
Pachet & al. (1995) Spying as an Object-Oriented Paradigm, TOOLS 95, pp. 109-118, Prentice-Hall Eds

Spying as an Object-Oriented Programming Paradigm

François Pachet
LAFORIA

Université Paris 6
4, place Jussieu

75252 Paris Cedex 05, France
pachet@laforia.ibp.fr

http://www-laforia.ibp.fr/~fdp

Francis Wolinski
Informatique CDC

Caisse des Dépôts et
Consignations

113, rue Jean Marin Naudin
92220 Bagneux, France

wolinski@icdc.fr

Sylvain Giroux
LICEF

Télé-université,
1001 rue Sherbrooke est,

Montréal H2X 3M4 Canada
giroux@teluq.uquebec.ca

Abstract
We introduce spying, a novel way of

programming with objects, based on capsule
programming and reflective facilities. This
programming style allows easy building of
monitoring systems, such as tracers, debuggers.
We point out three main problems related to this
programming style, and propose practical
solutions to some of them. We exemplify our
claims with a system that performs master/slave
communication across different Smalltalk
images. We conclude by proposing a typology of
applications where the spying paradigm may be
productively used.

Key-words: Capsules, Proxies, Monitoring
systems, Reflexion.

1. Introduction: a state of the art in
capsule programming ?

Back in 1986, Pascoe introduced encapsulators

[Pascoe 86], a paradigm for object-oriented
programming that allowed better structuring of
programs. Encapsulators, also called capsules or
interceptors [Lalonde&Pugh 91], are objects that
"wrap" around arbitrary objects, and redefine
some of their behavior in a non intrusive way.
The main idea behind capsules is their ability to
redefine message send (or, rather, message
reception). This has traditionally been
implemented using a particularly popular
mechanism of Smalltalk, the
doesNotUnderstand:, which is considered
the main reflective feature of Smalltalk [Foote &
Johnson 89]. Thanks to this mechanism, capsules
can easily intercept incoming messages to
encapsulated objects, and redefine their
semantics in various ways. Since then, capsules
have steadily gained attention, and are now used
intensively, although under different names, and
with slight variations.

For instance, the VisualWorks environment

makes intensive use of so-called wrappers
[VisualWorks 94] in a effort to automate
interface programming in MVC. Wrappers
provide a useful programming framework, mainly
because they automate dependency management,
and handle the ubiquitous "changed" message of
classical MVC. Following a similar trend, the use
of pluggable adaptors in VisualWorks tends to
systematize the use of intermediary objects that
define generic "monitoring" behavior. However,
wrappers and pluggable adaptors are "hard-
wired" in the sense that they do not rely on the
doesNotUnderstand: mechanism.

Similarly, Trevor Hopkins [Hopkins 94]
proposes wrappers as the main ingredient for his
"instance-oriented" programming style, and
justifies his claims by non trivial frameworks
such as the three-dimensional objects framework.
Wrappers à la Hopkins make intensive use of the
doesNotUnderstand: mechanism. On the
actor scene, the Actalk system [Briot 89]
proposes an implementation of actors as
capsules. Basically, in Actalk, actors are capsules
that intercept incoming message to interpret them
using the mail box paradigm of actor languages.
The Actalk system is not a toy system either, and
now includes a complete programming
environment [Briot 94].

However, this programming style is still
considered a fashionable "hack" for experts, and
has not yet acquired a first-class status among the
object-oriented programming paradigms. Another
observation about the current use of capsules and
their derivatives is that capsules are still used
statically. In particular the installation of
capsules around arbitrary objects is most of the

Pachet & al. (1995) Spying as an Object-Oriented Paradigm, TOOLS 95, pp. 109-118, Prentice-Hall Eds

time under the programmer's responsibility, and
requires a specific line of code to be inserted in
the right place. Also, the use of capsules has not
yet been entirely described. In particular, the
drawbacks of this programming style have not yet
been fully understood, or, at least, listed
extensively.

In this paper, we propose an extension of the
basic capsule programming technique, called
spying, which relies on the systematic use of
capsules, reflective capacities of the host
language (the doesNotUnderstand:), as
well as a scheme for the dynamic installation of
capsules. We point out three main problems
related to this programming style, and propose
practical solutions for some of them, based on
our experience with spying. We give a non trivial
use of spying with a system that performs
master/slave communication between Smalltalk
images. We conclude by proposing a typology of
applications where we think spying can be safely
and productively used.

Requirements of the host language:
The architecture we present here is based on

three requirements for the host object-oriented
language:

1) possibility of redefining message execution.
2) possibility of accessing and modifying

references to an arbitrary object
3) access to the stack of execution.
In practice, Smalltalk is a good candidate,

thanks to the doesNotUnderstand:,
become: operations, and the pseudo-variable
thisContext. However, the proposed
architecture is directly applicable in languages
satisfying the three requirements above (such as
some Lisp-based object-oriented languages, or
Self). All the code described here is available on
request.

2. Spying

We introduce an other terminology for

capsules, called "spies". As we will see, spies are
very similar to capsules, the only difference
being the fact that they may be installed
dynamically without the intervention of the
programmer, and that they induce a particular
philosophy of programming.

2.1. The spying philosophy

The spying architecture we present here is
applicable to a wide range of systems, including
tracers, debuggers, monitoring systems, advisor
systems, etc. This class of system is defined by
the two following hypothesis:

1 - Spying systems as extensions of host
systems
We try to build a spying system as an
extension of an existing system, called the
host system. The strongest implication is that
we do not want to modify the code of the host
system.

2 - Only external events occurring to an
object are interesting
We are interested to track all external events
occurring to arbitrary objects of the host
systems. Typically, in the case of advisor
systems, we are interested in tracking the user
actions with the host system, such as where
and when he click, and which tools he
manipulates. More generally we need to know
what external actions a given object receives.
As we will see, this notion is not
straightforward, and does not simply boils
down to the traditional public/private
distinction.

[Böcker & Herczeg 90] proposed a toolkit

with similar goals in mind. Their system (Trick),
written in Smalltalk, may be seen as a framework
to build tracers and debuggers. We do not here
propose any library or system, but rather propose
spying as a programming paradigm, useful to
build the class of system described above.

2.2. Implementation

The basic spying mechanism is implemented

by a combination of capsule programming and
reflective facilities provided by Smalltalk-80.
The idea is to intercept incoming messages by
substituting special objects, called spies to the
spied object. Using the reflective "trap-door"
offered by the doesNotUnderstand:
mechanism [Foote & Johnson 89], spies
systematically reify all their incoming messages.
We redefine message interpretation for spies so
that they 1) execute some spying action and 2)
redirect messages to the spied object, so that the
system behave as if nothing happened.

The spying mechanism relies therefore on two

steps:
1) an installation mechanism that installs a spy
on a target object,

Pachet & al. (1995) Spying as an Object-Oriented Paradigm, TOOLS 95, pp. 109-118, Prentice-Hall Eds

2) a message interception that relies on the
reflexive capacity of the underlying language.

Practically this is realized by introducing a

class called Spy, which defines a creation
method for installing a spy on an arbitrary object,
and an instance method for redefining message
interpretation.

2.3. Installation of spies; the become:
primitive

The capsule mechanism introduced by Pascoe

consists in substituting capsule objects (here
spies) to spied objects. In Pascoe's view,
however, this substitution is left to the
responsibility of the tracing mechanism, usually
at creation time.

Practically, capsules require a modification of

methods that actually create the objects to be
spied. Encapsulation therefore may not be
performed on existing code without modification.
We propose to automate the creation of capsules,
by a spying mechanism which automatically
encapsulate objects. This mechanism is based on
the systematic use of the Smalltalk primitive
become:. This primitive message, defined in
root class Object, swaps the internal addresses
of two arbitrary objects. Although not
documented, this method is used by the system in
special cases, typically for growing collections.
Here, the idea is to encapsulate objects by
making them physically "become" spies, which in
turn point to the original object. Note that the
become: primitive does not modify the objects
that are being swapped. It simply swaps the
reference of the other objects in the environment
to either of the two swapped objects (Cf. Fig. 1).
Thanks to this mechanism, we can encapsulate
objects "from the outside", without redefining
existing code.

aBrowser

a controller

before

a view

a spy

a controller

after

a view

aBrowser

Figure 1. Installing a spy.

2.4. Objects that do not understand
anything: MinimalObject

The hack for redefining message interpretation

in Smalltalk is now well known: it consists in
creating object that systematically raise an error,
then redefining the doesNotUnderstand:
message to implement the new message
interpretation. We call the MinimalObject

problem, the process involved in the definition of
a class whose instances understand no message,
and raise a doesNotUnderstand: message.
This class is called MinimalObject, after the
works of J.-P. Briot for actor languages [Briot
89].

As it turns out, creating objects that do not

understand anything is not as simple as it seems.
In Smalltalk, the idea is to build classes whose
superclass is nil. From a practical point of
view, there are lots of difficulties arising from
that, such as problems with cross-references, or
desynchronisations of change log files (Cf.
[Pachet & al. 94] for more details). Spy classes
are defined as subclasses of MinimalObject,
with one instance variable pointing to the spied
object, and redefine the
doesNotUnderstand: message:

MinimalObject subclass: #Spy
 instanceVariableNames:
'spiedObject'

2.5. The script of the spy

In order to materialize the interception of

messages, we introduce a special class that
represent intercepted interactions. This class
looks like the class Message (which represents
reified, not understood messages), but adds time
and sender information. Actually two different
classes of interaction are created, to take into
account the fact that once the message is
executed, its result may be of some interest to the
spy.

This script is defined as follows, to allow
maximum flexibility. This interception behavior
is the most general one, as it allows the insertion
of a monitoring event both before and after the
message is executed.

!Spy methodsFor: 'script'!

doesNotUnderstand: aMessage
| r |

self scriptBefore:

Pachet & al. (1995) Spying as an Object-Oriented Paradigm, TOOLS 95, pp. 109-118, Prentice-Hall Eds

 (InteractionBefore message:
aMessage sender: self you time: Time
now).
r := self performMessage: aMessage.
self scriptAfter:
 (InteractionAfter message:
aMessage sender: self you time: Time
now result: r).
^r

The spy, of course, redirects the message to

the object it was sent in the first place, so that
everything works as if the spy was not there:

performMessage: aMessage
 ^spiedObject perform: aMessage
selector withArguments: aMessage
arguments

By default, the methods that actually perform

some spying action do not do anything, and will
be defined in concrete subclasses. Note also that
the sender information is accessed via message
you, that may be defined by introspecting in the
stack (Cf. section 3.1.3 for the stack
management).

2.6. Examples of subclasses of Spy

The most basic subclass of spy we can imagine

is the TranscriptSpy, that systematically
writes in the Transcript all intercepted messages.
This is trivially realized by defining a subclass of
Spy which redefines only one method,
scriptBefore: as follows:

Spy subclass: #TranscriptSpy

scriptBefore: anInteraction
 Transcript show: anInteraction
printString; cr

This TranscriptSpy, combined with an

instance browser is already a very useful tool to
understand the dynamic properties of objects in
the Smalltalk environment.

A more elaborate kind of spy is the

SelectiveSpy, which intercepts only message
declared as "interesting". This is realized by
defining a subclass of Spy holding a
testBlock that evaluates to a Boolean, with
the interaction as argument. The scenario is once
again pretty straightforward:

Spy subclass:
#SelectiveTranscriptSpy
 instanceVariableNames: 'testBlock'

For instance, we can spy a browser and be
interested only in tracing the instance/class
switch. This amounts to creating a
SelectiveSpy that handles only interactions
whose selectors are meta or meta: (the
messages sent to the browser when the user
presses the switch) :

| b |
b := Browser new on: Smalltalk
organization.
DynamicSelectiveSpy newOn: b master:
self testBlock:
 [:i | #(meta meta:) includes: i
message selector].
Browser openOn: b withTextState: nil

The script for this spy consists simply in

testing the testBlock prior to the writing in
the Transcript :

scriptBefore: anInteraction
(testBlock value: anInteraction)
 ifFalse: [^nil].
Transcript show: anInteraction
printString;cr.

An third interesting variation is the

RuleBasedSpy. This kind of spy executes a
particular action when it intercepts a particular
message. Although we developed this idea by
providing a fully-fledged rule-based mechanism,
we show here the idea on a simplified version of
RuleBasedSpy dedicated to our example.

Suppose that we want to redefine locally the
behavior of the browser in the following fashion:
each time the user selects the "hierarchy" option
in the class menu, we want a dialog box to appear
and ask the user if he wants to open a hierarchy
browser. If yes, then open a hierarchy browser, if
no, then proceed with the original action. This
idea comes simply from the observation that
users tend to be mixed up with the various
options in the menu, and confuse the hierarchy
option with the "open hierarchy" option.

The point we want to make here is that this
refinement of the original browser may be
realized without having to modify the class
Browser, nor having to write a specialized
subclass. This can be simply realized by writing a
specialized spy as follows:

DynamicSelectiveSpy
 subclass: #RuleBasedSpy

scriptBefore: anInteraction

anInteraction message selector =
#showHierarchy
 ifTrue:

Pachet & al. (1995) Spying as an Object-Oriented Paradigm, TOOLS 95, pp. 109-118, Prentice-Hall Eds

 [(DialogView confirm: 'Do you
want to open a hierarchy Browser ?')
 ifTrue:
 [object spawnHierarchy]].
^super scriptBefore: anInteraction

In this example, the effect of the spy is the

same as the effect of a subclass. The main
difference is that the refined behavior may be
associated with any existing instance of
Browser, dynamically.

3. Properties and limit

Our architecture is based on a minimal

extension to Smalltalk-80, which proved to work
well on concrete and non trivial applications.
However, there are three major problems related
to this architecture: the self problem (itself
divided in two sub problems), the instance
creation problem, and the minimal message
problem.

3.1. The self problem

There are two variant of the self problem for

spies. The first one has no solution. The second
one has one, which relies on the possibility to
perform introspection in the stack.

3.1.1. The self problem itself

The self problem was already mentioned by
[Lieberman 86], and is inherent to the very
definition of capsules. Since only incoming
messages are tracked, messages send by an object
to itself cannot be intercepted, because self is
not a real variable: objects may refer "directly" to
themselves, without having to use to explicit
pointers. As Foote and Johnson mentioned in
[Foote & Jonhson 89], capsule correspond to
message forwarding, and not true delegation.
From a software engineering point of view, this
amounts to saying that only "public" methods can
be spied, and not private ones, i.e. only messages
in which the sender and the receiver are different
objects could be intercepted. Although most
dialects of Smalltalk do not take this difference
explicitly into account (the only exception so far
is Smalltalk/ENVY [ENVY 94]), it is not hard to
add a public-private facility to classify methods,
and check that only public methods are spied.
However, the problem is trickier than what
Lieberman, and Foote & Jonhson suggested: not
only private methods cannot be spied, but also

some public methods as the following example
shows. In fact the requirement for a message to
be interceptable is that:

1) the message is not sent by the object itself,
2) the reference from the sender of the
message to the receiver of the message (the
spied object) was not installed via a reference
to self.

We did not find a systematic solution to this

problem. Experience showed that such cases are
not frequent. We currently chose to design tools
that dynamically detect such situations, so that
spying system designers know exactly what is the
status of the methods they try to spy.

3.1.2. The public / private

problem revisited

Now this distinction between public and

private methods is yet more subtle. This second
problem is a dual version of the preceding one:
there are external messages that should not be
intercepted, because, although they are indeed
public messages, they are indirectly the result of
a message sent by the spied object itself!. This is
the case for instance with the changed
messages so frequent in MVC programming. For
instance, when an object needs to notify its
dependents that it has changed significantly, it
sends itself a "self changed" message. This
message in turns, warns the dependents that the
object has changed, which results in the
dependents asking the initial object for some
information [Krasner & Pope 88]. These
messages are usually "public" messages, so they
will be intercepted, but, in our context, they
should not, since they do not represent an actual
external interaction!

For instance, Figure 2 shows the list of

messages intercepted when a user clicks on a
category in a spied browser (note that most of
them are considered public messages).

This problem is tricky, and shows the

importance of having a sound definition of what
public/private exactly means. More precisely
what we need is a definition of private/public that
is dynamic. A solution to this problem is given by
introspecting in the stack. This is particularly
easy to do if the language provides an access to
the stack as well as object structures to organize
it. In Smalltalk-80, we propose the following
method that looks up the stack until a particular

Pachet & al. (1995) Spying as an Object-Oriented Paradigm, TOOLS 95, pp. 109-118, Prentice-Hall Eds

condition (represented by a Smalltalk block) is
satisfied:

youUntil: aBlock
"looks up the stack until aBlock is
true, or the top is reached"
 | s |
 s := thisContext.
 [s := s sender.
 s isNil ifTrue: [^false].
 aBlock value: s receiver]
whileFalse.
 ^true

This stack introspection is inserted in the

script of spies as follows :

!Spy methodsFor: 'script'!
doesNotUnderstand: aMessage
 | r |
(self youUntil: [:x | x == object])
ifTrue:
 [^self performMessage: aMessage].
 same as before ...

#category: withArguments: #(#'spying-essais')
from: a SelectionInListView at 3:32:18 pm
#classList from: a SelectionInListView at 3:32:18
pm
#className from: a SelectionInListView at
3:32:18 pm
#className: withArguments: #(nil) from: a
SelectionInListView at 3:32:18
#protocolList from: a SelectionInListView at
3:32:18 pm
#protocol: withArguments: #(nil) from: a
SelectionInListView at 3:32:18 pm
#selectorList from: a SelectionInListView at
3:32:18 pm
#selector: withArguments: #(nil) from: a
SelectionInListView at 3:32:18 pm
#text from: a TextView at 3:32:18 pm

Figure 2. The messages intercepted when the

users clicks on a category, and when spies do not

look up the stack.

Thank to that modification, only actual

external events are intercepted. More than simply
solving the bug, this notion of systematic stack
introspection yields in fact a definition of an
external event: an external event is a message
sent to an object, such as there is no message sent
by the object itself in the current stack. This
approach is to be compared with the works of
[Loia & Quaggetto 93], who propose dynamic

spying, in the form of specific language
constructs to access and modify the history of
computation. Our scheme is less radical that
Loia's, in that we do not intent to modify the

stack, and only want to observe it to draw
information on the behavior of the system.

3.2. The class problem

The second problem is spying of dynamically

created objects. For instance, let us say we want
to spy all hierarchy browsers created from a
given browser. The natural solution would be to
spy classes, and instance creation methods. This
not feasible in practice, mainly because classes
can't become non-classes objects (this is a
limitation that we can forgive to the Smalltalk
interpreter!).

All object creations and deletions are

eventually caused by messages sent to instances.
Instanciation is typically performed by a message
sent to a class (such as : HierarchyBrowser
new), but, as we saw, we cannot intercept class
messages. To solve this problem, we intercept the
creation of objects indirectly, by tracking calling
instance messages. These messages are
intercepted by a special kind of spy called
CreativeSpy, which is in charge of installing
a new spy on the newly created object.

In the case of hierarchy browser creations for
example, the corresponding instance message is
the message spawnHierarchy sent to the
browser instance. The method
spawnHierarchy in turn sends a message to
the class HierarchyBrowser :

Browser methodsFor: 'class
functions'
spawnHierarchy
 ^HierarchyBrowser
openHierarchyBrowserFrom: self

Since we cannot intercept message

openHierarchyBrowserFrom:, we will
intercept the message spawnHierarchy sent
to the browser instance. More generally, we make
the hypothesis that all instanciations are
"triggered", somewhere in the system by an
instance message which is significant enough to
be intercepted in place of the actual instance
creation message. This hypothesis has yet only
been verified in practice. We work towards an
automatization of "causal" instance messages to
help the designer find out which instance
messages cause new objects to be created. An
other idea in progress consists in specifying in a
declarative manner "access-paths" that link "root"
objects to potential new objects, with a chain of
instance messages, and have the system install
specific creative spies to do the job.

Pachet & al. (1995) Spying as an Object-Oriented Paradigm, TOOLS 95, pp. 109-118, Prentice-Hall Eds

3.3. The MinimalObject problem

The third problem raised by our architecture is
inherent to the very concept of the
MinimalObject class. In order to survive in
the Smalltalk environment, without threatening it,
objects have to understand a minimal set of
messages. The problem arises when spies directly
interpret a minimal message that was not directed
at them, but at their spied object (such as the
message class). The problem is the two-fold:
1) the original object does not receive the
message, and 2) the action performed by the spy
is the wrong one. The answer provided by the spy
may be inconsistent with the rest of the host
system.

The actual implementation of our architecture

does not provide any reasonable answer to this
problem. A good solution to this problem has
been proposed by Pascoe [Pascoe 86], who
introduces a wholly different hierarchy of classes
and metaclasses, with specially prefixed selectors
(E-selectors), to avoid ambiguities. Since this
solution requires a lot more code than the actual
implementation, we did not initially chose it, but
we will probably switch to it if the current one
really proves in-tractable. What we do in practice
is to provide specific browsers that trace the
invocation of minimal messages (such as class,
isKindOf:, etc.), so that the user is aware of
the potential dangers of using such primitives in a
spied context.

4. A simple example: Replayer

A more sophisticated example of the use of

spies is the construction of a mini-replayer. A
replayer is an object that is able to record the
flow of external events to an object, and replay
them in the same order, to the original object, or
to an other one. This is trivially realized by
defining a class Replayer containing the list of
recorded interactions, and by installing a spy on
the object to be recorded, that simply forwards
the intercepted messages to the replayer object.

A simple example of the use of a replayer is to
provide an undo/redo facility for browsers. By
plugging a replayer on a browser, we can simply
"redo" a sequence of interactions, to put the
browser back in a previous state.

5. A sophisticated example: Proxies

In the context of distributed applications

where different parts of an application invoke
remote objects, the problem set to the
programmer is the transparency of access to these
objects. This is typically done with a two layer
mechanism : a reference layer and a
communication layer. Reference layer may be
implemented by proxies [Decouchant 86],
[Bennett 87]. A proxy is an object available in a
given machine that stands for an other object
living in another one. Messages that are sent to
the proxy are automatically routed to the remote
object. Communication layer may be
implemented by a RPC library, called RPC-Talk
[Wolinski 94], that we developed at CDC.

In this section, we will show 1) that proxies

may be implemented as special kinds of spies and
2) that spies and proxies may be simply
combined together to provide the ability of
spying a remote object. Remote spying will be
seen as a natural extension of both spies and
proxies.

5.1. RPC-Talk

 The RPC (Remote Procedure Call) technique

gives the ability to put any number of machines
at the service of an application [Bloomer 86].
This technique supplies 1) a method for
specifying all services available in the slave
application (the server), 2) a multi-threading
management of all contexts associated to each
connected master (the clients) and 3) a
normalized coding of requests arguments and
results using XDR (eXternal Data
Representation) for network transportation.

We have implemented an ObjectWorks\

Smalltalk RPC library called RPC-Talk
[Wolinski 94] and available as a Manchester
goodies. This library allows 1) to specify a
service so that a Smalltalk client can connect to
any remote server, 2) to specify and to implement
a Smalltalk server so that any remote client can
connect to it, 3) for Smalltalk to Smalltalk
communications only, an extended-XDR coding
for basic Smalltalk objects and the use of Binary
Object System Storage (BOSS) to transport
arbitrary complex objects.

5.2. Proxies

5.2.1. General architecture

Pachet & al. (1995) Spying as an Object-Oriented Paradigm, TOOLS 95, pp. 109-118, Prentice-Hall Eds

Let us consider an application running on

machine M1. A remote object o is available on
machine M2 and is represented by a proxy p in
M1. When an object x in M1 wants to send a
message to the object o, it sends it instead to the
local proxy p which forwards the message
through the network to o itself. For the sender the
whole operation is transparent (Fig. 3).

M1 M2
op

x

Figure 3. A message sent via a proxy.

This works fine when the argument of the

message sent to o can be passed directly or by
BOSS. A complex argument a (such as a model
having dependent graphical objects) need to be
sent as a proxy q. Finally, the result r of the
message passing by object x to object o may be
returned as a proxy s too (Fig 4).

M1 M2
op

a q
x

Figure 4. Treating the result as a proxy.

5.2.2. Proxies as spies

Proxies share with spies a common

substitution principle : spying consists in
replacing an object by a spy-object so that it
receives all the messages that are sent to the
original object. Proxyfying consists in replacing a
remote object by a proxy-object so that it
receives all the messages that are sent to the
original one. This shared principle may be
exploited to implement proxies as spies, i.e. class
Proxy will be defined as a subclass of class
Spy. Only the installation method is redefined
for proxies to establish the connection with the
remote image.

Spies and proxies have different aims,
however. A spy is substituted to perform some
specific actions before and/or after its
performance by the main object. A proxy is
substituted to allow the main object to receive its
remote messages. This is trivially taken into
account by overriding method
performMessage: in class Proxy.

5.2.3. Implementation outlines

The common substitution principle leads

naturally to similar implementations. Instead of
holding directly the spied object, the proxy holds
a communication-object which allows it to send
actually the message to the remote object.

Our implementation of the reference layer is

close to Benett's one [Benett 87]. The class
Proxy (his ProxyObject) is defined as a
subclass of Spy. Different class variables are
defined to hold proxy/object correspondence
table (his RemoteObjectTable). Note that
his implementation was based on redefining the
doesNotUnderstand: method.

Our implementation of the communication

layer is based on a specific RPC service. It
supplies two procedures : send which performs
the remote message passing and get which
returns a proxy given an known id.

Message interception is done by redefining the
performMessage: method in the srcipt of
Proxy. It asks the RPC client to invoke the
send procedure with 3 arguments : proxy id,
message selector and message arguments which
may be proxified in the proxy image.

! Proxy methodsFor: 'scipt'!
performMessage: aMessage
 ^ProxyClient
 exec: #send
 with: id
 with: aMessage selector
 with: aMessage arguments asProxy

5.3. Combining spies and proxies : remote
spying

As we showed in the previous section, proxies

are fully integrated in the spy hierarchy. More
than a pure conceptual integration obtained by
simple inheritance, we show in this section that
spies and proxies may easily be combined to
yield remote spies. Originally, spies were used to
build non-perturbing extensions of existing
systems. The opportunity to provide spies with an
inter-machine communication capability allows
them to delegate the actual processing of the
spied information to remote objects. This is what
we call remote spying.

5.3.1. Remote advising

A spy is plugged to an object in order to

perform some specific actions before and/or after

Pachet & al. (1995) Spying as an Object-Oriented Paradigm, TOOLS 95, pp. 109-118, Prentice-Hall Eds

its execution by the host object. In the context of
advisor systems, these actions are performed by
an adviser which analyses the spied actions.
These advisers are often called OSAS, i.e. "over
the shoulder" adviser systems. If they are
executed on the host machine, their activity may
weight on the host application. In this
configuration, the OSAS appellation should
rather be interpreted as "on the shoulder" adviser
systems ! Hence the need to have adviser running
on a remote machine.

In this scheme, the spied application x and its
spy s are on the machine M1 and the adviser a is
on he machine M2. The spy is connected to the
adviser through a proxy p. When the application
holds an interaction, it is first sent to the spy s.
The spy routes it to the proxy p. The proxy
forwards the interaction to the adviser a through
the communication layer. And the remote adviser
can process at last the interaction. When the
proxy has forwarded the interaction, the
application executes it (Cf. Fig. 5).

p
a

xs

M1 M2

Figure 5. Remote advising.

5.3.2. Master-slave distributed

applications

Some distributed applications may need a

given program to run at the same time on
different machines with communication facilities.
Computed Aided Instruction systems may rely on
such an architecture : actions of the different
learners are sent back to the teacher supervisor.
Another example is distributed simulations or
games, in which all participants have a specific
access to the same application and each action
they perform has to be routed to the others.

The distributed application x is running on

machines M1 and M2. In machine M2, the
application is slaved by a slaver v. Slaver is a
subclass of Adviser : a slaver holds an object
(slave) and any interaction received is performed
by the object. In M1, interactions to application x
are intercepted by the spy s, routed to the slaver
v tanks to its proxy and performed by the
application in M2 (Cf. Fig. 6).

p v

xs

M1 M2

x

Figure 6. Proxies in a master/slave

communication scheme.

6. Discussion

 Spying is used in our lab as a tracing

facility, mainly to understand Smalltalk
programs, and find optimizations. As such, it may
be seen as a companion tool to the profiler tools.
RPC-Talk combined with spying is used in
[Caetano 94] for building a simulator used in an
integrated tutorial system. In this system, a
double master/slave relationship is installed
between the teacher's image and the student's
one. The teacher defines scenarios in his image,
which are automatically available in the student's
image. Conversely, the student's actions are
viewed "on-line" in the teacher's image.

Experience with spies encouraged us to think

that performance is not an issue. Of course, the
use of the doesNotUnderstand mechanism is not
the most efficient way of intercepting messages.
However, our spies are mostly used in
prototyping mode. We did not find yet any
occasion of complaining about the speed of spies.
If such complain occurs, there are indeed other,
more efficient ways of intercepting message
sends, while retaining the general spying
philosophy described here. [Böcker & Herczeg
90] propose to compile methods including
notifiers in dynamically created subclasses,
thereby avoiding the need for reifying messages.
Similarly, the low-level primitives and set of
flags proposed by SmalltalkAgents [Quasar 93]
are very useful to customize message
interpretation at the instance level. Other
languages like Self allow the creation of
completely dumb and deaf objects having
absolutely no attributes and understanding no
method (not terribly useful either), which would
make the creation of MinimalObject much
simpler. Another way of redefining interpretation
of messages is to use the Meta-Object Protocol.
A rewriting of the spying architecture using
ClassTalk [Cointe & Briot 89] is considered
using before and after metaclasses in the spirit of
[Forman & al. 94] in SOM.

Pachet & al. (1995) Spying as an Object-Oriented Paradigm, TOOLS 95, pp. 109-118, Prentice-Hall Eds

As we saw, spying is a means of collecting
information on the dynamic behavior of a system.
The next problem to solve is what do to with that
information. For complex systems such as
advisor systems, the main problem is indeed to
organize information. This problem concerns a
whole class of systems (that we call epiphyte

systems, after a botanical metaphor). We
designed EpiTalk [Pachet & al. 94], a framework
and a system that proposes to organize spied
information according to several viewpoints on
the activity of the spied system. The viewpoints
are materialized by lattices and are themselves
used to generate the spying system automatically.
Spies are then used to feed the spying system,
from the interaction of a user with the host
system. EpiTalk is being used in a number of
tutorial systems such as DEW [Paquette & al.
94], as well as several advisor systems on top of
tutorial systems written in Smalltalk. Other
applications of EpiTalk include an environment
for debugging actor-like languages [Giroux &
Desbiens 94], and explanation-modules for
expert systems. Extensions for dynamic typing of
Smalltalk programs are also considered.

Based on our experience with the spying

paradigm, we propose three basic categories of
applications in which the spying paradigm may
be relevant.

1) Spying as a means of introspecting

programs
In this mode, spies are used to uncover hidden

dynamic properties of programs. The spying
system should then be non intrusive, i.e. the host
system should behave exactly as if no spying
occurred. The presence or the absence of a spy
should not modify the program's behavior. This is
most useful in a number of cases, such as
building the replayer (section 4), but also finding
optimizations of programs (a service partially
offered by so-called "profilers"); understand
complex programs, and so forth. Applications in
dynamic typing of programs are also considered.
When the analysis is executed on another
machine, we call it remote introspecting.

2) Spying as a means of extending a system.
In this scheme, spies override the behavior of

the spied object within the host system. This is
the case of our small "extended browser" (see
section 2.7). More generally, this is the case of
advisor systems, seen as a module of the main
application [Pachet & al. 94]. When the extended

behavior is executed on another machine, we call
it remote advising (Cf. section 5.3.1).

3) Spying as a means of implementing a

distributed architecture
As we saw, spies may be specialized into

proxies. Moreover, combining proxies with
"normal" spies and remote advisers, yields an
elegant implementation of a master/slave scheme
(Cf. section 5.3.2).

7. Conclusion

We introduced spying as an object-oriented

programming paradigm based on an extension of
capsules with substitution operations. We pointed
out three main problems related to this scheme,
and proposed practical solutions to some them.
We gave several examples of the application of
spying, and proposed three main uses types of
applications where spying is a useful
programming paradigm.

References

[Bennett 87] Bennett, John K. The Design and
Implementation of Distributed Smalltalk.
Proceedings of OOPSLA '87, pp. 318-330
(1987).

[Bloomer 91] Bloomer J. Power Programming
with RPC, O'Reilly & Associates, Inc (1991).

[Böcker & Herczeg 90]. Böcker H.-D, Herczeg J.
What tracers are made of. Proc. of

OOPSLA/ECOOP '90, pp. 89-99, Ottawa,
Canada.

[Briot 89] Briot, J.-P. Actalk : A Testbed for
Classifying and Designing Actor Languages
in the Smalltalk-80 environment. Proc. of

ECOOP '89, pp. 109-130.
[Briot 94] Briot, J.-P. Modélisation de

classification de langages de programmation
concurrente à objets. Conference LMO

(Langages et Modèles à Objets). Grenoble,
pp. 153-166, October 1994.

[Caetano 94] H. Caetano. Représentation des
connaissances dans le système informatisé de
formation: Intempéries. Seminar "Patrimoine

culturel et formation" 15-17 Sept. Ravello,
Italy. Centre européen de protection du
patrimoine culturel.

[Cointe & Briot 89] Cointe, P. Briot, J.-P.
Programming with ObjVlisp Metaclasses in
Smalltalk-80. Proceedings of OOPSLA '89,
New Orleans, pp. 419-431, (1989).

[Decouchant 86] Decouchant, D. Design of a
Distributed Object Manager for the Smalltalk-

Pachet & al. (1995) Spying as an Object-Oriented Paradigm, TOOLS 95, pp. 109-118, Prentice-Hall Eds

80 System. Proceedings of OOPSLA'86, pp.
444-452 (1986).

[ENVY 94] Smalltalk/ENVY, Reference Manual.
Object Technology International, Otawa,
1994.

[Foote & Johnson 89] Foote, B. Johnson, R.-E.
Reflective facilities in Smalltalk-80. Proc. Of

OOPSLA'89, pp. 327-336, New Orleans,
Louisiana.

[Forman & al. 94] Forman, Ira R. Danforth,
Scott. Madduri, Hari. Composition of
Before/After Metaclasses in SOM.
Proceedings of OOPSLA '94, Portland,
Oregon, pp. 427-439, (1994).

[Giroux & al. 94] S. Giroux, F. Pachet & J.
Desbiens. Debugging multi-agent systems: a
distributed approach to events collection and
analysis. Canadian Workshop on Distributed

Artificial Intelligence - CWDAI '94. Banff,
Canada, May 1994.

[Hopkins 94]. Instance-Based Programming in
Smalltalk. Tutorial of the Second European

Smalltalk User Group Summer school, Cork,
Sept. 94.

[Krasner & Pope 88]. Krasner, G. Pope, S. A
Cookbook for using the model-view-controller
paradigm in Smalltalk-80. ParcPlace systems
(1988).

[Lalonde&Pugh 91] Lalonde, Wilf R. Pugh, John
R. Inside Smalltalk, Volume I. Prentice Hall,
1991.

[Lieberman 86] Lieberman, H. Using
Prototypical Objects to Implement Shared
Behavior in Object-Oriented Systems. Proc.

of OOPSLA '86, Portland, Oregon, pp. 214-
223, 1986.

[Loia & Quaggetto 93] Loia, V. Quaggetto, M.
High-Level Management of Computation
History for the Design and Implementation of
a Prolog System. Software Practice and
Experience, Vol. 33 (2), pp. 119-150, Feb.
(1993).

[Maes 87] Maes, P. Concepts and Experiments in
Computational Reflection. Proc. of OOPSLA

'87, pp. 147-155, Orlando, Florida (1987).
[Pachet & al. 95] Pachet, F. Wolinski, F. Giroux,

S. From Capsules to Rule-Based Advisors,
submitted.

[Pachet & al. 94] Pachet, F. Giroux, S. Paquette,
G. (1994). Pluggable Advisors as Epiphyte
Systems. Calisce '94 (Computer Aided
Learning in Science and Engineering), pp.
167-174, Paris, 31 Aug.-2 Sept. 1994.

[Paquette & al. 94] Paquette, G., Crevier, F.
Aubin, C. Frasson, C. Design of a
Knowledge-based Didactic and Generic

Workbench. Calisce '94 , pp. 303-312, Paris,
31 Aug.-2 Sept. 1994.

[Pascoe 86] Pascoe, G. Encapsulators: A New
Software Paradigm in Smalltalk-80. Proc. of

OOPSLA '86, pp. 341-346, Portland, Oregon.
[Quasar 93] Smalltalk Agents. Technical

Overview. Quasar Knowledge Systems, Inc.
(1993).

[VisualWorks 94]. VisualWorks User's Guide.
ParcPlace Systems, 1992.

[Wolinski 94] Wolinski, F. (1994). RPC-Talk:
une librairie RPC pour Smalltalk. Laforia

internal report. 94/26.

