
SONY Computer Science Laboratory Paris
6 rue Amyot, 75005 Paris

July 2013

Technical report n° 2013-1

JGuido Library:
Real-Time Score Notation from Raw MIDI Inputs

Fober, D., Kilian, J.F., Pachet, F.

Executive Summary
This Technical Report is a working paper presenting the JGuido Library, a generic, portable
library and C/C++ API for the graphical rendering of musical scores. The report introduces the
library and the context of its implementation. The library is included into MIROR-IMPRO and
MIROR-COMPO software developed by Sony Computer Science Laboratory Paris, and
released in August 2013. The software itself can be downloaded on request, by contacting the authors
here: http://www.csl.sony.fr/contact.php

Acknowledgments

The work described in this report forms part of the European project MIROR Musical
Interaction Relying On Reflexion http://www.mirorproject.eu/ , co-funded by the European
Community under the Information and Communication Technologies (ICT) theme of the
Seventh Framework Programme. (FP7/2007-2013). Grant agreement n° 258338

Sony Computer Science Laboratory Paris Technical Report 2013-1 1

http://www.csl.sony.fr/contact.php
http://www.mirorproject.eu/

Real-Time Score Notation from Raw MIDI Inputs

D. Fober
Grame - Centre national de création musicale

fober@grame.fr

J. F. Kilian
Kilian IT-Consulting
mail@jkilian.de

F. Pachet
Sony CSL

pachet@csl.sony.fr

ABSTRACT

This paper describes tools designed and experiments con-
ducted in the context of MIROR, a European project in-
vestigating adaptive systems for early childhood music ed-
ucation based on the paradigm of reflexive interaction. In
MIROR, music notation is used as the trace of both the user
and the system activity, produced from MIDI instruments.
The task of displaying such raw MIDI inputs and outputs is
difficult as no a priori information is known concerning the
underlying tempo or metrical structure. We describe here a
completely automatic processing chain from the raw MIDI
input to a fully-fledge music notation. The low level mu-
sic description is first converted in a score level descrip-
tion and then automatically rendered as a graphic score.
The whole process is operating in real-time. The paper
describes the various conversion steps and issues, includ-
ing extensions to support score annotations. The process is
validated using about 30,000 musical sequences gathered
from MIROR experiments and made available for public
use.

1. INTRODUCTION

Interactive Reflexive Musical Systems [IRMS] [1]
emerged from experiments in novel forms of man-machine
interactions, in which users essentially manipulate an
”image” of themselves. Traditional approaches in man-
machine interactions consist in designing algorithms and
interfaces that help the user solve a given, predefined task.
Departing from these approaches IRMS are designed with-
out a specific task in mind, but rather as intelligent ”mir-
rors”. Interactions with the users are analyzed by IRMS to
build progressively a model of this user in a given domain
(such as musical performance). The output of an IRMS is a
mimetic response to a user interaction. Target objects (e.g.
melodies) are eventually created as a side-effect of this in-
teraction, rather than as direct products of a co-design by
the user.

This idea took the form of a concrete project dealing with
musical improvisation, The Continuator. The Continua-
tor is able to interactively learn and reproduce music of
”the same style” as a human playing the keyboard, and
it is perceived as a stylistic musical mirror: the musical
phrases generated by the system are similar but different

Copyright: c©2012 D. Fober et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

from those played by the users. It was the first system to
propose a musical style learning algorithm in a purely in-
teractive, real-time context [2]. In a typical session with
the Continuator, a user freely plays musical phrases with a
(MIDI) keyboard, and the system produces an immediate
answer, increasingly close to its musical style (see Figure
1). As the session develops, a dialogue takes place between
the user and the machine, in which the user tries to ”teach”
the machine his/her musical language.

Figure 1. A simple melody (top staff) is continued by the
Continuator in the same style.

Several experiments were conducted with professional
musicians, notably Jazz improvisers [3] and composers
such as György Kurtag. The idea to use the system in a
pedagogical setting, with young children, came naturally.
A series of exploratory experiments were then conducted
to evaluate the impact and the new possibilities offered
by the system in a pedagogical context. The results were
more than promising, triggering a whole series of studies
aiming at further understanding the nature of musical re-
flexive interaction [1]. All these experiments were based
on a constraint-free system and extensions to integrate ex-
plicit pedagogical constraints are developed in the MIROR
project framework.

In this context, the music notation is used as an analytic
tool, reflecting both the children and the system activities.
Although different, another score centered approach has
been conducted in the VEMUS project [4], where the mu-
sic score was used to convey feedback about students per-
formance, using various annotations, including objective
performance representations.

Converting the user and system performances into a mu-
sic score is based on works taking place in the MIR field
[5, 6] and in the music representation [7, 8] and render-
ing domain [9, 10]. The paper presents briefly the differ-
ent systems used for music representation, both at perfor-
mance and notation level. Next it introduces the tools oper-
ating on these representations and shows how they collab-
orate. Annotating the music score at performance time is
part of the features called by the analysis and that required

Sony Computer Science Laboratory Paris Technical Report 2013-1 2

mailto:fober@grame.fr
mailto:mail@jkilian.de
mailto:pachet@csl.sony.fr
http://creativecommons.org/licenses/by/3.0/

to extend the low level music representation and conver-
sion tools. These extensions are described by the section
5. The final section gives concrete uses and experiments
conducted in the context of the MIROR project.

2. MUSIC REPRESENTATION

2.1 Score level

Score level music representation makes use of the GUIDO
Music Notation format which has been presented in [9, 7,
8]. This paper will only recall the basic fundamentals of
the format.

The GUIDO Music Notation [GMN] has been designed
by H. Hoos and K. Hamel more than ten years ago. It is
a general purpose formal language for representing score
level music in a platform independent plain text and hu-
man readable way. It is based on a conceptually simple
but powerful formalism: its design concentrates on general
musical concepts (as opposed to graphical characteristics).

Notes are specified by their name (a b c d e f g b),
optional accidentals (’#’ and ’&’ for sharp and flat), an op-
tional octave number and an optional duration.

Tags are used to represent additional musical informa-
tion, such as meter, clefs, keys, etc. A basic tag has one of
the forms

\tagname
\tagname<param-list>

where param-list is a list of string or numerical argu-
ments, separated by commas (’,’).

A tag may have a time range and be applied to a series of
notes (e.g. slurs, ties, etc.); the corresponding forms are:

\tagname(note-series)
\tagname<param-list>(note-series)

In the following, we’ll refer to position tags for the former
and to range tags for the latter.

A GUIDO score is organized in note sequences delim-
ited by brackets, that represent single-voices. Multi-voiced
scores are described as a list of note sequences separated
by commas as shown by the example below (Figure 2):

{ [e g f], [a e a] }& XÛxxxxxx XÛxxxxxx XÛxxxxxx \& XÛxxxxxx XÛxxxxxx XÛxxxxxx \Figure 2. A multi-voices example

Below is an example of GUIDO notation, describing a
four voices score with the corresponding output (Figure 3).
{
[
\barFormat<"system">
\staff<1> \stemsUp \meter<"2/4">
\intens<"p", dx=1hs,dy=-7hs>
\beam(g2/32 e/16 c*3/32) c/8
\beam(\noteFormat<dx=-0.9hs>(a1/16) c2 f)
\beam(g/32 d/16 h1*3/32) d2/8
\beam(h1/16 d2 g)],

[\staff<1>\stemsDown g1/8 e

f/16 \noteFormat<dx=0.8hs>(g) f a a/8 e
f/16 g f e],

[\staff<2> \meter<"2/4">
\stemsUp a0 f h c1],

[\staff<2> \stemsDown c0 d g {d, a}]
} & 24

p
XÛxxxxxxxXÚhhhhhh
XÛxxxxxxxx XÛxxxxxxxxxx .XÚhhhhhh

XÛxxxxxxjXÚhhhhhh XÛx
xxxxxxxxXÚhhhhhhh
XÛxxxxxxxxXÚhhhhhh
XÛxxxxxxXÚhhhhhhh e? 24 XÛxxxxxxXÚhhhhhh XÛxxxxxxXÚhhhhhh e XÛ

xxxxxxxXÚhhhhhhh
XÛxxxxxxxxx XÛxxxxxxxxx
xx
.XÚhhhhhh
XÛxxxxxxjXÚhhhhhh XÛx
xxxxxxxxxXÚhhhhhhh
XÛxxxxxxxxXÚhhhhhh
XÛxxxxxxXÚhhhhhh \\

XÛxxxxxxXÚhhhhhh _XÛxxxxxxÚhhhhhhhhhh \XX \eeeeee

\\\\\\

\\\\\\

Figure 3. A four voices score.

2.2 Performance level

As representation format for the performance level input
data The Continuator system uses the GUIDO-Low-Level-
Notation (GLN) format.
As specified in [5] GLN has following features:

• text based file format.

• can be used as textual representation of any informa-
tion expressed in a MIDI file.

• the syntax is compatible to GMN, except the usage
of note and rest events is discouraged.

• it supports additional tags, not part of the GMN
specification, e.g., \noteOn.

A simple set of rules is sufficient to convert a binary MIDI
file into the equivalent textual GLN file:

• each track and all events of a single channel of the
MIDI file get mapped to an individual sequence in
the GLN file.

• any control change event of the MIDI file gets rep-
resented by the equivalent GLN tag.

• global control changes in MIDI track 0 get dupli-
cated in every sequence of the GLN file.

• the integer based MIDI note names get converted
into text based GMN pitch information and added
as parameter of a \noteOn or \noteOff tag, e.g.
MIDI pitch 60 gets mapped to c1.

• tick based timing information of the MIDI file gets
converted into empty-note events with absolute tim-
ing (millisconds) in the GLN file.

Example for a GLN file:
{[

\meter<"4/4">
empty*5ms \noteOn<"g1",120>
empty*440ms \noteOn<"a1",120>

Sony Computer Science Laboratory Paris Technical Report 2013-1 3

empty*5ms \noteOn<"c2",120>
empty*4ms \noteOff<"g1",0>
empty*240ms \noteOff<"a1",0>
empty*4ms \noteOff<"c2",0>
empty*1ms \noteOn<"f1",120>
empty*230ms \noteOn<"d1",120>
empty*4ms \noteOff<"f1",0>
empty*1050ms \noteOff<"d1",0>

]}

The parameters of the \noteOn and \noteOff tags are
pitch and intensity (MIDI semantic: 0. . . 127).

3. FROM PERFORMANCE TO SCORE

On an abstract level the process of converting performance
data into score information can be described as inferring
an abstract representation from non-abstract data.
The transcriber has to distinguish between musical inac-
curacies (musical noise) caused by player’s perfection of
interpretation (professionals) or technical imperfection
(beginners).

3.1 Converting GLN to GMN

The here used algorithms for converting low-level sym-
bolic musical data given as GLN string, to score level no-
tation (in GMN format) are based on the approaches and
implementation as described in [5].

The proceeded tasks for the conversion are divided into
separated steps:

• pre-processing: creation of note events and pre-
processing of timing information, similar to ”noise
reduction”.

• voice separation and chord detection.

• ornament detection

• tempo detection

• detection of the time-signature (optional)

• quantisation

• inference of additional score level elements

• output as GMN

The following is meant to be a brief description of the al-
gorithms for these steps as used in the described system.
Refer to [5] for more details and a comparison with other
existing approaches in this areas.

Pre-processing - Before starting with more advanced al-
gorithms for transcribing the low-level data into score-
level notation, associated \noteOn and \noteOff tags in
the input data have to be detected and converted into a note
entity with an onset time and a duration.
This module performs also a merge operation where small
deviations between onsets and offsets of different notes
will be eliminated. Small overlaps between notes will also
be eliminated, primarily by cutting note durations.

The step can be described as noise reduction of the tem-
poral order in the symbolic data. It can significantly in-
crease the ouput quality of the following voice separation
routine.

Voice Separation - The separation of polyphonic in-
put data into voices representing sequences of (non-
overlapping) notes and chords could actually be performed
at any stage of the transcription process - especially before
or after the tempo detection. As shown in [5] the later steps
(e.g. tempo detection, quantisation) evaluate the context
information of notes and depend therefore on the quality
and correctness of this information.

The here used algorithm is capable of finding a range of
voice separations that can be seen as reasonable solutions
in the context of different types of score notation (e.g.,
only monophonic voices, only one voice including chords),
multiple voices and chords. The type of output score (e.g.
monophonic melody, two voice melody, piano score) can
be controlled by a small number of intuitive input parame-
ters for the algorithm. These parameters specify the costs
(or penalty) that certain features of a possible voice lead-
ing (e.g. duration of rests between successive notes, ambi-
tus of a chord, total number of a voice, size of an interval
between successive notes). The optimum solution, i.e. the
output with the minimum costs, is then calculated by a ran-
domised local search algorithm.

In particular because the voice separation algorithm al-
lows the creation of chords, the number of possible solu-
tions increases exponentially. The usage of a simple, brute
force algorithm for comparing all possible solutions for the
voice leading instead of using an advanced optimisation al-
gorithm would drastically reduce the performance of the
implementation.

Ornament Detection - Before performing the remaining
key steps for the transcription (tempo-detection and quan-
tisation) ornamental notes get detected and filtered from
the raw data. The two important effects of this step are:

• small ornamental notes will be hidden from the fol-
lowing steps.

• large groups of ornamental notes (e.g. trills) will ap-
pear as a single, longer note in the following steps.

• the ornaments can be rendered with their correct
symbols, better readable for humans.

Tempo detection - The here implemented approach uses
a combination of pattern matching (structure oriented)
for inferring groupings of notes and statistical analysis
for inferring score information for single notes. The
approach works in two phases: first a pattern matching
between patterns of a database - containing rhythmic
patterns - is performed and then for all regions where no
best matching pattern can be found a statistical tempo
detection, evaluating only single notes, is performed. The
pattern database is read from files in GMN syntax. It is
therefore possible to use or provide patterns that depend
on the individual preference of the users.

Time signature - Because the pattern-based part of the
quantisation approach is based on the time signature of the

Sony Computer Science Laboratory Paris Technical Report 2013-1 4

performance this module is located between tempo detec-
tion and quantisation. If the given input data already in-
cludes valid time signature information the execution of
this module can be skipped.

Quantisation - The quantisation module is implemented
as a context-based, multi-grid quantisation approach in
combination with a pattern-based approach. Because the
output of the system is intended to be a readable or at least
displayable score, the execution of the quantisation mod-
ule is mandatory. This ensures that the output file con-
tains only rhythmical constructs which can be displayed in
regular graphical scores. (For example, a score duration
of 191/192 could not be displayed correctly in a graphical
score.)

Inference of score level elements - Before creating the
GMN output additional elements, like slurs or a key signa-
ture, can be inferred by optional modules in the implemen-
tation.

A key signature gets estimated by analysing the statistical
distribution of the observed intervals. If the key signature
is available a set of heuristic rules for correct pitch spelling
can be applied.

Articulation related score elements - The implementa-
tion includes two rule-based modules for inferring slurs
and staccato information. These modules are based on the
comparison of the given performance data and the inferred
score data and do not require a statistical analysis or spe-
cific algorithmical models.

Output - The final output module converts the internal
data structure into files in GUIDO Music Notation syntax.

4. SCORE RENDERING

In the context of the MIROR project, the actual process-
ing chain that goes from performance to the graphic score
rendering is illustrated in Figure 4.

MIDI2GMN library

Java VM

GLN code GMN code

GUIDO library

JNI

Graphic score

Figure 4. From performance to graphic score.

The system is implemented in Java but the key features -
high level music representation inference and score render-
ing - are provided by C/C++ libraries through Java native
interface [JNI]. Conversion from MIDI to GLN is achieved
at Java level and is not described by this paper. Conver-
sion from GLN to GMN is in charge of the MIDI2GMN
library, an open source project [11] that implements the re-
sults of [5]. The MIDI2GMN library is implemented in
ANSI C++ and can be compiled on any standard operat-
ing systems. Conversion from GMN to a graphic score

is in charge of the GUIDO library, that is also an open
source project [12], result of [10]. The project is also cross-
platform and supports the main operating systems.

The whole processing is efficient enough to run in real-
time i.e. to convert MIDI input to a graphic score while the
user is playing.

5. PERFORMANCE ANNOTATION

It may be convenient to add annotations at performance
time i.e. at GLN level, because the corresponding informa-
tion is available at that time (e.g. to differentiate between
user performance and generated continuations).

Since GLN and GMN share a common syntax, we can
consider adding annotations using existing GMN tags (e.g.
\text<>) interleaved with GLN code, without additional
cost, at least at parsing level. However, this strategy is
not straightforward, due to some fundamental differences
between GLN and GMN to encode the music:

• GLN has no notion of note but a MIDI like semantic
based on pairs of \noteOn and \noteOff

• GLN is organized as sequence of tags separated by
empty-events 1 with no notion of chord or voice
while chords and voices are explicit in GMN.

For most of the cases, GMN tags inserted in GLN code
can be passed through the conversion process without fur-
ther processing. Only a few cases need a special handling
under the form of rewriting rules. In the remainder of this
section, and when describing tags sequence, tag will refer
to GMN position tags and rtag to GMN range tags (see
section 2.1).

5.1 Tags inside a note

GLN describes note events in terms of \noteOn and
\noteOff which allows tag insertion inside a note. While
this shouldn’t be the case for GLN files created directly
from MIDI input, it could occur in the general case or par-
ticularly if the MIDI input gets processed by an advanced
interactive system that adds these tags on purpose.
Since the first operation (see 3.1 Pre-processing) con-
sists in grouping \noteOn \noteOff pairs in single note
events, a decision has to be made for included tags.

Table 1 gives the rewriting rules for the tags included in
notes: it consists in putting the tag outside the note.

GLN sequence GMN sequence
\noteOn tag \noteOff 7→ note tag

\noteOn rtag(\noteOff) 7→ rtag(note)
rtag(\noteOn) \noteOff 7→ rtag(note)

Table 1. Rewriting rules for tags included in notes.

When this rule is applied first, the remaining rules have
only to deal with notes.

1 An empty-event is a GMN event with a duration but no graphical
representation in the score.

Sony Computer Science Laboratory Paris Technical Report 2013-1 5

5.2 Tags inside a chord

Tags of the GLN input may be included into a chord in the
GMN output. In many cases it doesn’t make sense (e.g.
a meter or a key change). Table 2 gives the correspond-
ing rewriting rules: it consists in putting the position tags
outside the chord.

GLN sequence GMN sequence
n1 tag n2 7→ tag chord(n1, n2)

n1 rtag(n2)) 7→ chord(n1, rtag(n2))

Table 2. Rewriting rules for tags included in chords.

5.3 Tags and voice dispatched notes

GMN tags may be related to notes that are dispatched to
different voices, i.e. to different note sequences. It raises
syntactic issues since a range tag can’t cover different se-
quences. Table 3 gives the rewriting rules for tags placed
between voices: position tags remain attached to the next
note and range tags are repeated over voices.

GLN sequence GMN sequence
tag1 nv1 tag2 nv2 7→ [tag1 nv1], [tag2 nv2]
rtag(nv1 nv2)) 7→ [rtag(nv1)], [rtag(nv2)]

Table 3. Rewriting rules for tags included in voice dis-
patched notes.

5.4 Control sequence

A control sequence is a special sequence which content is
duplicated on output, at the beginning of each voice. The
control sequence must be the first sequence of the the GLN
description. It should not contain any noteOn noteOff

tags. It is typically intended to specify information like
meter, key, clef, etc.

5.5 Example

Below is the GLN code of example 2.2 with additional an-
notations:
{[

\title<"Annotations",fsize=16pt>
\meter<"4/4">
empty*5ms \noteOn<"g1",120>
empty*440ms \text<"A">(\noteOn<"a1",120>)
empty*5ms \noteOn<"c2",120>
empty*4ms \noteOff<"g1",0>
empty*240ms \noteOff<"a1",0>
empty*4ms \noteOff<"c2",0>

\noteFormat<color="red">(
empty*1ms \noteOn<"f1",120>
empty*230ms \noteOn<"d1",120>
empty*4ms \noteOff<"f1",0>)
empty*1050ms \noteOff<"d1",0>

]}

The conversion to GMN gives the following (also illus-
trated in Figure 5):

{[
\title<"Annotations",fsize=16pt>
\tempo<"[1/4] =121","1/4=121"> \meter<"4/4">
\i<"ff",0.94> g1/4
\text<"A",dy=17hs>({c2/8, a1/8 })
\noteFormat<color="red">(f1/8 d1/2)

]}

Figure 5. Annotated GLN to GMN conversion result.

6. PEDAGOGIC EXPERIMENTS

The processing chain presented in this paper was integrated
in the MIROR-IMPRO and MIROR-COMPO software de-
veloped in the MIROR project. These software are de-
signed to assist young children in improvisation and com-
position tasks, using the paradigm of reflexive interaction
[13].

The goal of the score display is two-fold. Firstly, score
display, especially when used in real-time, can be an inter-
esting tool to sustain attention and encourage focused lis-
tening and playing behavior in children. Experiments were
conducted to evaluate precisely the impact of visualisation
on children playing styles and will be published shortly.
Secondly, score display is used a posteriori by teachers to
analyse the evolution of the musical skills of children dur-
ing the year.

Technically, more than 30,000 musical sequences played
by children or generated by the system have been success-
fully rendered. Figure 6 and 7 show examples of sequences
typically played by children, both in piano-roll and score
format. It can be observed that these sequences, played by
unskilled people, are particularly complex to render. How-
ever, the score display provides a good approximation of
the musical content that is musically more meaningful than
the piano-roll.

Figure 6. A typical sequence played by children in piano
roll.

Sony Computer Science Laboratory Paris Technical Report 2013-1 6

Figure 7. The score of a typical sequence played by chil-
dren.

7. CONCLUSIONS

We described a processing chain to display high qual-
ity score representation from real-time MIDI input. This
scheme was implemented and used by a Java software
suite for children pedagogy. It proved robust and efficient
enough for experiments involving intensive playing by un-
skilled users, which produce most difficult raw MIDI in-
puts to process.

There is still room for improvements, notably by opti-
mizing the data flow path, i.e. converting MIDI to graphic
score entirely at native level. This would require establish-
ing a bridge between the midi2gmn and GUIDO Engine
libraries.

The proposed extension for music annotation at perfor-
mance level is designed to put together the best from the
high level symbolic representation world with the immedi-
acy of the real-time world.

All the components involved in the conversion and no-
tation process are open source libraries available from
SourceForge.

Acknowledgments

This research has been partially supported by fund-
ing from the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement
#258338.

8. REFERENCES

[1] A.-R. Addessi and F. Pachet, “Experiments with a mu-
sical machine: Musical style replication in 3/5 year old
children.” British Journal of Music Education, vol. 22,
no. 1, pp. 21–46, March 2005.

[2] F. Pachet, “The continuator: Musical interaction with
style,” Journal of New Music Research, vol. 32, no. 3,
pp. 333–341, 2003.

[3] ——, “Playing with virtual musicians: the continuator
in practice.” IEEE Multimedia, vol. 9, no. 3, pp. 77–82,
2002.

[4] D. Fober, S. Letz, and Y. Orlarey, “Vemus - feed-
back and groupware technologies for music instrument

learning,” in Proceedings of the 4th Sound and Mu-
sic Computing Conference SMC’07 - Lefkada, Greece,
2007, pp. 117–123.

[5] J. Kilian, “Inferring score level musical information
from low-level musical data,” Ph.D. dissertation, Tech-
nische Universität Darmstadt, 2004.

[6] J. Kilian and H. Hoos, “Voice separation: A local
optimisation approach.” in Proceedings of the Inter-
national Conference on Music Information Retrieval.,
2002, pp. 39–46.

[7] H. Hoos, K. Hamel, K. Renz, and J. Kilian, “The
GUIDO Music Notation Format - a Novel Approach
for Adequately Representing Score-level Music.” in
Proceedings of the International Computer Music Con-
ference. ICMA, 1998, pp. 451–454.

[8] H. Hoos and K. Hamel, “The GUIDO Music Nota-
tion Format Specification - version 1.0, part 1: Basic
GUIDO.” Technische Universität Darmstadt, Technical
Report TI 20/97, 1997.

[9] D. Fober, S. Letz, and Y. Orlarey, “Open source tools
for music representation and notation.” in Proceedings
of the first Sound and Music Computing conference -
SMC’04. IRCAM, 2004, pp. 91–95.

[10] K. Renz, “Algorithms and data structures for a music
notation system based on guido music notation,” Ph.D.
dissertation, Technische Universität Darmstadt, 2002.

[11] J. Kilian. (2012, Jan.) midi2gmn library. [Online].
Available: http://midi2gmn.sourceforge.net

[12] D. Fober. (2002, May) Guido engine library. [Online].
Available: http://guidolib.sourceforge.net

[13] F. Pachet, The Future of Content is in Ourselves. IOS
Press, 2010, ch. 6, pp. 133–158.

Sony Computer Science Laboratory Paris Technical Report 2013-1 7

http://midi2gmn.sourceforge.net
http://guidolib.sourceforge.net

	SMC197b
	JGuido Technical Report (D3.2 Annex 2)
	Guido-Java-Report

	SonyComputerScienceLab_TechReport_2013-2__beginning.pdf
	Executive Summary
	Introduction
	Part 1. Real-Time Score Notation from Raw MIDI Inputs
	Part 2. GUIDO Engine Library

