriented languages,

JOOP 8 (1995) 19-24.

32

[33] F. Pachet and J. F. Perrot, Rule firing with metarules, Proceedings of the sixth

conference on Software Engineering and Knowledge Engineering (SEKE) (1994), Jurmalia

(Letonie), 322-329.

[34] N. Ramaux and M. Dojat, Temporal scenario recognition for intelligent patient

monitoring, Proceedings of the sixth conference on Artificial Intelligence in Medicine (1997),

Grenoble (Fr), AIME'97. In press.

[35] M. Ramoni, M. Stefanelli, L. Magnani and G. Barosi, An epistemological framework

for medical knowledge-based systems, IEEE Trans Systems, Man, Cybernetics 22 (1992)

1361-1375.

[36] P. Roy and F. Pachet, Reifying constraint satisfaction in Smalltalk, JOOP (1997). In

press.

[37] G. W. Rutledge, G. E. Thomsen, B. R. Farr, M. A. Tovar, J. X. Polaschek, I. A.

Beinlich, L. B. Sheiner and L. M. Fagan, The design and implementation of a ventilator-

management advisor, Artif. Intell. in Med. 5 (1993) 67-82.

[38] B. Séroussi, V. Morice, F. Dreyfus and J. F. Boisvieux, Control theory as a conceptual

framework for intensive care monitoring, Artif. Intell. in Med. 7 (1995) 155-177.

[39] N. Shahsavar, U. Ludwigs, H. Blomqvist, H. Gill, O. Wigertz and G. Matell,

Evaluation of a knowledge-based decision support system for ventilator therapy

management, Artif. Intell. in Med. 7 (1995) 37-52.

[40] Y. Shoham, Agent-oriented programming, Artif. Intell. 60 (1993) 139-159.

[41] Y. Shoham, Temporal logic in AI: semantical and onthological considerations, Artif.

Intell. 33 (1987) 89-104.

33

[42] J. H. Strickland and J. H. Hasson, A computer-controlled ventilator weaning system,

Chest 103 (1993) 1220-1226.

[43] T. I. Sukuvaara, M. E. Sydänmaa, H. O. Nieminen, A. Heikelä and E. M. J. Koski,

Object-oriented implementation of an architecture for patient monitoring, IEEE Eng.

Med. Biol. 12 (1993) 69-81.

[44] M. J. Tobin, W. Perez, S. H. Guenther, B. J. Semmens, M. J. Mador, S. J. Allen, R. F.

Lodato and D. Dantzker, The pattern of breathing during successful and unsuccessful

trials of weaning from mechanical ventilation, Am. Rev. Respir. Dis. 134 (1986) 111-118.

[45] D. A. Tong, Weaning patients from mechanical ventilation. A knowledge-based

system approach, Comput. Meth. Prog. Biomed. 35 (1991) 267-278.

[46] P. Van Beek, Reasoning about qualitative temporal information, Artif. Intell. 58

(1992) 297-326.

[47] M. Younes, Proportional Assist Ventilation, a new approach to ventilatory support,

Am. Res. Respir. Dis. 145 (1992) 114-120.

	INTRODUCTION
	THE CONTROL OF MECHANICAL VENTILATION
	Different Levels of Control
	Related research

	THE NÉOGANESH SYSTEM
	Architecture of NéoGanesh
	User Interface and Implementation

	A DISTRIBUTED ARCHITECTURE
	A Real-Time Agent Model
	Control Mechanisms
	Auto-Control
	Coordination Mechanisms

	Concurrency

	KNOWLEDGE REPRESENTATION IN NÉOGANESH
	Temporal Reasoning
	Object-Oriented Rule-Based Programming
	The knowledge base in its current state

	EVALUATION
	CONCLUSION
	REFERENCES

