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Abstract. Musicians typically use various playing modes (bass lines, chord 

comping, solo melody improvisation) when they perform with their instrument. 

The design of augmented instruments calls for a precise understanding of such 

playing modes, from real-time analysis of musical input. In this context, the 

accuracy of mode classification is critical because it underlies the design of the 

whole interaction taking place. In this paper, we present an accurate and robust 

mode classifier for guitar audio signals. Our classifier distinguishes between 3 

modes routinely used in jazz improvisation: bass, solo melodic improvisation 

and chordal playing. Our method uses a supervised classification technique 

applied to a large corpus of training data, recorded with different guitars 

(electric, jazz, nylon strings, electro-acoustic). We detail our method and 

experimental results over various data sets. We show in particular that the 

performance of our classifier is comparable to that of a MIDI-based classifier. 

We discuss the application of the classifier to live interactive musical systems. 

We discuss the limitations and possible extensions of this approach.  

Keywords: Audio classification, playing mode, guitar. 

1   Introduction 

Interactive musical applications require some form of control from the player. Control 

can be expressed explicitly by the musician with controllers (faders, knobs or pedals). 

However, many control information cannot be given explicitly, because it creates a 

cognitive overhead that interferes with the performance. Implicit control information 

can be given through the automatic analysis of the audio signal of an instrument. Such 

information provides the system with valuables clues about the intention of the 

musician. For instance, in jazz improvisation, a musician typically alternates between 

several playing modes such as chord comping, solo melodic improvisation, walking 

bass, etc. Recognizing these modes automatically opens the way to musically aware 

interactive applications. In this paper, we address the problem of automatically 

classifying the audio input of a guitar improviser into such musical modes. The 

objective of playing mode classification is to build robust interactive musical 

applications (for instance, performance oriented ones, such as the VirtualBand [10], 

augmented instruments, etc.). We discuss some of these applications with more 

details later in this article. 

Playing mode analysis has so far been studied by the MIR community essentially 

from the viewpoint of expression modeling. As a consequence, most of the works in 



 
 

playing mode identification focus on timbral aspects of a given playing technique. For 

instance, [8] and [11] propose a system which classifies in real time different playing 

techniques used by a guitarist. These techniques include “up and down legatos”, 

“slides”, “slapped / muted notes”, as well as the position of the pick on the neck with 

regards to the bridge. The system relies on the analysis of both the incoming audio 

signal and/or gesture capture data. Similar topics have been investigated with the goal 

of modeling expressivity, such as the articulation in nylon guitar [9]. [1] presents a 

feature-based approach to classify several plucking styles of bass guitar isolated 

notes, and [2] describes an automatic classifier of guitar strings for isolated notes 

using a feature-based approach, and a two-step analysis process. [19] studies the 

retrieval of played notes and finger positions from guitar audio signals. Instrumental 

techniques classification methods have been investigated for the beatbox [13] and 

[14] and the snare drums [16] with some success. [15] describes an approach to 

analyze automatically audio effects applied to an electric guitar or bass, and [18] 

studied the automatic classification of guitar tones. As we will see below, their 

objective is in some sense opposite to ours, since we aim at extracting information 

from the guitar signal that is precisely timbre-independent.  

Our objective is different. For instance, in guitar, jazz in particular, there are many 

ways to play: octave playing (typical of Georges Benson or Wes Montgomery styles), 

chord comping, bass lines, mix of chords and bass (as in Bossa nova), etc. We call 

these ways of playing the guitar playing modes. Our aim is to precisely to detect these 

playing modes in real time for interactive applications. In other words, we don’t aim 

at extracting information about the way the musician plays musical phrases (using 

staccato, legato, slap…), we want to extract information about the musical content 

that is played (notes, chords…). Playing modes would be in principle easy to analyze 

from a score of the performance. However, score-related symbolic data (pitches, 

duration of the notes…) are available only from MIDI instruments. Furthermore, the 

accuracy of MIDI guitar is not perfect, and requires specific, expensive hardware. 

One way to extract our information would be to use automatic score transcription 

from audio [6] [12]. However, these techniques are not accurate enough to build 

robust live systems. More specifically, [5] addresses the problem of guitar audio 

transcription, but this approach does not take into account the dynamic variation that 

can occur in live recordings, and is biased by the use of a unique guitar model for 

training and testing. 

One key problem is to detect accurately and robustly polyphony from the guitar 

signal. Monophony vs. polyphony classification has been investigated by [7], using 

the YIN pitch estimation algorithm [3] with bivariate Weibull models. This method is 

practical since it only requires short training sets (about 2 minutes of audio), works 

for many instruments, and achieves good performance (a 6.3% global error rate). 

Most importantly, this work shows that the YIN descriptor yields informative features 

for polyphony detection.  

In this paper, we describe a mode classifier that works directly from a guitar audio 

signal, and classifies it into three basic playing modes described above: bass, chords 

and melody. Following [2] the classifier is based on a 2-step analysis process (single 

frames then smoothing on larger windows), based on YIN-derived features, pitch and 

inharmonicity indicator like [7] and [19]. 

Our classifier is largely timbre-independent, i.e. works well with several types of 

guitar. We describe the training data in the next section. The classifier is described in 



 

Section 3 and its performance discussed in Section 4. Section 5 describes applications 

of the classifier for interactive music systems. 

2   Datasets 

All guitars exploit the sound coming from the vibration of strings. But there are many 

types of guitars and therefore many different guitar sounds. In order to avoid bias or 

over fitting due to the use of a single guitar for training data, we built an audio dataset 

recorded with 4 different guitar types: a Godin LGX-SA solid-body guitar (God) – 

which has also a MIDI output – which output has been fed to a AER Compact 30 jazz 

amplifier, a Cort LCS-1 jazz guitar (Cort), an Ovation Electric Legend (model Al Di 

Meola) electro-acoustic guitar (Ovat) and a Godin Nylon SA nylon string guitar (Nyl) 

(see Fig.1). 

 
 

 

Fig.1. The 4 guitar types used for our datasets. Top-left: one is a pure solid-body (Godin LGX), 

two of them have a hollow-body (the Cort jazz archtop and the Ovation electro-acoustic), and 

one of them has nylon strings (Godin Classic). 

 



 
 

Each subset contains the recordings of seven jazz standards: Bluesette, The Days 

of Wine and Roses, LadyBird, Nardis, Ornithology, Solar, and Tune Up. Each song 

has been recorded three times, for each playing mode: melody, bass, and chords. The 

database contains therefore 84 files (1 hour and 39 minutes of audio) which are all 

available at http://flow-machines.com/mode_classification_sets. 

3   The mode classifier 

Our method uses a two-phase analysis: first, short signal frames (50ms) are classified 

with a supervised classification algorithm, which determines playing mode over short 

time windows, with an imperfect accuracy. Then, information obtained over the 50ms 

frames is aggregated to classify a whole audio chunk. The scheme of the algorithm is 

shown in Figure 3. 

 

 

3.1 Feature selection 

 

We use a training set containing jazz guitar recordings, which have been played and 

tagged in each of our three playing modes: “bass”, “melody” and “chords”. We 

describe the data sets in more details in Section 4. 

As a first step, we performed feature selection to determine which features are the 

most relevant for our problem. We used the Information Gain algorithm [17] of Weka 

[20], set with the lowest threshold possible (-1.8x10308) to obtain a list of features 

ranked by information gain, and ran it on a set of 37 features divided in two sets: 

 

1) Basic audio features: MFCC (13), harmonic-to-noise ratio, spectral centroid, 

spectral flatness, spectral kurtosis, spectral decrease, spectral spread, spectral 

rolloff, spectral skewness, chroma (12), RMS. 

2) YIN features, following [5]: YIN pitch, YIN inharmonicity indicator and YIN 

variance. 

Feature selection yields the 6 following features: harmonic-to-noise ratio, YIN 

pitch and YIN inharmonicity, spectral spread, spectral centroid and spectral kurtosis. 

This confirms that YIN features are indeed interesting for our task. To further reduce 

the feature set, we retained only the 4 following features: 

 

1) YIN pitch, which was quantized to avoid overfitting (this point is explained 

below), computed with an absolute threshold of 0.2 for aperiodic/total ratio, 

2) YIN inharmonicity coefficient, computed in the same manner, 

3) Harmonic-to-noise ratio of the signal, computed with a fundamental frequency of 

185 Hz (which is the lowest frequency possible with 50ms frames, we would 

have to work with larger frame lengths to decrease the fundamental), 

4) Spectral spread. 

http://flow-machines.com/mode_classification_sets


 

3.2 Frame selection and training 

The training sets are normalized, and sliced into 50ms frames, overlapping at 75%. 

We chose this duration to work with portions of the signal that contains no more than 

one musical event, for example to separate the different notes of a melody even for 

fast ones that can appear, for instance, in jazz solos.  

Before extracting the features from these frames, a selection step is performed to 

retain only the frames which contain the steady state portion of the signal and exclude 

the ones which include silence, or transients. In fact, preliminary empirical results 

show that, given our feature set, common statistical classifiers (SVM, decision trees, 

Bayesian networks) fail to classify correctly the frames that contain transients. To do 

so, we first use a noise gate with a -13dB threshold to remove silent frames. To detect 

quickly transient frames, we use a simple onset/offset detection algorithm, presented 

in Figure 2, which computes the difference between the RMS values of the 10 first 

and last milliseconds of the signal, and applies a 6dB threshold on it. 

 

 
 

Fig. 2. Simple onset/offset detection procedure. The output of the algorithm is positive if there 

is a difference of 6dB or more between the two RMS values. 

 

More sophisticated onset detection techniques such as frequency domain-based 

ones [4] can be used, but the proposed solution is fast and works well enough for our 

goals. Finally, the features are extracted from the remaining audio frames. 

We finally train and test various classifiers on our database: a Support Vector 

Machine with linear, radial and polynomial kernels, a Bayesian network and a J48 

tree. The best classifier turns out to be a Bayesian network classifier (Weka’s 

BayesNet with a “GeneticSearch” algorithm) with default parameters. 

 

3.3 Performance on Frame Classification 

We train the classifier on one song, The Days of Wine and Roses (the longest song of 

the database), taken from the Godin guitar (God) subset, and test it on the six other 

songs. When we classify the selected audio frames (discarding silent frames and 

transients) with our feature set and the Bayesian network, we obtain an average F-

measure of 0.87. This result is not sufficient for a robust, real-time classifier. In the 

next section we add an aggregation, or smoothing step to our method to further 

improve the classifier performance, following the approach in [2]. 



 
 

 

 

Fig. 3. General scheme of the classification algorithm. 

 

3.4 Aggregation 

In order to improve classification performance, we aggregate the results of individual 

frame classification within a given time window (called thereafter chunk) and apply a 

winner-takes-all strategy to identify the mode of the chunk. A typical chunk size is 

one bar at reasonable tempo (1s at 240 bpm, 4s at 60 bpm). 

Since the Bayes classifier yields a probability of class membership, we can discard 

frames for which the class probability falls under a given threshold, which can be 

determined with a validation process, and use the winner-take-all strategy on the 

remaining ones.  

4   Results 

This section describes various evaluations of the classifier (including aggregation), 

highlighting the impact of using different guitars on classification robustness. 

 

4.1 Evaluation on a one-song training set 

First, we train the classifier on one single song, “The Days of Wine and Roses”, taken 

from the Godin guitar (God) subset. Then, we test it on the six other songs, for each 

guitar subset, with a 1.5s chunk duration (the duration of one 4/4 bar at 160 bpm). The 

results are displayed on Table 1. 



 

Table 1. Classification performance obtained over six songs, for various guitar models. 

Tested subset God Cort Ovat Nyl 

Mean F-measure 0.96 0.941 0.854 0.839 

 

 

For the guitar subsets Cort and God, the results are slightly better than the 

preliminary ones obtained with the Bayesian network without the aggregation step 

(.87 average F-measure). However, the classification results are poor for the Ovat and 

Class guitar subsets. 

 

4.2 Evaluation with the use of larger training sets 

To improve the performance, we increase the size of the training set: we train and 

evaluate the classifier with the leave-one-out procedure. Hence, each training set 

contains now six songs. To study the influence of the guitar type used for training and 

testing, we repeat this procedure for each guitar subset. The results are displayed on 

Table 2. 

 
 

Table 2. Classification performance obtained with the leave-one-out procedure on the whole 

dataset. The first number is the minimum F-measure over the six tested songs, the second is the 

average F-measure. 
 

Tested subset → God Cort Ovat Nyl 

Training set : God 

0.956 

0.971 

0.933   

0.968 

0.654   

0.90 

0.71   

0.901 

Training set : Cort 

0.94.3   

0.963 

0.974 

0. 984 

0.753   

0.94 

0.922  

0.972 

Training set : Ovat 

0.885 

0.92 

0.917   

0.955 

0.964   

0.978 

0.956   

0.978 

Training set : Nyl 

0.92   

0.943 

0.961   

0.975 

0.961  

0.975 

0.981   

0.992 

Average F-measure over 

all training sets 0.949 0.971 0.948 0.961 

 

 

These results show that while a larger training set increases the accuracy, the 

classification performance depends of the guitar used for training and testing: more 

specifically, the pairs God/Cort and Ovat/Nyl seem to give better results when used 

together (one for training and the other for testing). This can be explained by the fact 

that the guitars used to record Ovat and Nyl subsets produce more high-frequency 

content than the other ones: a feature such as spectral spread is sensitive to timbre. 

 

4.3 Evaluation with a mixed training set 

In order to make the classifier more independent of the guitar type, or more generally 

of timbral variations, we pick tracks from each of the four subsets to build a new 

training set. We use the recordings of The Days of Wine and Roses and Ladybird from 



 
 

each subset to train the classifier, and test the performance on the six remaining 

tracks. Results are shown on Table 3. 

 

Table 3. Classification performance obtained with the use of a mixed training set. We compare 

the minimal F-measures over the four guitars in order to evaluate the timbral sensitivity of the 

classifier. 
 

Tested subset → God Cort Ovat Nyl 

Min. F-

measure 

Bluesette 0.971 0.988 0.989 0.995 0.971 

Nardis 0.941 0.966 0.973 0.99 0.941 

Ornithology 0.99 0.988 0.99 0.999 0.988 

Solar 0.977 0.965 0.985 0.997 0.965 

Tune Up 0.968 0.984 0.962 0.952 0.952 

Min.F-measure per 

tested subset 0.968 0.978 0.98 0.987 0.968 

 

 

Here, we can see that the use of a mixed training set, containing two songs (or a 

total 31 minutes of audio), increases the overall performance. We evaluated the 

classifier with larger training sets, but larger sets do not increase classification 

accuracy in a significant way. This last training set will be used in the rest of this 

article. 

 

4.4 Influence of the analysis window length 

Since the algorithm includes an aggregation step, we can assume that the accuracy of 

the classifier depends on the length of the analyzed audio chunks. Figure 4 displays 

the performance of classification, obtained over the five tracks which are not included 

in the training set, for various analysis windows. As a comparison, we added, for each 

guitar subset, the F-measures obtained without performing the aggregation over the 

50ms frames. 

We can see that the classification improves when increasing the analysis window 

length, reaching a plateau at about .98. 

 

4.5 Real-time 

Since the algorithm consists in feature extraction and simple Bayesian classification, 

the overall complexity of the algorithm is linear with the analyzed audio window 

length (other computation such as the aggregation is negligible). The average 

classification CPU is 2% of real-time, with a Java implementation running on an Intel 

i7 2.67GHz quad-core, Windows laptop (eg. the experienced latency obtained for the 

analysis of a 4/4 bar at 120 bpm is 20ms). This clearly enables interactive musical 

applications on commonly available hardware. 
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Fig. 4. Improvement of classification performance obtained with different analysis window 

lengths. The series followed by the mention noAgg (dotted lines) show the results obtained 

without the aggregation step. 

 

4.6 Comparison with MIDI-based classification 

We compared our algorithm with the performance of a MIDI-based mode classifier 

described in [10], using the Godin guitar subset (this guitar has a MIDI output). The 

MIDI-based classifier trains a Support Vector Machine classifier on 8 MIDI features, 

related to pitch, duration, velocity, and more advanced ones, aggregated over one bar. 

This classifier is been trained on the song Bluesette, and tested on the six other songs. 

In order to work with the same experimental settings, we adapted the analysis frame 

of our audio-based algorithm on each song, to match the length of a bar. The results 

are displayed in Tables 4 and 5. 

 
Table 4. Results of the MIDI-based SVM classifier 

 

Classified as → Bass Chords Melody F-measure 

Bass 1314 6 2 0.98 

Chords 24 1294 13 0.97 

Melody 1 12 1318 0.99 

 

 

Table 5. Classification results obtained with our classifier 
 

Classified as → Bass Chords Melody F-measure 

Bass 1118 1 3 0.947 

Chords 85 1017 11 0.936 

Melody 25 31 1065 0.968 



 
 

The results we obtain are still reasonable, but weaker than with the preceding 

training sets. This is due to the fact that audio analysis requires larger training sets 

than MIDI to reach the same performance. To illustrate this point, we increase slightly 

our training set and train our classifier with two songs: Bluesette and The Days of 

Wine and Roses. We repeat the testing procedure on the five remaining tracks. The 

confusion matrix is displayed on Table 6. 

 
Table 6. Classification results obtained with our classifier, with a larger training set. 

 

Classified as → Bass Chords Melody F-measure 

Bass 811 30 10 0.965 

Chords 0 852 3 0.969 

Melody 18 21 817 0.969 

 

 

These results show that our method provides results which are comparable to the ones 

obtained with the MIDI output of the guitar. This result enables us to integrate our 

algorithm in actual interactive live applications, without any MIDI support. 

5   Interactive applications 

We describe two examples of applications of our mode classifier. VirtualBand, which 

implementation is discussed in [10], enables a musician to control virtual instruments 

which interact with him in real time, while following a harmonic grid. A 

VirtualBand’s applications, reflexive loop pedals, use our mode classifier to analyze 

the audio input. Two virtual instruments are instantiated by the system: bass and 

chords. In a typical interaction scenario, the musician starts to play chord, which are 

recognized as such and recorded by the system. Then, the musician starts playing a 

walking bass line. As a response, the chords virtual instrument plays back recorded 

chord audio chunks, transposing them if necessary with a pitch shifting algorithm, to 

fit the grid. The musician can then decide to play some melodic lines. In that case, the 

bass and chords virtual instruments both play along. A detailed version of this 

example is given in [10]. This interactive application allows the user to control the 

musical process while not using control devices such as loop pedals, that would 

interfere with his creative flow. Hybrid modes, such as the “Bossa nova” mode (see 

next Section) can be added to this setup to allow more sophisticated interactions, 

thanks to the addition of a new virtual instrument. 

Another application, included in VirtualBand’s features, is to automatically 

process the input sound according to the playing mode. Various audio effect chains 

can be applied to the audio input, their selection depending on the currently played 

mode. For instance, the system can add a specific reverberation effect when the 

musician is playing melody, tube distortion when chords are detected, and, say, apply 

dynamic compression and enhance the low end of the sound when the instrumentalist 

is playing bass. The effect chain is applied with a latency corresponding to the chunk 

size needed to perform mode classification (about 1 sec minimum). 



 

6   Discussion 

We have shown that YIN features, that represent half of our feature set, are efficient 

to classify guitar playing modes: our classifier is accurate, robust to variations in 

guitar type, and able to cope with real-time computational constraints, thanks to a 

small feature set. We also showed that although the accuracy depends on the size of 

the analyzed audio, this classifier can be used with realistic window sizes. Three 

points can be improved, to further extend its applicability. 

 

6.1 Features 

The method also raises issues when dealing with long chord decays (say, more than 

5s), when only one note keeps sounding. This case falls off the boundaries of our 

algorithm and feature set. One solution would be to add a robust onset detector to our 

algorithm, and restrict the mode computation on the first seconds that follow an onset 

(we did no implement such a solution). 

Another limitation comes from the feature set: we work with a feature set that 

answers a specific problem, but it may not be efficient to distinguish efficiently yet 

other playing modes, such as strums or octaves. The algorithm is also somewhat 

specific to the guitar: the YIN inharmonicity factor may not behave the same with less 

harmonic instruments, such as the piano. 

 

6.2 Hybrid playing modes 

In our method, we perform an aggregation step because the frame classifier alone is 

not accurate enough. Nevertheless, it provides a good hint about the rate of chords, 

melody and bass, within audio chunks that contain a mixture of different playing 

modes. For instance, we can consider an extra “Bossa nova” playing mode which 

consists in alternative bass/chords patterns. In order to recognize such a mode, we add 

an extra rule to the aggregation step of the algorithm: before applying the winner-

takes-all strategy to our frames classes, we compute the weight of each class, without 

taking the class probabilities into account, and we express it in absolute percentage. 

Then, we consider the bass and chords weights: if they are both greater than, say, 20% 

and lower than 80%, then we can consider that the chunk belongs to the “Bossa nova” 

class. Such a rule could be also implemented in a classifier, so that the process is 

entirely automatic. An example of such a hybrid mode is displayed in figure 5. 

 

 
 

Fig. 5. Identification of bass and chord parts in a Bossa nova guitar audio signal 
 



 
 

Although the frame classifier does not provide an accurate weight for each class 

within a chunk, the ability to detect when the musician is performing this hybrid 

playing mode brings new possibilities for building interactive applications. This 

pattern is correctly detected, however it represents only a particular case of the Bossa 

nova playing mode, in which bass and chords do not overlap. In the (frequent) case 

when they overlap, the classifier performance drops sharply. 

 

6.3 Absolute aggregation vs. time series 

In this paper, we use the simple winner-take-all strategy to aggregate the 50ms frames 

over the entire analysis window.  This method does not take into account the time-

series nature of a musical audio signal. For instance, guitar players sometimes use 

low-pitched notes in their melodic improvisation, and conversely, play walking bass 

with high-pitched notes. With our window-based scheme, the classifier uses the YIN 

pitch as a strong hint to distinguish the melody from the bass. As a consequence, the 

user might be surprised by some results for those notes with intermediary pitches (e.g. 

in the range C3-E3) also, since there is no high-level musical analysis of the currently 

played phrase. The evolution and continuity between the different features values 

extracted within an audio chunk could be evaluated over time, leading to a smarter 

way to process these frames. We assume that a classifier that exploits such knowledge 

would be more accurate, and also could efficiently identify more sophisticated new 

playing modes such as arpeggios, muted notes strumming and, in general, playing 

modes based on longer temporal patterns. 

 

7   Conclusion 

We have presented a simple, fast and accurate method to classify basic playing modes 

for the guitar from its audio signal. We limited our work to the study of the guitar, 

focusing on a timbre-independent classifier. Further studies with other instruments 

such as the piano or synthetic sounds are needed to assess the generality of our 

approach. 

Our classifier works efficiently for simple playing modes, such as chords or bass. 

Future designs of the algorithm, in particular taking into account the continuity 

between frame analysis, will be able to distinguish more complex playing modes, 

such as the Bossa nova bass/chord mixing discussed earlier. 

Automatic playing mode classification brings a lot of potential for designing 

smarter augmented instruments. Interestingly, developing subtler and subtler playing 

modes classifiers, from polyphony-based detection as we presented here to the 

identification of player-specific patterns (Montgomery’s octaves, Benson’s licks or 

Van Halen’s fast harmonic arpeggios), infringes on the emerging domain of style 

modeling. 
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