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A crucial step in the understanding of vocal behavior of birds is to be able to classify calls in the

repertoire into meaningful types. Methods developed to this aim are limited either because of

human subjectivity or because of methodological issues. The present study investigated whether a

feature generation system could categorize vocalizations of a bird species automatically and effec-

tively. This procedure was applied to vocalizations of African gray parrots, known for their

capacity to reproduce almost any sound of their environment. Outcomes of the feature generation

approach agreed well with a much more labor-intensive process of a human expert classifying

based on spectrographic representation, while clearly out-performing other automated methods.

The method brings significant improvements in precision over commonly used bioacoustical analy-

ses. As such, the method enlarges the scope of automated, acoustics-based sound classification.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3531953]

PACS number(s): 43.80.Ka, 43.80.Ev [MJO] Pages: 1089–1099

I. INTRODUCTION

Bioacoustic research provides fundamental information

for understanding communication systems in the wild. A cru-

cial step in this process is to identify acoustic characteristics

of a signal to describe the potential meaning encoded by the

sender and/or perceived by the recipient. Birdsong has been at

the center of a wide range of animal behavior studies since

the mid-20th century. The study of their acoustic features

brought a better understanding of what information is encoded

in songs (see Marler, 2004). Some songbird species, such as

domestic canaries, produce complex songs with specific

acoustic features that are preferred by females (Vallet and

Kreutzer, 1995). Understanding if and how objective charac-

teristics of bird vocalizations (sources) can be mapped to

objective characteristics of the contexts of production (targets)

is thus central in the study of bird behavior. However, this

task, applied to the case of parrots, turns out to be extremely

difficult (Cruickshank et al., 1993). A simplification of this

problem is instead to consider as a target a categorization pro-

duced by human experts. Such an endeavor can be useful for

animal behavior studies if one can then interpret human cate-

gorizations in terms of specific contexts or other ethological

information. The purpose of the current work was to design a

sound classification method based on automated extraction of

acoustic features, validating its performance against categori-

zation outcomes provided by a human expert. This method

was applied to vocalizations of parrots and was compared to

other commonly used sound analysis methods.

A. Analysis methods of animal vocalizations

Categorizations produced by humans are traditionally

based on spectrographic representations of the acoustic signal

(Thorpe, 1954). Three analysis methods commonly used for

this purpose are visual comparison of the spectrograms by a

trained experimenter (Janik, 1999; Bloomfield et al., 2004),

spectrographic cross-correlation (Khanna et al., 1997; Janik,

1999; Cortopassi and Bradbury, 2000; Baker, 2003), and

extraction of acoustic features in the signal (Nowicki and

Nelson, 1990; Charrier et al., 2004; Draganoiu et al., 2006).

Indeed, the human eye is a complex integrator system

that can identify subtle modifications in the signal. However,

judgments done by eye are inherently subjective, so these
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classifications cannot always be replicated, especially with

large datasets. Moreover, studies that rely on visual inspection

generally do not make explicit which criteria are used to es-

tablish the classification. Personal criteria evolve during the

classification process (see Jones et al., 2001). One way to

limit this subjectivity is to have several observers perform the

same classification to determine interobserver reliability

(Janik, 1999). However, interobserver reliability is itself influ-

enced by several factors that can lead to overestimation or

underestimation of the actual reliability (Jones et al., 2001).

Spectrographic cross-correlation, first proposed by

Clark et al. (1987), produces a similarity matrix between

pairs of signals in a database. Each similarity value is meas-

ured as the peak of the correlation between the spectrograms

of the two signals. A number of software packages, such as

AVISOFT-SASLAB PRO (Avisoft-Bioacoustics, Germany) and

RAVEN (Cornell Lab of Ornithology, USA), include this

method of analysis. Spectrographic cross-correlation is not

biased by the subjectivity of the human observer. However,

this method suffers from several limitations, mainly that cor-

relation values are sensitive to the fast Fourier transforma-

tion (FFT) frame length used for spectrogram generation

(Khanna et al., 1997; Cortopassi and Bradbury, 2000).

A third common approach is to extract features directly

from the acoustic signal. These features typically represent

standard and mathematically well-defined properties of audio

signals, such as frequency bandwidth, number of harmonics,

duration, amplitude, or the waveform’s zero crossing rate

(ZCR). The main advantages are that these methods avoid ex-

perimenter bias and can be very accurate (Anderson et al.,
1996; Tchernichovski et al., 2000). For example, Tcherni-

chovski et al. demonstrated that four simple, mono-dimen-

sional acoustic features were sufficient to model the similarity

among songs of zebra finch (Taeniopygia guttata). However,

these methods are also limited by the scope of the feature sets

used, which is not always relevant to the specific categoriza-

tion problem at hand. In the same vein, Schrader and Ham-

merschmidt (1997) proposed a number of typical features to

characterize animal sounds. These features range from form-

ant-like structures, frequency peaks, distribution of spectral

energy, and sound structure. However, as noted by the authors

themselves, it is often not possible to determine what are the

“right features” to characterize animal sounds a priori.
Studies comparing the accuracy of these various acous-

tical methods have produced inconsistent results (Baker,

2003). Khanna et al. (1997) demonstrated limitations of the

spectrographic cross-correlation methods but were contra-

dicted by Cortopassi and Bradbury (2000), who demon-

strated that this method can be reliable when associated with

principal coordinates analysis. Janik (1999) demonstrated

that judging by eye can be a more efficient system of analy-

sis than pitch extraction with spaced frames (McCowan,

1995) or cross-correlation associated with cluster analyses

(Khanna et al., 1997). Thus, determining which classification

method is the most efficient remains an open problem.

B. The feature generation approach

This article proposes a new method of classification that

associates classification by eye with automatic feature mea-

surement to overcome the limitations of previous approaches

based on predefined feature sets. More precisely, visual judg-

ments are used to build a training database, also referred to

as subjective standard, which is then used to train and test a

classifier using a supervised classification technique.

This approach is termed “feature generation.” Acoustic

features are first extracted from the audio signals, and a

model of the various signal classes is built according to these

features during the training phase. In the evaluation phase,

classifier predictions are then checked against human classi-

fication of the rest of the database (the subjective standard)

to assess the model’s performance. Eventually, these classi-

fiers can be applied to new acoustic signals.

This approach has been found useful in several areas of

research, such as data mining (Mjolsness and Decoste, 2001)

or ecological modeling (Stockwell, 2006). The proposed

approach differs from these previous ones in that it consists

in exploring a huge feature space (potentially several billion),

designed to incorporate typical and well-known features such

as those described by Schrader and Hammerschmidt (1997),

as well as many others. The feature generator is based on a

genetic programming algorithm (Koza, 1992). Features such

as the ones proposed by Schrader and Hammerschmidt

(1997) are all within the reach of feature generation, meaning

that the system can find these features or approximations

thereof. In fact, feature generation has been shown to outper-

form approaches based on standard features in the context of

animal vocalization (Molnár et al., 2008).

C. African gray parrot vocal behavior

More precisely, our goal here was to investigate whether

an artificial-intelligence feature generation system can iden-

tify features that can be used to classify African gray parrot

(Psittacus erithacus) vocalizations as categorized by an

expert observer. African gray parrots show complex vocal

behavior (Cruickshank et al., 1993; Pepperberg, 2007), are

known for their ability to imitate human language (Pepper-

berg, 1999; Giret et al., 2010), and exhibit complex cogni-

tive skills (Pepperberg, 2006; Al Aı̈n et al., 2009; Giret

et al., 2009). They produce many types of vocalizations with

a diverse range of frequencies, amplitudes, and durations.

Parrots in general can also imitate a wide range of sounds

from their surroundings (Cruickshank et al., 1993; Farabaugh

et al., 1994; Farabaugh and Dooling, 1996).

The description of the vocal repertoire of three African

gray parrots was based on the visual comparison of spectro-

graphic representations of the calls by a human expert (N.G.)

highly familiar with the calls of these birds. This manual clas-

sification process raised two issues. First, it was a long and te-

dious task, which required the expert to listen to and analyze

each and every call. Second, the expert’s knowledge and per-

ception of the calls were affected by the classification process

itself. That evolution led not only to a number of refinements

made underway but also three complete reorganizations of

the dataset. Both factors make this process difficult to repeat.

D. Study goals

In this article, supervised classification was used to

overcome the limitations of the manual approach. Using
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supervised classification reduced the workload by requiring

only a small dataset to be classified by the expert, the rest

being taken care of automatically by a classifier. Working by

eye on a small dataset prevented or at least reduced the risk

of committing errors of reliability and of validity. In addi-

tion, supervised classification yielded repeatable results, as it

depended less on human expertise.

Two experiments were carried out. In a preliminary

experiment, the performance of supervised classification was

assessed on the full dataset (52 076 calls in 168 types), based

on mel frequency cepstral coefficients (MFCCs; Davis and

Mermelstein, 1980). Here, performance was poor. In the

main experiment, the study was restricted to a limited set of

five call types. Feature generation was used to produce a fea-

ture set from a subset of these data, and this set provided bet-

ter results than either MFCCs or spectrogram cross-

correlation. This technique also proved successful with a

larger dataset. A final experiment then showed that this

approach could be used in practice on the whole dataset by

using two sets of features.

II. GENERAL METHODS

A. Subjects

Three captive hand-reared African gray parrots were

involved in this experiment: two males, Léo and Shango,

and one female, Zoé. Subjects were housed together in an

aviary of 340 cm� 330 cm� 300 cm in which several perch

structures and toys were provided. Water and parrot pellets

were available ad libitum. Parrots were fed fresh fruits, vege-

tables, and parrot formula daily.

B. Apparatus

The parrots were recorded regularly from when first

arriving at the laboratory, including a period of 4 yr for Léo

and Zoé (2003 to 2007) and 2 yr for Shango (2005 to 2007).

Recordings were made with a Microphone EMU4534 (LEM

Industries, Argenteuil, France) and a MD S301 (Sharp Elec-

tronics, Villepinte, France) (BL) minidisc from September

2003 to September 2005 and then converted to 22 kHz (16

bits) wav format. Further recordings were made with a

Microphone MD 21 U (Sennheiser electronic GmbH & Co,

Wedemark, Germany) and a DAT Marantz PMD670 re-

corder in 22 kHz (16 bits) wav format. Although Mini-Disc

recorders that use data compression algorithms may yield a

loss of harmonic contents at the upper margin of human

hearing (Budney and Grotke, 1997), no difference was

observed between Mini-Disc and DAT recordings after close

inspection of similar calls.

Spectrographic analyses were carried out with AVISOFT

SAS-LAB PRO version 4.40. MATLAB version 14 service pack

two was used to perform pre-processing on each call. Statis-

tical analyses were conducted with SIGMASTAT version 3.5.

C. Procedures

The parrots were recorded while spontaneously vocaliz-

ing (95% of recorded calls) and during elicited recording

sessions (5% of calls) in which parrots were either being car-

ried, encouraged to take off, or left alone in the aviary or in

which food, toy, or fake predators were shown to the birds.

Birds received nine sessions in each situation, except for the

fake predator condition in which only four sessions occurred

(see Giret et al., 2010). Recordings of spontaneous vocaliza-

tions were made at different times of the day and in various

areas of the laboratory, such as the aviary and office. Contin-

uous recordings were segmented with AVISOFT-SASLAB PRO by

a human expert (N.G.) to extract the individual vocalizations

(52 076 calls) used in the two experiments. This expert then

classified calls by type based on visual inspection of spectro-

graphic representation. A new call type was defined when at

least five instances of that type could be identified. These

were instances that exhibited similar acoustic features, such

as fundamental frequency, pitch, and minimum and maxi-

mum frequencies. Overall, 168 call types were identified.

Further pre-processing was required for automated clas-

sification. DC-offset was removed from all calls, which were

then amplitude-normalized to 95% of the available 16-bit

range. In this study, the identity of the three parrots was not

taken into account in order to have a larger sample.

The performance of the classifiers used in this study was

typically represented by the confusion matrix between the

call types identified by the expert and the call types com-

puted by the classifier. This matrix was in turn used to com-

pute an F-measure for each call type

F ¼ 2� precision � recall

precisionþ recall
(1)

Precision was calculated through the following formula:

precision ¼ Ntp

Ntp þ Nfp

(2)

Recall was determined with the following formula:

recall ¼ Ntp

Ntp þ Nfn

(3)

For a given vocal category, “tp” (true positive) was the

number of elements shared by both classifications (diagonal

of the confusion matrix), “fp” (false positive) was the num-

ber of elements of another vocal category classified in the

given category by the algorithm, and “fn” (false negative)

was the number of elements of the given vocal category clas-

sified in another vocal category by the algorithm. An F-mea-

sure value of 1 (or 100%) implied that the computed

classification was identical to the expert classification. The

F-measure decreased as a function of increasing fp and fn

classification results, with values below 0.3 indicating very

poor classification.

III. PRELIMINARY EXPERIMENT: MFCC ANALYSIS ON
THE WHOLE DATASET

In this experiment, the performance of the supervised

classification approach using standard spectral features was
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evaluated. Spectral envelopes were estimated using MFCC.

The cepstrum is the inverse Fourier transform of the log-

spectrum of the signal. The mel-cepstrum is computed after a

non-linear frequency warping onto the perceptual mel fre-

quency scale (Foote, 1997). The coefficients are called

MFCCs. Cepstrum coefficients provide a low-dimensional,

smoothed version of the log-spectrum and thus are a good and

compact representation of the spectral shape. They are consid-

ered as an efficient representation of timbre information,

thereby subsuming individual features such as spectral cent-

roid or spectral skewness. MFCCs are widely used as acoustic

features for speech recognition (Davis and Mermelstein, 1980)

and have also proved useful in music classification (Foote,

1997), musical instrument recognition (Eronen and Klapuri,

2000), as well as for the classification of elephant vocaliza-

tions (Clemins et al., 2005; Clemins and Johnson, 2006).

For the current work, MFCCs were of interest as a rea-

sonable and generic representation of the spectral content of

the signal and were thus used as a reference point for classifi-

cation performance. Each vocal event was represented by an

audio signal. Acoustic features were extracted on each audio

signal, and these features were then used to classify the calls

using a C4.5 machine-learning algorithm (Quinlan, 1993).

The C4.5 algorithm uses the fact that each feature of the data

can be used to make a decision by splitting the data into

smaller subsets. C4.5 creates a tree-like graph from a set of

pre-categorized dataset (the training dataset). This graph is

called a decision tree. Each node of the decision tree repre-

sents a decision based on the value of a feature of the data

and each leaf of the decision tree corresponds to a category

in the training dataset, i.e., in our case, each leaf of the deci-

sion tree is a call type. The decision tree can be used to clas-

sify new data according to the values of the features of that

data. The decision tree classifier was trained and tested on

two separate parts of the sound database.

A. Method

Ten MFCC values were extracted for each call (52 076

vocalizations, 168 call types). The performance of these fea-

tures was then assessed with a decision tree algorithm (J48 in

the WEKA software, an implementation of Quinlan’s C4.5; Quin-

lan, 1993). Classification performance was evaluated by train-

ing the algorithm on a set of 10% of the vocalizations (5207

total) and by testing on the remaining 90% (46 869 total).

B. Results

Overall, 24.9% (11 686) of the calls were correctly classi-

fied, while 75.1% (35 183) were not. As shown in Fig. 1, F-

measures for individual call types were not good. For example,

F-measures for 155 call types were less than 0.3 (very bad per-

formance), while 13 call types had F-measures ranging between

0.3 and 0.7. No call type had an F-measure superior to 0.7.

In summary, no call type was well modeled by this classifier.

C. Discussion

Figure 1 clearly shows that the classification obtained

differed from that of the human expert. Some of this differ-

ence may reflect that the expert misclassified some of the

training samples. Indeed, the expert estimated that about

30% of the calls were very challenging to classify. This diffi-

culty reflects that some of the 168 call types were hard to

distinguish, even for a highly trained observer. In addition,

gray parrots produce a large variety of vocalizations, even

within a call type. They can modify the length, intensity,

and/or fundamental frequency of the calls (Fernández-Juricic

et al., 1998). Those variations may not be captured by

MFCCs, which represent spectral properties of sound. More

surprisingly, the accuracy was low even for the call types

that had clear perceptual characteristics for the expert. This

failure can be partially explained by the aforementioned rea-

son that parrots can modify many different acoustic parame-

ters even within a call type. The limitation of MFCCs in this

context is discussed more in depth in the next experiment.

The poor performance obtained in this preliminary experi-

ment may also be explained by gaps in the training data and

compromised sound quality among the samples. First, 78

call types had less than 200 training samples, and the size of

the training dataset was central in supervised classification.

Second, recording conditions were often compromised by

uncontrollable background noise or by birds flying away

from the microphone. Many samples were thus of poor

sound quality, making them difficult to classify correctly.

In the next experiment, the dataset was reduced to five

call types in order to keep the human error-rate to a minimum.

The performance of supervised classification of the five call-

type problem was assessed and was shown to be much better

than on the 168 call-type problem. Moreover, this experiment

contrasted two different feature sets, namely MFCCs versus

problem-specific features (Pachet and Roy, 2009).

IV. MAIN EXPERIMENT: A FEATURE GENERATION
APPROACH

In this experiment, five call types were selected from the

parrot repertoire based on being specific to particular con-

texts (Giret et al., 2010) and represented by more than 200

samples of good quality. It was necessary to use a new set of

acoustic features to improve the performance of the super-

vised classification. To do so, one approach would be to look

for features that are commonly used in signal-processing

FIG. 1. Numbers of call types are represented according to bins of F-meas-

ures for the preliminary experiment. Overall, the F-measures were low,

meaning that the classifier (MFCC) was not efficient on the whole dataset.
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studies. As noted in the Introduction, however, results of this

approach have been disappointing in previous applications.

Another possibility, which usually works better, is to com-

pute spectrographic cross-correlation (Cortopassi and Brad-

bury, 2000) or to design specific features using expertise in

signal processing and knowledge of the problem at hand.

Pachet and Roy (2009) introduced a method to automati-

cally create efficient acoustic features for specific audio-clas-

sification problems. This approach has been shown successful

when applied to dog vocalizations (Molnár et al., 2008).

Therefore, the approach by Pachet and Roy (2009) was used

to generate features for the current five call-type problem.

Results were compared to those obtained with the MFCCs

feature set and to those obtained through the classical spectro-

graphic cross-correlation approach.

A. Methods

1. Call types

The call sample consisted of five call types selected to be

specific to particular contexts (see Figs. 2 and 3). Type C1

calls were mainly produced as a “protest” either against a con-

specific or in response to a human handling the bird. Type

C57 calls were mainly produced in situations of fear and were

elicited by placing eagle or snake predator models in the avi-

ary. Type C77 calls were produced by a bird when it was

alone, just after the experimenter left the aviary. Type C106

calls were mainly produced when the subject wanted

“something,” such as food or toys. Type C113 calls were pro-

duced when the subject was excited and were associated with

the behavior of turning and then flying off suddenly. The

resulting database included a total of 2971 vocalizations: 691

C1, 1277 C57, 492 C77, 288 C106, and 223 C113 calls.

2. Spectrographic cross-correlation

Spectrographic cross-correlations were carried out with

AVISOFT CORRELATOR v2.2. One exemplar of each call type

was randomly selected as a reference to which each other

call was cross-correlated through the “aligning mode” of AVI-

SOFT CORRELATOR. Each cross-correlation computation pro-

vided a peak correlation value between �1 and 1. Values of

0, 1, and �1 indicate that the two calls compared are not

correlated, identical, and inverse, respectively. In order to

FIG. 2. Mean power spectra are shown for (a) C1, (b) C57, (c) C77, (d) C106, and (e) C113.
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compare these results with those obtained with feature gen-

eration and with MFCC-based classifiers, the highest corre-

lation value was selected as an indicator of the call type in

which the call should have been classified. Since there were

five call types, five different correlation values were obtained

for each call. For example, a call belonging to the call type

C1 was cross-correlated with the five reference calls. If the

highest correlation value was obtained when cross-correlat-

ing this call with the reference of the call type C57, that

means that, based on the spectrographic cross-correlation,

this call would be classified in the call type C57. F-measures

were computed as before.

3. Feature generation

Following identification of the smaller, five call-type

dataset, it was divided in two. A total of 500 samples were

designated as a feature generation database (FGD), which

was used to generate features with extractor discovery sys-

tem (EDS). The remaining 2471 samples made up a feature

evaluation database (FED), which was used to test the effi-

cacy of those features.

The FGD was used to generate problem-specific features

using the EDS system (Pachet and Roy, 2009). EDS exploits

a library of basic signal-processing operators such as root-

mean squared (rms, which measures the power of the wave-

form), ZCR, and FFT. These basic operators are then

assembled using an evolutionary algorithm to produce arbi-

trary complex mathematical functions of the signal. The

function space explored by EDS is huge, so EDS exploits a

number of heuristics to prune the search tree in order to

quickly identify “interesting” features (Pachet and Roy,

2009). The fitness used to assess feature performance is

based on the so-called wrapper approach to feature selection

(Guyon and Elisseeff, 2003), meaning that the fitness of a

feature is the performance of the associated classifier trained

on-the-fly with this feature only. The search process iterates

until efficient features have been found. Eventually, the best

features are selected using an ad hoc feature selection algo-

rithm (Pachet and Roy, 2009).

4. Feature evaluation

The performance of the features generated by EDS

was compared to the performance of MFCCs. Evaluations

were carried out on FED, to make sure no evaluation sam-

ple was used for feature generation, as FED and FGD did

not overlap. Note that, as in the preliminary experiment,

the classifiers used for this experiment were decision trees

trained using a J48 algorithm.

The first step (feature selection) was to select the features

to evaluate. This feature selection (see Table I and Appendix)

was performed using the correlation-based “Greedy Stepwise”

(Hall, 2000) subset search algorithm provided by the WEKA

software. The second step (feature extraction) consisted of

computing the value of each selected feature for every sample

in FED. Those values were then used in the two remaining

steps to train and evaluate the classifier performance. More

precisely, during the third step (classifier training), a decision

tree algorithm was trained on the feature values computed on

the 10% samples randomly chosen from FED. In the final,

fourth step, the performance of the classifier was evaluated on

the FED samples, making up 90% of the entire, five call-type

database. Note that classifier training and performance (steps

three and four) had to be repeated several times in order to

reduce the variability in classifier performance, as the training

and testing subsets of the FED created were randomly

selected. Fifty repetitions of this training-testing process was

selected as an optimal number after a comparison of the F-

measures obtained when repeating the evaluation 1, 2, 5, 10,

20, 50, 100, 1000, and 10 000 times.

Based on the evaluation, either 1, 2, 4, 5, 10-EDS features

or 20-EDS features were selected and compared to 10- or 20-

MFCC features. EDS versus MFCC feature performance was

evaluated using Kruskal-Wallis one-way analysis of variance

on ranks to compare the number of correctly classified calls

for each feature set, followed by post-hoc analyses (Student-

Newman-Keuls, SNK).

5. Two-stage classification

The feature generation approach produced a classifier

designed to be efficient on the five selected call types only.

To solve the problem of classifying arbitrary calls into the

five reference categories, a two-stage classification was per-

formed. Two abstract categories were defined. Category “A”

consisted of calls of one of the five call types C1, C57, C77,

C106, and C113. Category “B” consisted of the 163 remain-

ing call types. The first stage consisted of categorizing calls

into categories A and B. This first-stage classifier, called

CL1, was trained on a database consisting of the 500 sam-

ples from FGD, labeled A, and 500 samples labeled B ran-

domly selected from the rest of the corpus. In the second

stage, a decision tree classifier was used to classify samples

categorized A by the first stage classifier into C1, C57, C77,

C106, or C113. For the second-stage classifier, the classifier

trained on 20-EDS, called CL2-EDS, was used and its per-

formance was compared to that of the classifier trained on

20-MFCC, called CL2-MFCC.

B. Results

In the preliminary experiment, MFCCs failed to capture

the variability of calls within a given type. Specifically, the

preliminary experiment yielded F-measures of 0.07, 0.61,

0.36, 0.13, and 0.19 for C1, C57, C77, C106, and C113,

respectively.

FIG. 3. Oscillograms (top) and spectrographic representations (bottom) for

C1, C57, C77, C106, and C113. Spectrograms were calculated using 512-

point Hamming windows, a 22 kHz sampling frequency, and 16-bit ampli-

tude sampling.
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1. Spectrographic cross-correlation

Each call of the database was compared to a reference

call of each call type (C1, C57, C77, C106, and C113). F-

measures were computed to identify correctly or incorrectly

classified calls and provided the following results: 0.59,

0.59, 0.90, 0.93, and 0.19 for C1, C57, C77, C106, and

C113, respectively.

2. Feature generation

EDS generated explicitly about 11 000 features, 33 of

which were selected automatically using a feature selection

algorithm based on feature fitness and syntactic feature simi-

larity (Pachet and Roy, 2009). Those 33 features formed a

feature set labeled 33-EDS.

3. Feature evaluation

a. Number of repetitions needed. The minimum num-

ber of repetitions of the training-testing process needed to

obtain stable F-measures was estimated first. Different num-

bers of repetition were used: 1, 2, 5, 10, 20, 50, 100, 1000,

and 10 000. F-measures became stable after 50 repetitions

(see Table II), which was therefore the value used for further

statistical performance comparisons (see below).

TABLE II. Mean percentage F-measures obtained for each feature set. The training-testing process was repeated several times in order to reduce the variabili-

ty in classifier performance: 50 repetitions (or more) ensure almost constant mean F-measures.

Number of

repetitions 1-EDS (%) 2-EDS (%) 3-EDS (%) 4-EDS (%) 5-EDS (%) 10-EDS (%) 20-EDS (%) 10-MFCC (%) 20-MFCC (%)

1 54.30 71.01 73.54 83.78 84.14 83.48 89.14 74.97 77.74

2 55.30 71.29 73.26 81.96 80.05 83.38 84.78 77.86 76.14

5 55.63 70.08 74.44 79.13 83.11 82.75 85.53 75.01 75.59

10 54.42 70.54 74.07 79.24 81.48 83.26 84.83 76.89 76.82

20 52.33 69.84 73.98 80.35 81.89 83.56 84.61 77.40 76.31

50 53.70 70.29 74.09 80.89 81.30 83.95 85.29 76.74 76.41

100 53.54 70.14 74.10 79.93 82.03 83.95 85.17 76.82 76.77

1000 53.57 70.17 73.80 80.01 82.08 84.13 84.95 77.09 76.55

10 000 53.56 70.12 73.97 79.97 81.95 84.13 84.99 77.06 76.62

TABLE I. Features composing each EDS feature set. In the feature expressions, “x” represents the input acous-

tic signal. The mathematical composition operation is implicitly represented by the parentheses. Each label

denotes an operator. Most of them are explained in detail in Pachet and Roy (2009). See Appendix for descrip-

tions of operators not included in Pachet and Roy (2009).

Feature set Features

1-EDS 1: Abs(Norm(PitchPraat(Blackman(Integration(VMeanNormalization(Arcsin(x)))))))

2-EDS 1þ 2: Sqrt(Abs(Iqr(Centroid(FilterBank(Abs(x)_27.0)))))

3-EDS 1þ 2þ 3: Variance(PitchPraat(Abs(Bartlett(x))))

4-EDS 1þ 2þ 3þ 4: ZCR(Skewness(SplitOverlap(x_32.0_0.5)))

5-EDS 1þ 2þ 3þ 4þ 5: Sqrt(Centroid(Blackman(SpectralKurtosis(MelFilterBank(x_10.0)))))

10-EDS

1þ 2þ 3þ 4þ 5 þ
6: Bandwidth(Pitch(Blackman(MelFilterBank(x_10.0)))_50.0)

7: Power(Abs(Mean(LSTER(SplitOverlap(Abs(Hann(x))_32.0_0.3)_0.15_50.0_0.5)))_2.89)

8: Sqrt(Abs(Range(Centroid(MelFilterBank(Normalize(x)_27.0)))))

9: MaxPos(rms(FilterBank(x_10.0)))

10: Crrm(HarmonicSpectralCentroid(HMeanNormalization(FilterBank(x_10.0)))_27.0_3.0)

20-EDS

1þ 2þ 3þ 4þ 5þ 6þ 7þ 8þ 9þ 10 þ
11: Skewness(Skewness(SplitOverlap(x_32.0_0.5)))

12: Max(SpectralSpread(MelFilterBank(Triangle(Normalize(x))_10.0)))

13: Sqrt(Max(PitchPraat(Hann(Square(Triangle(PointProcessPraat(x)))))))

14: rms(HarmonicSpectralCentroid(FilterBank(x_10.0)))

15: Sqrt(Abs(Max(Centroid(FilterBank(Arcsin(Hamming(x))_27.0)))))

16: Centroid(SpectralDecrease(Triangle(FilterBank(x_10.0))))

17: Bandwidth(HNorm(FilterBank(x_10.0))_50.0)

18: SpectralDecrease(x)

19: Sqrt(HarmonicSpectralCentroid(Autocorrelation(x)))

20: rms(SpectralCentroid(Split(x_32.0)))
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b. Evaluation of the features on FED. The overall effi-

ciency of each feature set was evaluated by comparing the

number of correctly classified calls for each feature set (with

Kruskal-Wallis analyses of variance, see Fig. 4). There was

an effect of the feature set used on the number of correctly

classified calls (H8¼ 380.69, p< 0.001). Subsequent SNK

post-hoc analyses revealed that classification performance

using the 2-EDS feature set was not significantly different

from that of the 10-MFCC (q¼ 3.30 ns) or 20-MFCC

(q¼ 0.23 ns) sets, and that performance with the 10-MFCC

set was not different from that of the 20-MFCC set

(q¼ 4.71 ns). All the other comparisons were significantly

different (p< 0.05). Thus, with only four EDS features, the

results were better than those obtained with 10 and even 20

MFCC coefficients. Results were even better with 5, 10, and

20 EDS features. The next step was to investigate which

particular call types were better-classified due to using EDS

features. The number of correctly classified calls obtained

independently was compared for each call type and for each

feature set (with Kruskal-Wallis analyses of variance, see

Table III). Results showed differences for all five call types,

including C1 (H8¼ 329.22, p< 0.001), C57 (H8¼ 98.01,

p< 0.001), C77 (H8¼ 137.14, p< 0.001), C106 (H8

¼ 167.58, p< 0.001), and C113 (H8¼ 325.96, p< 0.001).

Overall, 10 or 20 EDS features gave the best results for each

call type, except in the case of C106 calls (SNK post-hoc
analyses). Particularly, EDS features provided the greatest

improvement compared to the MFCC values for the call

types C1 and C113.

4. Two-stage classification

The first stage of the two-stage classification process

consisted of sorting calls into categories A and B. Various

feature sets were tried to train CL1, and the best results were

obtained with 20-EDS (see Appendix). The confusion matrix

of CL1 trained with 20-EDS showed that more calls were

correctly classified (2188 calls A classified in A and 1956

calls B classified in B) than incorrectly (515 calls A in B and

283 calls B in A). For the second-stage classification, the

classification of each call, according to its type, was assessed

either with a classifier trained on 20-EDS (CL2-EDS) or

with 20-MFCC (CL2-MFCC). Table IV presents confusion

matrices obtained with both classifiers. In the two-stage clas-

sification, some calls of type B were misclassified by CL1,

i.e., they were categorized into class A. In order to compute

confusion matrices for the combined classifiers, the classifi-

cation distributions of calls of type B by the two second-

stage classifiers were needed. As some calls of type B were

misclassified by CL1 into class A they could then be further

deliberately misclassified using CL2 (CL2-EDS or CL2-

MFCC) into classes C1, C57, C77, C106, or C113. With

those data, one can compute the confusion matrix of the two

combined classifiers, using the simple Bayesian inference.

Results are presented in Table V. The F-measures of the

classifier trained with 20-EDS were systematically higher

than that of the classifier trained with 20-MFCC. As for the

single classifiers C2-EDS and C2MFCC, call types C1 and

C113 were substantially better-classified with EDS features

than with MFCCs.

The two-stage classifier trained with 20-EDS also out-

performed the one-stage classifier trained with 20-MFCC. In

other words, the performance improvement brought by EDS

features largely compensated for the loss of performance due

to errors in the identification of calls of type A versus type B.

C. Discussion

In this experiment, African gray parrot vocalizations

were used to study the influence of features on the perform-

ance of supervised classification methods. The subset con-

sisted of five call types drawn from various contexts. In this

approach, the performance of standard features (MFCCs)

and standard approach (spectrographic cross-correlation)

was compared to that of feature generation.

FIG. 4. Mean percentage correct classification for the five calls selected is

represented according to the feature sets. Using just four EDS features pro-

vided better results than with 10 or even 20 MFCC values, and the results

were even better with more EDS features.

TABLE III. Mean percentage correctly classified calls (6SE) for each feature set and call type.

Call types

Features C1 as C1 C57 as C57 C77 as C77 C106 as C106 C113 as C113

1-EDS 15.63 (1.31) 90.51 (0.67) 97.64 (0.09) 83.43 (1.90) 1.53 (0.50)

2-EDS 84.44 (0.5) 94.76 (0.31) 94.95 (0.54) 73.68 (1.56) 7.53 (0.93)

3-EDS 88.68 (0.47) 94.09 (0.36) 94.78 (0.50) 81.95 (1.44) 11.89 (1.29)

4-EDS 90.02 (0.42) 93.32 (0.29) 97.16 (0.23) 88.46 (0.80) 38.25 (1.87)

5-EDS 90.83 (0.62) 94.33 (0.25) 97.19 (0.26) 87.83 (1.13) 34.89 (1.99)

10-EDS 92.12 (0.38) 94.22 (0.22) 97.26 (0.20) 91.82 (1.31) 43.62 (1.53)

20-EDS 91.47 (0.40) 95.01 (0.24) 97.44 (0.15) 93.89 (0.82) 47.53 (1.56)

10-MFCC 80.42 (0.74) 92.17 (0.37) 93.64 (0.48) 93.63 (0.60) 22.49 (1.38)

20-MFCC 78.31 (0.72) 91.70 (0.33) 94.14 (0.44) 94.64 (0.50) 23.64 (1.15)
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Features obtained by feature generation proved more effi-

cient than spectrographic cross-correlations or using MFCCs,

regardless of the feature-set dimensions chosen. The gain in

performance was due to two call types, C1 and C113, which

were poorly distinguished by both other approaches. Prob-

lem-specific analytical features performed much better on this

classification subtask.

C1 calls were mainly produced in protest situations,

whereas C113 calls occurred when the birds were excited,

mainly just before or during a quick flight. These calls had

similar bandwidth frequency and overall shape but differed

in terms of timbre and temporal sequencing. Specifically, C1

calls consisted of short repeated vocalizations, while C113

calls were longer, more raucous, non-repeated calls.

MFCCs captured timbre information from acoustic sig-

nals. However, they failed to distinguish C1 and C113. Auto-

matically generated features better distinguished between C1

and C113 calls. Further study of the analytical features was

not carried out as it was not relevant from an ethological

standpoint.

V. GENERAL DISCUSSION

The present study described a supervised learning

approach to classifying vocalizations of African gray parrots.

A preliminary experiment was carried out on a large dataset,

with 168 call types, using standard spectral features (MFCCs).

The resulting performance was poor due to the inherent diffi-

culty of the classification problem. The study then focused on

a smaller and simpler problem with only five call types. This

sub-problem was addressed with two feature-set techniques

(MFCCs and automatically generated features), as well as a

more common approach (spectrographic cross-correlations).

As for the general problem, MFCCs lead to poor performance.

Spectrographic cross-correlations provided almost perfect

classification for two call types (C77 and C106) but very poor

performance for others. The approach using automatically

generated features generally outperformed other approaches.

Importantly, this approach can also be applied when the na-

ture of the sounds is not known.

A wealth of research has investigated the use of acoustic

feature extraction for automated recognition of bird calls or

songs, whether for species identification (Kogan and Margo-

liash, 1998; Härmä, 2003; Härmä and Somervuo, 2004;

Chang-Hsing et al., 2006; Tyagi et al., 2006) or for syllable

classification (Tchernichovski et al., 2000). However, the

performance of those approaches depends strongly on the

feature set used. In other words, for a given classification

problem, specific features must be previously selected from

a standard set or devised from scratch. Therefore, the result-

ing classifiers do not necessarily generalize well to other

classification problems.

In the method described here, no assumptions need to be

made concerning the nature of the features before the classi-

fication. Instead, automatically generated features are pro-

duced that are well-adapted to the problem at hand before

the training phase of the supervised classification begins.

This more general approach can be used to address virtually

any audio-classification problem for which a training set of

samples for each category is available.

TABLE V. Confusion matrices providing the distribution of the calls according to their original call type and

mean F-measures obtained for each call type after the classification process with CL1, either followed by CL2-

EDS or by CL2-MFCC. More calls were classified correctly with CL2EDS (diagonal of the matrix: 3930 calls)

than with CL2MFCC (diagonal of the matrix: 3689 calls). Overall, F-measures were greater with CL2EDS than

with CL2MFCC.

CL2-EDS CL2-MFCC

Classified as ; B C1 C57 C77 C106 C113 B C1 C57 C77 C106 C113

B 1956 120 72 119 154 50 1956 107 91 93 176 49

C1 68 463 4 2 0 55 68 341 15 0 0 167

C57 135 23 924 24 0 72 135 38 828 22 1 153

C77 45 3 5 338 1 0 45 0 6 325 3 13

C106 22 4 4 0 161 0 22 2 0 0 165 0

C113 14 16 2 1 0 88 14 28 6 0 0 74

F-measures 0.83 0.76 0.84 0.77 0.64 0.46 0.83 0.62 0.78 0.78 0.62 0.26

TABLE IV. Confusion matrices providing the distribution of the calls according to their original call type after

the classification process with CL2-EDS and CL2-MFCC. More calls were classified correctly with CL2EDS

than with CL2MFCC. In both cases, calls of type B were misclassified (in C1, C57, C77, C106 or C113).

CL2-EDS CL2-MFCC

Classified as ; C1 C57 C77 C106 C113 B C1 C57 C77 C106 C113 B

C1 523 4 2 0 62 576 385 17 0 0 189 511

C57 26 1043 27 0 81 345 43 935 25 1 173 435

C77 3 6 382 1 0 572 0 7 367 3 15 447

C106 4 5 0 182 0 738 2 0 0 186 0 845

C113 18 2 1 0 99 240 32 7 0 0 84 233
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VI. CONCLUSIONS

Classification is a crucial step in any study of behavior,

and all classification problems require decisions to be made

by a human observer. Avoiding observer bias during the clas-

sification process is thus a central issue (Milinski, 1997). On

the one hand, although subjective judgments such as classify-

ing spectrogram features by eye can be highly valuable for

this task, the error-rate during classification increases with

the difficulty of this process. Specifically, the more different

call types there are, the more errors are committed. On the

other hand, a machine-learning approach cannot identify non-

acoustic specificities. Thus, the best approach is arguably one

that can combine the advantages of both methods—the com-

plex integrating capability of the human eye and objective

specificity of the automatic process. This combination can

likely produce the best possible classification performance

with the least possible bias. The current work may signifi-

cantly contribute to creating such a methodology for bioa-

coustical research, as it provides a means of at least partially

automating categorization of vocalizations, with classification

being performed in a systematic, repeatable, and fast way.
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APPENDIX: OPERATORS APPEARING IN THE
FEATURES USED

Norm: reduces a matrix to the vector of the Euclidian

norm of the rows.

HNorm: reduces a matrix to the vector of the Euclidian

norm of the columns.

PitchPraat: uses Praat to compute the pitch of a signal

with the default parameter values (Boersma and Weenink,

1996).

VMeanNormalization: for a given matrix, computes a

matrix where each element is the corresponding element of

the input matrix minus the average value of the correspond-

ing column.

HMeanNormalization: for a given matrix, computes a ma-

trix where each element is the corresponding element of the

input matrix minus the average value of the corresponding line.

Skewness: computes the third statistical moment.

MelFilterBank: for a given matrix, returns a matrix

which columns contain copies of the input matrix filtered

through different mel-frequency bands. The argument is the

number of mel bands.

LSTER: computes a line matrix which elements are the

ratios of low short-time energy frames of the columns of the

input matrix. The arguments are the energy threshold (per-

centage), the size of the energy frames (number of elements)

and their overlap (percentage).

CRRM: computes a matrix which contains the Cepstrum

Resynthesis Residual Magnitude (CRRM) of the input ma-

trix. The first argument is the number of mel band filters and

the second one is the order of the smoothing filter.

PointProcessPraat: computes Praat’s PointProcess (to

interpret an acoustic periodicity contour as the frequency of an

underlying point process, such as the sequence of glottal clo-

sures in vocal-fold vibration. Then, it uses Praat’s “To Sound

(pulse train)” to generate a pulse at every point in the point

process. This pulse is filtered at the Nyquist frequency of the

resulting Sound. We use Praat’s default parameter values.
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Tymr, F., and Bovet, D. (2010). “Referential learning of French and Czech

labels in African grey parrots (Psittacus erithacus): Different methods

yield contrasting results,” Behav. Processes 85, 90–98.

Guyon, I., and Elisseeff, A. (2003). “An introduction to variable and feature

selection,” J. Mach. Learn. Res. 3, 1157–1182.

Hall, M. A. (2000). “Correlation-based feature selection for discrete and

numeric class machine learning” (Working paper 00/08), (Department of

Computer Science, University of Waikato, Hamilton, New Zealand).
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Härmä, A., and Somervuo, P. (2004). “Classification of the harmonic struc-

ture in bird vocalization,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, Montreal, Canada,

pp. 701–704.

Janik, V. M. (1999). “Pitfalls in the categorization of behavior: A comparison

of dolphin whistle classification methods,” Anim. Behav. 57, 133–143.

Jones, A. E., Ten Cate, C., and Bijleveld, C. C. J. H. (2001). “The interob-

server reliability of scoring sonagrams by eye: A study on methods, illus-

trated on zebra finch songs,” Anim. Behav. 62, 791–801.

Khanna, H., Gaunt, S. L. L., and Mccallum, D. A. (1997). “Digital spectro-

graphic cross-correlation, tests of sensitivity,” Bioacoustics 7, 209–234.

Kogan, J. A., and Margoliash, D. (1998). “Automated recognition of bird

song elements from continuous recordings using dynamic time warping

and hidden Markov models: A comparative study,” J. Acoust. Soc. Am.

103, 2185–2196.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers
by Means of Natural Selection (The MIT Press, Cambridge, MA), p. 840.

Marler, P. (2004). “Science and birdsong: The good and old days,” in

Nature’s Music, edited by P. Marler and H. Slabbekoorn (Elsevier Aca-

demic Press, San Diego, CA), pp. 1–38.

Mccowan, B. (1995). “A new quantitative technique for categorizing whis-

tles using simulated signals and whistles from captive bottlenose dolphins

(Delphinidae, Tursiops truncatus),” Ethology 100, 177–193.

Milinski, M. (1997). “How to avoid seven deadly sins in the study of behav-

ior,” Adv. Study Behav. 26, 160–180.

Mjolsness, E., and Decoste, D. (2001). “Machine learning for science: State

of the art and future prospects,” Science 293, 2051–2055.

Molnár, C., Kaplan, F., Roy, P., Pachet, F., Pongrácz, P., Dóka, A., and
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