
Building plan recognition systems on arbitrary applications : the spying technique. F. Pachet, S. Giroux , IJCAI’95
Workshop on New Generation of Plan Recognition Systems, Montréal (1996).

Building plan recognition systems on arbitrary applications: the spying technique

François Pachet Sylvain Giroux

Laforia-IBP, Université Paris 6, Boîte 169
4, place Jussieu,

75252 Paris Cedex 05, France,
Email: pachet@laforia.ibp.fr

LICEF, Télé-Université,
1001, rue Sherbrooke est,

H2X3M4 Montréal, Canada,
Email: giroux@teluq.uquebec.ca

Abstract
There are today a lot of different techniques for performing
plan recognition in various domains, such as Intelligent
Tutoring Systems, Human-Computer Interaction, or multi
agent Systems. In order to bring theory into practice, we
claim that experiments should be carried out a larger scales
than what is done today. To do so, we stress on the
importance of building incomplete plan recognition
systems that may run on arbitrary existing applications.
We propose a technique for grafting plan recognition
systems onto arbitrary object-oriented applications,
without modifying their code. This technique is based on
the notion of spy a particular object, that may be inserted
in object-oriented systems in a non-intrusive manner, and
may track incoming messages to arbitrary objects. We
show how spies may be defined, installed automatically to
produce low-level information about a system's behavior.
Information produced by spies may then be fed to plan
recognition systems that perform various tasks such as
advice-production in tutorial systems or program
introspection and analysis.

1. Introduction

The context of our work is the formalization of pedagogical
expertise, and the development of frameworks and tools for
the design of tutorial systems in the context of remote
teaching (as practiced by the Télé-Université, Montréal).
More particularly, one of our goals is to provide frameworks
to specify and build "over the shoulder" advisor systems. In
this scheme, we are faced with two problems:

I) The strongest constraint of our work is to develop advisor
systems on top of existing applications, instead of having to
rewrite applications from scratch. The benefit of reusing
existing applications is enormous, and has short-term as
well as long-term consequences: applications may be
designed and implemented independently of their advisor
component; modifications of advisor systems do not require
intervention of the developers of the initial applications. For
instance, [Desmarais & al. 93] compared different plan
recognition techniques on the use of WordPerfect. Their
study required the development of a WordPerfect emulator,
"configured to monitor the user's actions". This study is a

perfect illustration of the kind of work cannot afford.
Instead, we want to reuse as much as possible work done by
others.

II) We do not know yet which kind of plan recognizer is
best suited to the need of the application. A variety of plan
recognition systems have been designed, each one is more
suited to certain tasks than the other. [Kautz & Allen 86]
proposed a technique that is satisfying only when plan
libraries are complete. [Carberry 90], [Konolige & Pollack
89] propose alternative theories of plan recognition in which
beliefs and intentions are ascribed to the user by using a
direct argumentation system, which does not require a
complete library of plans, but with other drawbacks. Lots of
authors have investigated grammar-based approaches:
action grammars [Reisner 81], task-action grammars [Payne
& Green 86], and various implementation for corresponding
parsers have been proposed (e.g. [Hoppe 88]). [Quast 93]
proposes a technique to recognize action plans based on a
multi-layered symbolic nets, with a bottom-up spreading,
exemplified on Excel abstract tasks. The list is long and
growing daily. Although some efforts have been made to
unify all existing theories of plan recognition, and to find
arguments pros and cons each technique in general [Greer &
al. 93], our position is pragmatic: each situation requires a
specific technique, which is not necessarily known at
application development time.

 The technique we devised, called spying addresses the
two preceding problems for the construction of plan
recognizers. The technique, initially designed to build
advisor systems, turned out to be directly applicable to any
kind of plan recognition systems, regardless of the domain
field. Our technique however, is based on the assumption
that the application is written in an object-oriented language,
satisfying the constraints listed below. The current
implementation is realized in Smalltalk. Porting to other
object-oriented languages (C++, CLOS) is in progress.

 In this scheme, the application is called the host system.
The advisor system - or any plan recognition system - is
designed and built independently of the host system. Our
contribution is to provide a scheme for linking both systems

Building plan recognition systems on arbitrary applications : the spying technique. F. Pachet, S. Giroux , IJCAI’95
Workshop on New Generation of Plan Recognition Systems, Montréal (1996).

that preserves the independence of the two systems and does
not require any modification of the host system.

1.1. Typical examples of host applications

The typical application on top of which we need to build
plan recognizers are the following:

 - The Smalltalk tools themselves, such as the Browser
or debugger. The Smalltalk environment is acknowledged to
be one of the most powerful programming environments on
the market. However, the learning phase is huge, and learner
are often lost in the complexity of the interface. Simple
advice may be produced based on rudimentary analysis of
user's actions. We showed how this advice-giving modules
can be designed and implemented without modifying the
tools on which the module is grafted [Pachet & al. 95]. The
design and implementation of advisers on more
sophisticated tools such as the VisualWorks GUI
[VisualWorks 94] is in progress.
 - Smalltalk applications such as tutorial systems
[Paquette & al. 94]. Classical plan recognition techniques
are then used to produce advice to the user, according to its
interaction with the tutorial system.
 - Monitoring and introspecting systems. In order to
optimize object-oriented systems, a fine analysis of their
dynamic behavior is required. We claim that such analysis
may be seen as a particular plan recognition task in which
the activity observed is not a sequence of human actions, but
a program execution. The technique we propose here is
directly applicable to this class of problems as well.

 We will now describe the spying mechanism, and
describe the EpiTalk system, a dedicated advice production
system that feeds from information gathered by spies.

2. From low-level tasks to messages

2.1. Object-oriented systems

In object-oriented languages such as Smalltalk, CLOS or
C++, the basic unit of activity of a program is the message.
An object-oriented program is designed and implemented as
a set of objects. Procedures are represented as messages
sent to objects. The activation of a message consists in turn
in sending messages to other objects and so forth (until
some primitive message is executed). Since every procedure
is represented as a message, user's action (mouse click, item
selection in a list, etc.) are eventually materialized as
messages sent to particular objects. For instance, in
Smalltalk, according to the MVC paradigm [Krasner &
Pope 88], user's action are handled by a "controller" object,
which interprets them and sends messages to a "view"
object and to a "model" object to request information, and
update its display on the screen.
 In order to build plan recognition systems on such
Object-Oriented programs, the first task is to identify
relevant messages in the application that correspond to
user's actions. Note that since we do not want to impose
restrictions on the nature of actions we want to analyze, this
tasks may not be delegated to some kind of "event handler"
mechanism, because the list of "trackable" actions would
then be pre-defined, and could not be suited the particular
application.

3. Spies

Our technique relies on the notion of "spy". A spy is an
object that may be inserted in a program in order to detect
all incoming messages to a given object, without modifying
the program's semantics.
 In practice, this is realized by a combination of capsule
programming [Pascoe 86] together with mechanisms for
swapping objects' identities. Capsules are objects that
"wrap" around arbitrary objects, and redefine some of their
behavior in a non intrusive way. The main idea behind
capsules is their ability to redefine message reception at the
instance level. This has traditionally been implemented
using a particularly popular mechanism of Smalltalk, the
doesNotUnderstand:, which is considered the main

reflective feature of Smalltalk [Foote & Johnson 89].
Thanks to this mechanism, capsules can easily intercept
incoming messages to encapsulated objects, and redefine
their semantics in various ways.

 The capsule mechanism introduced by Pascoe consists
in substituting capsule objects to spied objects. In Pascoe's
view, however, this substitution is left to the responsibility
of the tracing program, which is responsible for wrapping
around the spied object when it is created. Practically,
capsules require a modification of methods that actually
create the objects to be spied. Encapsulation therefore may
not be performed on existing code without modification. We
propose to automate the creation of capsules, by a
mechanism which automatically encapsulates objects. This
mechanism is based on the systematic use of the Smalltalk
primitive become:. This primitive message swaps the

internal addresses of two arbitrary objects. Here, the idea is
to encapsulate objects by making them physically "become"
spies, which in turn point to the original object (Cf. Fig. 1).
Thanks to this mechanism, we can encapsulate objects
"from the outside", without redefining existing code.

aBrowser

a controller

before

a view

a spy

a controller

after

a view

aBrowser

Figure 1. Installing a spy on a browser.

3.1. Issues and practical solutions

Based on our experience with the spying paradigm, we
identified three main issues related to the use of spies, and
propose practical solutions for them. The issues are the
following (they are discussed in more details in [Pachet &
al. 95]):

1) The self problem. Spies may not intercept messages sent
internally by an object to itself [Lieberman 86]. There is no

Building plan recognition systems on arbitrary applications : the spying technique. F. Pachet, S. Giroux , IJCAI’95
Workshop on New Generation of Plan Recognition Systems, Montréal (1996).

solution to this problem, but we make the - natural -
assumption that only external messages are interesting to
spy in the context of plan recognition systems. A second
related, and more subtle, problem is the "reverse-self"
problem: certain messages may be intercepted by spies
when in fact they should not, because they are mere
"echoes" of already intercepted messages. For instance, the
dependent mechanism in MVC ensures that each time a
model object changes its state, it warns its dependents
(usually view objects) of the change so that they can update
their display, if needed. Dependents in turn query the model
to get the information. If the model is spied, then each time
a view object will query its model, the spy will intercept all
the query message when only the message that caused the
original change should have been intercepted. To solve this
problem, we designed spies so that they intercept only one
message at a time, using stack introspection.

2) Classes can not be spied, for technical reasons. This
prevents us from easily detecting the creation of new
objects. The need for detecting object's creation is very
natural. For instance, when spying a browser object in the
Smalltalk environment, it is interesting to detect when the
user decides to open new browsers (e.g. hierarchy browsers)
from the initial one. The newly created objects should then
themselves be spied to record and analyze the user actions
accordingly. We designed a scheme to circumvent this
problem, by defining specialized spies whose task is to
install new spies on newly created objects. Note that the
reverse problem, i.e. detecting object destruction is not
relevant in an object-oriented setting, since this work is
usually performed by the garbage collector.

3) Spies sometimes understand too much. By definition of
the capsule mechanism, there are basic messages (such as
the vital message class that yields the class of an object)

that are directly interpreted by spies, thereby modifying
locally the semantics of the spied system. We solved this
problem practically by providing tools to detect such cases,
and ask the designer of the spying module to slightly modify
the code and avoid such messages. This is the only (small)
case when the application's code has to be modified.

4) The processing of spied information by spies (or by
specialized advisers, as described below) may be a burden
for the computer actually running the host application. In
some case, this may alter the performance of the host system
in a significant manner, and can even modify its semantics
(typically if the host application expects real time reactions).
To guaranty that spies do not perturbate the host application,
we coupled the spying mechanism with the RPC (remote-
procedure control) scheme [Pachet & al. 95]. Thanks to this
coupling, spies transmit intercepted messages to objects that
are physically located on a different machine, so the burden
of the spying mechanism is really marginal.

3.2. Replayer systems: a first layer of plan
recognition

The spying mechanism allows to collect information
circulating within an object-oriented program. Plan
recognition techniques are then used to analyze this
information in order to perform various tasks. The first

level of plan recognition systems is the recorder. This
objects does nothing but record information given by spies,
and is able to replay it, i.e. send the messages back to the
spied objects in the order it received them. Spying allows to
build "generic recorder" objects, without modifying the
code of the classes involved. For instance, this recorder
may be used to replay a sequence of user's action in a
browser, to put it back into a previous state. Of course,
building recorders is not a particularly difficult task in itself.
Our contribution so far is to allow the construction of
recorders for any kind of system without any modification
of the system being recorded.

4. Epiphyte systems

4.1. Definition

For systems requiring a more complex analysis of user
actions, such as advisor systems, the main problem is to
organize information collected by spies. This problem
concerns a whole class of systems, that we call epiphyte
systems, after a botanical metaphor: epiphytes plants grow
on host plants without causing them any damage (as
opposed to parasites, which cause damage to their host, and
- worst in the hierarchy - predators, who kill their host). Ivy,
and most orchid flowers are typical examples of epiphytes
plants. They live a life of their own, but need the presence
of an existing living organism to grow on, with which they
entertain a special kind of symbiosis. By analogy, our
solution is to consider advisor systems as "epiphyte"
systems, i.e. as systems growing onto other systems without
perturbing them whatsoever.

4.2. Viewpoints as task trees

We designed EpiTalk [Paquette & al. 95], a framework and
a system that proposes to organize spied information
according to several viewpoints on the activity of the spied
system.
 In this scheme, the action analyzer is based on the
exploitation of a pre-determined set of task trees. Here, a
task trees is a hierarchical decomposition of a task into sub -
tasks. Terminal tasks correspond to actual actions performed
by the host system (or by a user interacting with the host
system). These actions themselves correspond to a set of
messages sent to particular objects.
 The strong assumption of the EpiTalk architecture is
materialize viewpoints on the activity of the host system by
the task trees themselves. More precisely, task trees are used
to generate automatically an isomorphic structure, called the
adviser tree. This structure is in charge of analyzing user's
actions and produce advice.
 Figure 2 shows a task tree for the viewpoint on a
tutorial system aimed at guiding students to discover
scientific laws such as "PV-nRT". The host application is a
set of tools such as tracers, simulators, graphers and spread
sheets. The tutorial systems impose very few constraints on
the order in which the user may use the tools. In this
tutorial system, an advisor could focus either on the user's
reasoning process or on the validity and structure of the law
proposed. Each point of view is represented by distinct task
tree.

Building plan recognition systems on arbitrary applications : the spying technique. F. Pachet, S. Giroux , IJCAI’95
Workshop on New Generation of Plan Recognition Systems, Montréal (1996).

 The task tree in Figure 2 represents the viewpoint on
the "reasoning process" of the student. At the first level, the
root task is "T1.-Induce a Law". This task is decomposed at
the second level into five sub tasks: "T2.1-Generation of
Observation Sets", "T2.2-Analysis of Observation Sets",
"T2.3-Conjecture Formulation", "T2.4-Conjecture
Revision", "T2.5-Generalization". The sub task "T2.2-
Analysis of Observation Sets" is in turn decomposed into
"T3.1-Plot Data", "T3.2-Sort Data", "T3.3-Identify
Tendency" etc. The precedence order of sub tasks is also
specified in the task tree, for each task. Terminal tasks (here
at the third level) identify tools provided by the host system,
e.g. plotters and simulators. Intermediate tasks represent
abstract tasks (levels 1 and 2) with no direct reference to a
particular tool.

Induce Law

Analysis Conjecture Revision

Plot data

Sort Data

Tendency

Generalization...

...

...

Figure 2. A Task tree on a tutorial system for scientific law
discovery. Terminal tasks are in boldface, and contain
descriptions used to generate spies automatically.

4.3. Connection with the spying system

The connection with the spying system described above is
performed at the action (i.e. terminal task) level. To each
terminal task of the task tree is associated the set of
messages deemed interesting to spy. When a spy spies a
message, it sends it to the terminal advisers, corresponding
to the terminal tasks that are interested in this message.
Spies are then used to feed the spying system, from the
interaction of a user with the host system.
 In our example the terminal task "Plot data" specifies
which objects should be spied (here an instance of class
Plotter"), and which messages should be intercepted

(here messages accept, undo and openTool). At run

time, spies are automatically generated from these
descriptions and grafted on the host application.

4.4. Action analysis and advice production

The adviser module is in charge of observing the user action
and provide advice such as the following ones:

1- Your proposed law has not been validated; before
that, you should try to produce and analyze more
observations.

2- Your analysis is not complete since there is an
observation set that you have not looked at, in graph
or table form.

3- Your selection will create an observation set that will
be difficult to analyze because you have too many
variables.

4- A law has to be expressed as an equation. Your law
expression should therefore contain the symbol "=".

 As these examples show, there are several "hierarchical
levels of abstraction" of advice. Advice do not necessarily
address the same conceptual level, within a given viewpoint.
This organization of knowledge into levels is hierarchical by
nature. Some advice are issued according to local and
ephemeral information (#3-4). Others require more
information, only available from a higher (or more global)
level on the user's activity (#2). Others manipulate abstract
information (#1) which are itself the result of lower levels
inferences.

4.5. The plan recognition scheme

The plan recognizer we use is built in the spirit of [Quast
93], as a bottom-up spreading of spied information. The
main characteristics of this scheme is that the plan
recognition and the production of advice are combined into
a single walk through the adviser tree. The principle is
simple: each time a spy intercepts a message, it sends it to
the corresponding terminal advisers. Then a bottom-up
spreading is activated as follows:

1) Each adviser (terminal or non-terminal) processes the
information, either to issue local advice or to update
a local model of the activity being observed,

2) The adviser transmits to its direct father any
information it considers relevant.

 This scheme is applied recursively for all advisers of
the tree, terminal or non-terminal, until the root adviser is
reached. Terminal advisers receive information directly
from the host system, whereas non-terminal advisers receive
information from advisers below them in the hierarchy.

 Each adviser manages a local model of the activity.
This model consists mainly in a management of states for
the task being performed. In simple cases, a state having
three values (e.g. #inactive, #pending, #finished) suffices to
produce advice. However, since each adviser is responsible
for managing its own model, more sophisticated
representation of the task activity may be introduced.

4.6. Example of advice production

In our advisor module for scientific discovery, the following
situations can occur:
1) At the lower level, when the user groups sorted
observations into a table, the adviser associated to the task
"T3.2-Sort Data" is informed that the user is building an
observation set and the adviser also knows the variables
governing this set (such as the number of variables used,
their names, etc.). From this local information, the adviser
can produce advice #3.

Building plan recognition systems on arbitrary applications : the spying technique. F. Pachet, S. Giroux , IJCAI’95
Workshop on New Generation of Plan Recognition Systems, Montréal (1996).

2) Suppose that the user first tries to identify a tendency
using the tendency tool. The adviser associated to the
terminal task "T3.3-Identify Tendency" is then notified of
the corresponding user action, and processes this
information, either to issue a "local" advice such as advice
#3, or to update its local model. Then the adviser sends a
signal to its father - the adviser associated to the task "T2.2-
Observation Set Analysis" - that the task "T3.3-Identify
Tendency" has begun. The father accepts this information,
and may update its local model to deduce that this is the first
sub task accomplished by the user. He may consequently
generate advice #2. In turn, this adviser will also transmit a
signal to its father (here, the root adviser).

3) In a similar fashion, the root adviser associated to the task
"T1.-Induce a Law" can monitor the whole induction
process and generate advice such as advice #1.

 This bottom-up interpretation of the adviser tree
naturally reflects the various levels of abstraction: as
information sifts up in the tree, it is processed by advisers
that interpret it according to their own local vision of the
host system and user's actions. When a user action is
detected in the host system, it is sent to the terminal advisers
that are interested in this action. These terminal advisers
process the information and transmit information to their
fathers, eventually reaching the root adviser. Each terminal
adviser has a local vision of the system. Intermediate
advisers represent intermediate aspects of the system's
activity according to the given viewpoint. Only the root
adviser of the tree has a global vision of the system. This
hierarchical structure of advisers together with the
communication scheme is the backbone of the advisor
system, for a given viewpoint.

 Since the specification of the advising module is
entirely represented in the (decorated) task tree, several
viewpoints for a given host system will correspond to
several task trees, which will generate several different
multi-agent advisor systems.

4.7. Applications of EpiTalk

EpiTalk is being used in a number of tutorial systems such
as the scientific law discovery system described here, and
the DEW system [Paquette & al. 94], a didactic engineering
workbench. A third interesting extension of EpiTalk in
progress is a system that automates the production of advice
that specifically address violations of precedence constraints
between sub-tasks [Pachet & al. 95b]. In this system,
specific advice such as "this sub-task is prematurely
performed" or "finish this sub-task before starting this one"
are automatically generated from the precedence constraints
specified in the task tree.
Other applications of EpiTalk include an environment for
debugging actor-like languages [Giroux & al. 94], and
explanation-modules for expert systems. Extensions for
dynamic typing of Smalltalk programs are also considered.

5. Conclusion

We extend the notion of plan recognition to the monitoring
of arbitrary systems, not necessarily involving human
actions. The main issue we address is the construction of

plan recognizers on top of existing object-oriented
applications which do not require modification of the
application's code. The spying technique we propose allows
to graft plan recognition systems on top of arbitrary
Smalltalk applications, without modifying their code. The
spying technique provides a safe and practical mechanism
for the "raw" first layer of an observation system. We
described briefly the EpiTalk architecture, in which spied
information is organized along task trees to generate
relevant advice at various levels of abstraction.
 However, the spying mechanism presented here is
clearly independent of the actual advising module used to
analyze spied information. Other plan recognition systems
and advising strategies are currently being developed that
feed from the same spying machinery, such as the
"hieractor" model of [Kosbie & Myers 94], and a more
classical approach based on attribute grammars.

References

[Carberry 90] Carberry, S. Incorporating Default
Inferences into Plan Recognition. Proceedings of the
Eighth National Conference on Artificial Intelligence
(AAAI), Boston, July 1990. pp. 471-478, (1990).

[Desmarais & al 93] Desmarais, M. C. Giroux, L.
Larochelle, S. An Advice-Giving Interface Based on
Plan-Recognition and User-Knowledge Assessment.
Int. Journal of Man-Machine Studies (1993) 39, pp.
901-924. (1993).

[Foote & Johnson 89] Foote, B. Johnson, R.-E. Reflective
facilities in Smalltalk-80. Proceedings of
OOPSLA'89, pp. 327-336, New Orleans, Louisiana,
(1989).

[Giroux & al. 94] Giroux, S. Pachet, F & Desbiens, J.
Debugging multi-agent systems: a distributed
approach to events collection and analysis. Canadian
Workshop on Distributed Artificial Intelligence -
CWDAI '94. Banff, Alberta, Canada, mai 1994.

[Greer & al. 93] Greer, J.E. Koehn, G. M. Rodriguez-
Gomez, J. A System for Exploring Plan Recognition.
Proceedings of Artificial Intelligence in Education -
93, Edinburgh, Scotland, pp. 465-472 (1993).

[Hoppe, 88] Hoppe, H.U. Task-Oriented Parsing - A
Diagnosis Method to be used by Adaptative Systems.
Proceedings of CHI '88, Washington, D.C., ACM
Eds, pp. 241-247 (1988).

[Kosbie & Myers 94] Kosbie, D. Myers, B. Extending
Programming By Demonstration With Hierarchical
Event Histories. Proceedings of East-West Human
Computer Interaction Conference 94, pp. 128-139,
Springer-Verlag, Lecture Notes in Computer Science,
n. 876 (1994).

[Krasner & Pope 88] Krasner, G. Pope, S. A Cookbook
for Using the Model-View-Controller Paradigm in
Smalltalk-80. ParcPlace systems (1988).

[Kautz & Allen 86] Kautz, H.A. Allen, J. F. Generalized
Plan Recognition. Proceedings of AAAI '86,
Philadelphia, Pa. pp, 32-37, (1986).

[Konolige & Pollack 89] Konolige, K. Pollack, M.
Ascribing plans to agents. Proceedings of the 11th
IJCAI , Detroit, pp. 924-930, (1989).

[Lieberman 86] Lieberman, H. Using Prototypical
Objects to Implement Shared Behavior in Object-

Building plan recognition systems on arbitrary applications : the spying technique. F. Pachet, S. Giroux , IJCAI’95
Workshop on New Generation of Plan Recognition Systems, Montréal (1996).

Oriented Systems. Proceedings of OOPSLA '86,
Portland, Oregon, pp. 214-223, (1986).

[Pachet & al. 95] Pachet, F. Wolinski, F. Giroux, S.
Spying as a novel object-oriented programming
paradigm. Proceedings of TOOLS Europe '95,
Versailles, France, pp. 109-118, (1995).

[Pachet & al. 95b] Pachet, F. Djamen, J.-Y. Frasson, C.
Kaltenbach, M. Production de conseils pertinents
exploitant les relations de composition et de
précédence dans un arbre de tâches. Submitted to
Technique et Sciences Educatives (1995b).

[Paquette & al 94] Paquette, G., Crevier, F. Aubin, C.
Frasson, C. Design of a Knowledge-based Didactic
and Generic Workbench. Computer Aided Learning
in Science and Engineering, Paris, France, Sept. 1994.

[Paquette & al. 95] Paquette, G. Pachet, F. Giroux, S.
EpiTalk: a Generic Tool for the Development of
Advisor Systems. AI in Education. To appear (1995).

[Pascoe 86] Pascoe, G. Encapsulators: A New Software
Paradigm in Smalltalk-80. Proceedings of
OOPSLA'86, pp. 341-346, Portland, Oregon, (1986).

[Payne & Green 86] Payne, S. J. Green, T.R.G. Task-
Action grammars - A model of the mental
representation of task languages. Human-Computer
Interaction, Vol. 2, pp. 93-133.

[Quast 93] Quast, Klaus-Jürgen. Plan recognition for
context-sensitive help. Proceedings of the
International Workshop on Intelligent User
Interfaces, Orlando, Florida, Jan. 1993. ACM Press.
pp. 89-96, (1993).

[Reisner 81] Reisner, P. Formal Grammar and Human
Factors Design of an Interactive Graphic System.
IEEE Transactions on Software Engineering, Vol. SE-
7/2, pp. 229-240.

[Visual Works 94] VisualWorks Cookbook, version 2.0.
ParcPlace Systems, (1994).

