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Abstract

Jazz music is a genre that consists mainly of improvising over
known tunes, represented as a lead sheet. This study addresses
the question ‘to what extent does a lead sheet carry information
about its composer?’ Primarily, this study considers chord
progressions alone, and secondarily melodic and temporal in-
formation combined with various multiple viewpoint models.
Using these classifiers, a novel subsequence selection algo-
rithm is presented to trace stylistic similarities within a lead
sheet. We conclude that composers can, to a reasonable extent,
be recognized from their chord progressions, and that the
consideration of melodic and temporal information improves
classification accuracy by a small but statistically significant
amount.

Keywords: harmony, Markov models, prediction, multiple
viewpoints, jazz, classification

1. Introduction

Like most artistic activities, music composition is an intimate
process in which composers use their skills and talents to
express their identity. However, it is well known that music
evolves not only through individuals, but proceeds in larger-
scale temporal epochs. In the case of jazz, this history is
widely studied and composers and styles are relatively well de-
fined from a musicological perspective. For instance, the jazz
Wikipedia page (www.wikipedia.org/wiki/jazz) lists several
subgenres (or styles) of jazz, for example swing, bebop, hard
bop, and Latin. Each of these genres has specific features, well-
known composers and representative jazz standards. So the
question ‘to what extent does a jazz standard carry information
about its composer?’ is natural. Musicology has addressed this
issue in classical music for decades, for example, the seminal
work of Rosen (1971) defines the Classical style precisely by
the compositions of Haydn, Mozart and Beethoven. By con-
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trast, musicological studies in jazz typically focus on sociolog-
ical issues and improvisation, with some notable exceptions
such as Larson (1998) who applies Schenkerian analysis to
Bill Evans improvisations, Williams (1982) who presents a
comprehensive analysis of themes in the bebop style, and an
analysis of early bop harmony (Strunk, 1979).

A computational study of jazz music throws up some in-
teresting ontological problems. To a greater extent than clas-
sical music, jazz performers aim to freely reinterpret pieces
depending on their skills, musical taste, audience, etc. The
information that remains invariant between different inter-
pretations is precisely the lead sheet. Lead sheets contain all
of the information that is common to all performances of a
piece: the chord progressions, main melody, time signature
and performance style (e.g. medium swing, even 8ths, etc.).

The core focus of this paper is chord progressions, which
hold a central role in jazz (Williams, 1982). Improvisers usu-
ally play the main melody at the beginning and end of the
performance, with improvisations in the central section, but
use the same chord progressions throughout the piece, both to
underpin the main melody and to develop their solos. As such,
the chord progressions can be considered as the fundamental
element of a jazz standard.

After a review of related works (Section 2), and the pre-
sentation of a comprehensive jazz corpus (Section 3), this
paper addresses the issue of identifying a composer’s style
computationally in the context of jazz lead sheets with quan-
titative machine-learning techniques. A collection of Marko-
vian classifiers are presented and tested in Section 4, making
classifications based on the maximum likelihood of chord
sequences. These are contrasted with a novel subsequence
matching classifier, which classifies based on the number of
matching subsequences between a chord sequence and a style-
specific model. Multiple viewpoint classifiers are introduced
in Section 5 as Markovian-based classifiers capable of com-
bining information from several features of musical structure,
namely duration and melodic information. Applying these
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Predicting the composer and style of jazz chord progressions 277

techniques, Section 6 explores the identification of styles within
the chord sequences of a single jazz standard.

2. Related works

The current study draws from works in two fields of compu-
tational musicology: the modelling of jazz as a computational
object (Section 2.1), and genre classification of symbolic se-
quences with machine-learning techniques (Section 2.2).

2.1 Computational approaches to jazz

As a specific case of tonal music, several grammar-based
approaches to jazz and improvisation have been investigated.
Ulrich (1977) provides an initial system for the task of fitting
melodic improvisatory material to harmonic structure. Chords
are analysed functionally having been defined by a chord
grammar, with tonal centres identified by preferring a minimal
number of modulations. Improvisations are built from a jux-
taposition of motifs taking into account the identified chord
functions. However, the system lacks hierarchical structure
and the quality of the improvisations suffers as a result. More
promisingly, Steedman (1984) shows that 12-bar blues can be
represented quite faithfully by a simple generative grammar.
The hierarchical nature of the model allows a small set of six
transformation rules to generate a large number of variations
for the 12-bar blues. Chemillier (2004) extends Steedman’s
grammar to the task of real-time improvisation by identifying
and precompiling cadential sequences.

Probabilistic or Markovian-based computational studies of
jazz harmony and melody have also proved fruitful. In par-
ticular, Johnson-Laird’s (2002) work on jazz improvisation in
the field of music perception has spawned several computa-
tional models for the improvisation of melodies. Keller and
Morrison (2007) investigate the use of probabilistic grammar
formalisms to capture essential aspects of melodic improvisa-
tion, building from the core labelling of notes as ‘chord tones’,
‘colour tones’ and ‘approach tones’. Gillick, Tang & Keller
(2009) extend this approach, adding melodic contour informa-
tion to the grammar. The study generates melodies in certain
styles by learning style-specific grammars, building a Marko-
vian transition matrix of one-bar abstract melodies represented
as ‘slope expressions’ from a vocabulary of clusters identi-
fied by k-means clustering. Melodies generated by grammars
inferred from three composers were received favourably in
a listening test with 20 subjects who were able to correctly
identify the composer grammar 90% of the time, and 95%
of whom considered the melodies as ‘somewhat close’ or
‘quite close’ to their target style. In the context of music
cognition of jazz harmony, Rohrmeier and Graepel (2012)
assess the predictive performance of multiple viewpoint n-
gram models, Hidden Markov Models (HMM), autoregres-
sive HMMs and Dynamic Bayesian Network (DBN) models.
Atrigram multiple viewpoint model (Pearce, 2005) combining
the dimensions of mode, chord and duration into a single

probabilistic model, marginally out-performed the best DBN
model which combined just mode and chord. Interestingly,
further increases in predictive performance were not found by
adding duration features to the DBN model, however, they still
outperformed the optimum HMM and auto-regressive HMMs.

2.2 Style and genre classification

In the field of machine learning, both supervised and unsu-
pervised techniques have been used extensively to classify
various corpora of symbolic music data. A trio of studies
(Conklin, 2013a; Hillewaere, Manderick & Conklin, 2009,
2012) assess the performance of various machine-learning
techniques applied to folk song and dance melodies. Conklin
(2013a) applies multiple viewpoint statistical modelling meth-
ods (Pearce, 2005) to classifying two corpora (Basque dance
and song melodies, and European folk tunes) with respect
to genre and geographical region classes. Various multiple
viewpoint models combine the posterior probabilities of a
class given a sequence with the geometric mean of all view-
points. For classifying geographical regions, the best model
classified 58.8%/79.2% of the Basque/European corpora cor-
rectly. For the genre classification task, the best model classi-
fied 77.6%/88.7% of the Basque/European corpora correctly.
These results compare favourably to Hillewaere et al., (2009),
who achieve a European folk tune genre classification ac-
curacy of 69.7% with a Support Vector Machine classifier
operating on global features. Likewise, probabilistic event-
based techniques were also found to outperform various string
methods (edit distances, compression distance, and string sub-
sequence kernel methods) when classifying a similar corpus
represented as sequences of melodic and inter-onset intervals
(Hillewaere et al., 2012).

String compression is further explored by Cilibrasi, Vitányi
and Wolf (2004) with an unsupervised clustering of rock,
jazz and classical genres. The Natural Compression Distance
(NCD) captures the mutual information between two strings to
construct a pairwise distance matrix. The clustering is
performed by a stochastic hill-climbing search with random
mutation, the ‘Quartet method’, which attempts to find the
optimum configuration of a tree structure. Clustering by
genre returns results that confirm musical intuitions, however,
the performance of subsequent classifications of symphonies
and piano works deteriorates when the number of items clus-
tered increases over 60.

Two studies closely related to the current paper classify jazz
composers and subgenres by chord sequences. Ogihara and
Li (2008) cluster jazz chord progressions by composer with
a cosine similarity measure from n-gram chunks weighted by
duration. They show that composers cluster relatively con-
vincingly by date in graph and hierarchical structures, sug-
gesting that a composer’s style can be found in the chord
symbols. They also invite a deeper exploration of classifica-
tion by chord sequences for a larger corpus, taking into account
melodic information, as well as partitioning a corpus not only
by composer, but also other attributes.
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278 Thomas Hedges et al.

Pérez-Sancho, Rizo and Iñesta (2009) classify pieces from
three different genres (academic, jazz and popular) with naive
Bayes and n-gram (Markov) classifiers. A pre-processing pro-
cedure transposes all pieces into the same key (C major/A
minor) and simplifies chord types. Promising classification
accuracies of 85.3% were returned for classification over the
three broad genres, but the more difficult task of classifying
eight subgenres spread over the three genres returned a highest
accuracy of 49.8% over a baseline of 12.5%. They note with
the aid of a confusion matrix that it is more difficult to classify
within broad genres than between them.

2.3 Positioning of the current study

Interestingly, there have been a limited number of attempts
to differentiate between a large number of composers of the
same genre (Ogihara and Li (2008) and Pérez-Sancho et al.
(2009) excepted). As noted by Pérez-Sancho et al. (2009),
the task of classifying subgenres within a single genre can be
considered more challenging than simply classifying between
broad genres, since the similarity between two pieces in the
same genre is likely to be less than for two pieces in different
genres.

The current study aims to make the following specific con-
tributions to the field. Firstly, building on the works of
Ogihara and Li (2008) and Pérez-Sancho et al. (2009), this
paper presents the classification of a large number of classes
from several different partitionings (composer, subgenre, etc.)
of a complete, closed-world corpus (Pachet, Martín & Suzda,
2013) of jazz standards. Secondly, the study assesses the
impact of various representations of chord sequences on clas-
sification performance, contrasting representations presented
by Pérez-Sancho et al. (2009), multiple viewpoint representa-
tions (Conklin, 2010; Pearce, 2005) and representations
presented below (Section 3.2). Thirdly, this paper aims to com-
pare the classification performance of a novel subsequence
matching classifier (Section 4.3) with other traditional prob-
abilistic classifiers (Sections 4.1, 4.2 and 5.1). Finally, the
current study presents a novel algorithm for identifying style
specific subsequences within a piece of music (Section 6).

3. Methodology

Style identification is explored with a series of supervised
learning tasks, which involve classifying four different parti-
tionings of a corpus.

3.1 Corpus

The present study builds its corpus from an online database
of lead sheets described in Pachet et al. (2013). The database
presents over 5700 jazz standards collected from the ‘Real
Books’and various composer-specific songbooks (‘The Michel
Legrand Songbook’, ‘The Bill Evans Fake Book’, etc.).

The machine learning tasks in Sections 4 and 5 partition the
database corpus by composer, subgenre, performance style (or
tempo indication) and meter (Table 1), resulting in four sepa-
rate classification tasks. Intuitively, classification by subgenre
should perform comparably to composer since the subgenre
collection consists of groups of composers similar in style.
Classification by performance style and meter should be less
successful as chord sequences do not contain explicit informa-
tion relating to how they should be performed or their meter.
Indeed, metrical analysis, (Chew, Volk & Lee, 2005) or beat-
tracking algorithms (Krebs & Widmer, 2012), would be better
suited to this task. Their inclusion in the study is to check that
classifiers do not simply find arbitrary patterns in any parti-
tionings of a corpus. A minimum limit of around 30 standards
for each class ensures sufficient data for reliable models to be
built, and a maximum cap (60 for subgenre and performance
style, 90 for meter) prevents large classes dominating the clas-
sification space. Where classes would exceed the maximum
cap, jazz standards are selected randomly. Composer, perfor-
mance style and meter collections can be compiled simply
using the metadata tags available in the database. For the
subgenre collection, standards were labelled by a human jazz
expert using the Wikipedia (http://wikipedia.org/wiki/Jazz)
definitions for jazz subgenres. In this case, Wikipedia is used
to represent a general, universal understanding of subgenres
of jazz, which are typically ill-defined.

Chords appear in typical jazz notation as chord symbols
(e.g. GM7) corresponding as closely as possible to the original

Table 1. The four collections and their classes. Majority class percentages indicate the proportion of the largest class per collection.

Composer (447) Performance Style (434) Subgenre (437) Meter (180)

Majority Class: 14.8% Majority Class: 13.7% Majority Class: 13.9% Majority Class: 50.0%

Thelonius Monk (66) Latin (60) Ballad (60) Quadruple (90)
John Coltrane (64) Vocal Standards (60) Medium Up Swing (60) Triple (90)
Bill Evans (56) Bebop (60) Medium Swing (60)
Charlie Parker (54) European Songwriters (60) Up Tempo Swing (59)
Richard Rodgers (47) Swing (60) Medium (49)
Michel Legrand (45) Blues (60) Bossa Nova (47)
Duke Ellington (43) Hard Bop (51) Jazz Waltz (39)
Pepper Adams (40) Post Bop (26) Latin (31)
Wayne Shorter (32) Rock (29)
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Predicting the composer and style of jazz chord progressions 279

Fig. 1. Chord symbols as they appear in the database (above stave), in staff notation, and after applying chord simplification rules (below).

source. Melodies are represented as a sequence of notes, each
consisting of a pitch class (e.g. C, D�, E�) and MIDI octave
(e.g. 4). The duration in quarter notes of chords and melody
notes is also available.

A notational problem arises from the variety of sources in
the database, giving rise to a range of chord symbol represen-
tations. For example the first five chords of ‘Giant Steps’ are
given as B, D7, G, B�7, E�, in ‘The Real Book’, but Bmaj7,
D7, Gmaj7, B�7, E�maj7, in ‘The Music of John Coltrane’. In
the vast majority of cases such discrepancies in notation do
not change the fundamental harmonic function of chords, so
can be normalized with a set of chord simplification rules (see
Section 3.2).

3.2 Harmonic representation

The representation of musical structure can have a signifi-
cant bearing on the quality of results for a computational
analysis of a given corpus. In general, two approaches to
representing harmonic information have emerged in compu-
tational musicology. The first represents harmony as the co-
incidence of polyphonic lines, which can be represented as
a multiple viewpoint model (Whorley, Wiggins, Rhodes &
Pearce, 2010). The second approach represents harmony more
broadly, either by functional symbols (Tymoczko, 2003) or
chord symbols, which is particularly appropriate in the case
of jazz (Gillick et al., 2009; Ogihara & Li, 2008; Pérez-Sancho
et al., 2009; Rohrmeier and Graepel, 2012). Conklin (2010)
presents a multiple viewpoint representation for harmony,
encoding information of root, type, root progression, duration
and functional degree. The present study represents harmony
by chord symbols as a musicologically rich representation
able to provide sufficient information for analysis, whilst be-
ing general enough to incorporate notational discrepancies
between sources (see Section 3.1).

Apre-processing procedure simplifies chord symbols found
in the corpus (e.g. E�maj7) to their two essential attributes:
fundamental root and chord type. Fundamental roots are al-
ways given by the prefix of the chord symbol (E�) and are
represented here as an integer from the set {−1, 0, 1, . . . 11}
denoting pitch class assuming enharmonic equivalence, with
−1 representing the case when no pitch class for the root
is given. This case can arise when the ‘No Chord’ (N.C.)
symbol appears, indicating no harmonic instruments should
play. Bass notes (when given) are ignored, following a similar
approach by Ogihara and Li (2008). Chord types are defined
by applying a set of chord transformation rules to the rest
of the chord symbol (e.g. maj7) to normalize notation across

sources, reduce sparsity of data and to group closely related or
equivalent chords together. The transformation rules simplify
any given chord symbol to a set of seven chord types {dom,
maj, min, dim, aug, hdim, NC}. Dominant (dom) chords con-
tain the major third of the triad and minor seventh (e.g. G7,
D�9, C7alt). Major chords (maj) are any chords containing
the major third of the triad that are not defined as dominant
(e.g. G6, Dadd9, CM7). Diminished chords are signified by
‘dim’ in the chord symbol. Minor chords are all chords with
the minor third of the triad, but are not diminished (e.g. Gm,
Dm6, Cm#5).Augmented chords are signified by ‘+’or ‘aug’in
the chord symbol, and half-diminished chords by ‘halfdim.’
Chords with a suspended fourth are defined as dom if they
also contain a minor seventh, otherwise are simplified to maj.
Finally, N.C. signifies times of harmonic silence or where no
specific chord is given. By way of example, Figure 1 shows
14 chords with their original chord symbols above the stave
and simplified chord symbol below.

3.3 Classification procedure

The supervised classification procedure is implemented as a
10-fold cross-validation, dividing a corpus partition randomly
into 10 approximately equal validation sets to estimate clas-
sification accuracies (the percentage of standards correctly
classified). To counter any bias in the random allocation of
songs into validation sets, each classification task is run 100
times, randomly re-allocating validation sets at the start of
each run. A majority classifier acts as a baseline, classifying
all songs into the largest class, returning a baseline accuracy
(Equation 1). The F-measure (Equation 2) for each class, c,
is calculated punishing both false negatives (an incorrectly
classified item belonging to the given class) and false positives
(an item not belonging to the given class, but is classified as
such) by taking into account precision (Equation 3) and recall
(Equation 4) for the given class.

baseline accuracy = max
c∈C

( |c|∑
c∈C |c|

)
, (1)

Fc = 2 · precisionc · recallc
precisionc + recallc

, (2)

precisionc = true posi tivesc

true posi tivesc + f alse posi tivesc
, (3)

recallc = true posi tivesc

true posi tivesc + f alse negativesc
. (4)

4. Supervised classification of chord sequences

Three supervised learning techniques address the extent to
which composers can be identified purely by their chord
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280 Thomas Hedges et al.

sequences. Further classification tasks on the subgenre, per-
formance style and meter collections offer insights into the role
of chord sequences as class predictors. A collection of prob-
abilistic methods compare likelihoods of a chord sequence
given a series of basic Markov models (Section 4.1) built from
each class. For comparison, four n-gram methods for classi-
fication presented in Pérez-Sancho et al. (2009) are imple-
mented (Section 4.2) to assess the impact of representation on
the classification task. A novel subsequence matching method
(Section 4.3) is proposed, classifying chord sequences with a
fitting score based on the number and lengths of subsequences
that occur in the chord sequence and a given class’ model.

4.1 Markovian classifier

Probabilistic methods for classification compare the likeli-
hoods of a set of data given various probabilistic models.
Markov (n-gram) models (Norris 1997) are at the core of
many probabilistic methods for modelling sequences of musi-
cal events (Collins, 2011; Cope, 2005; Pearce, 2005), making
the assumption that musical sequences are generated from
high-order Markovian sources. In the context of chord se-
quences, let e j

i represent a sequence of chords from i to j , and
p(ei |ei−1

i−n+1) the probability of a chord ei given its predictive
context ei−1

i−n+1. The likelihood of a whole jazz standard of
length T given a model order n −1 can therefore be estimated
by Equation 5. At the start of the sequence (when n > i),
n − 1 padding symbols are inserted to provide the necessary
predictive context.

p(eT
1 ) =

T∏
i=1

p
(

ei |ei−1
i−n+1

)
. (5)

Witten–Bell method C smoothing (Witten & Bell, 1991) coun-
ters the zero-frequency problem, selected after a comprehen-
sive review of smoothing methods on monophonic
melodies (Pearce & Wiggins, 2004). The recursive inter-
polated smoothing algorithm terminates at the −1st order
with a uniform distribution over the vocabulary size (Cleary
& Witten, 1997), creating a bounded variable order Markov
model (Begleiter, El-Yaniv and Yona, 2004). To determine
the optimal global order bound for the present study, a 10-
fold cross-validation of all collections (removing songs which
appear in more than one collection so that each song appears
only once) compared the average cross-entropies of various
orders (Figure 2). Cross-entropy is a commonly used per-
formance measure, calculating the divergence in entropies
between an estimated probability distribution and its source
(Manning & Schütze, 1999; Pearce & Wiggins, 2004). For
a model m of order n and sequence e j−1

1 , the cross-entropy
Hm is approximated by Equation 6 with the assumptions that
j is sufficiently large, and that the sequence is generated by
a stationary and ergodic stochastic process. Figure 2 shows
the third global order bound to have the lowest cross-entropy
(3.600), and is therefore selected for the Markovian
Classifier.

Fig. 2. Relative performances of bounded variable order Markov
models measured by average cross-entropy per symbol of a 10-fold
cross validation of all collections.

Hm(pm, e j
1) = −1

j

j∑
i=1

log2 p
(

ei |ei−1
i−n+1

)
. (6)

Each jazz standard is classified using Bayesian inference
to select the most probable class, c∗ (Equations 7 and 8),
given the chord sequence eT

1 . The prior probability of the class,
p(cs), is the class’ proportion of the collection and the prior
probability of the chord sequence, p(eT

1 ), is calculated with
the total probability rule (Equation 9).

c∗ = argmax
cs∈C

p
(

cs |eT
1

)
, (7)

p
(

cs |eT
1

)
= p

(
eT

1 |cs
) · p(cs)

p
(
eT

1

) , (8)

p
(

eT
1

)
=

∑
cs∈C

p
(

eT
1 |cs

)
· p(cs) . (9)

Before building models, all jazz standards are transposed 12
times, allowing identical chord sequences with different tonal
centres to be considered as equivalent. The key and mode of a
standard need not be determined since major mode standards
will be transposed to all 12 major keys and those in minor
modes to all 12 minor keys. Furthermore, any modulations
within a standard will be accounted for without being identi-
fied explicitly. This is particularly important for a computa-
tional analysis of jazz music since key, mode and modulations
are often ambiguous in jazz. For example, many standards by
Bill Evans are strictly modal (Mawer, 2011).

Two variations of the Markovian classifier are presented,
firstly (Markovian1) with chord type simplification (Section
3.2) and secondly (Markovian2) where chord types are left
unedited. The state space for Markovian1 can be conceptual-
ized as the Cartesian product of chord roots and types, root ×
t ype, where root ∈ {−1, 0, . . . 11} and t ype ∈ {dom, maj,
min, dim, aug, hdim, NC}, producing a vocabulary of 93
including the start and end padding symbols. The state space
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Predicting the composer and style of jazz chord progressions 281

for Markovian2 is considerably larger, with the same set of
roots but a set of 151 t ypes creating a vocabulary of 1965.

4.2 Pérez-Sancho n-gram classifier

An alternative n-gram classifier (Pérez-Sancho et al., 2009)
is presented, exploring the impact of contrasting chord se-
quence representations on classification performance. Each
jazz standard is transposed to C major/Aminor by considering
its key signature and mode. Roots are represented either as
note names so that enharmonic equivalent notes (e.g. C#/D�)
are distinct, or as scale degrees (e.g. I, V#) relative to the
transposed key of the jazz standard. Chord types (extensions)
are either left intact or are mapped to a set of five triad types:
major, minor, diminished, augmented, suspended 4th. Four
different representations, or feature sets, are possible with a
combination of the two root and two chord type represen-
tations. Feature set 1 (FS1) comprises of scale degrees with
chord type extensions, FS2: root names with extensions, FS3:
scale degrees without extensions and FS4: root names without
extensions. Table 2 shows a sample chord sequence from
the opening of ‘’Round Midnight’ by Thelonius Monk as it
appears in its original key (E� minor) and transposed to A
minor in the four feature sets. Note that since altered (alt)
chords may sharpen or flatten the fifth of the triad (Levine,
1995, p. 70–71) they are simplified to major for FS3 and FS4.

The probability of a chord sequence is estimated with a
smoothed (method C, Witten & Bell, 1991) n-gram model
with n ∈ {2, 3, 4, 5}. Instead of classification by Bayesian
inference (Section 4.1), the chord sequence is assigned to class
by lowest perplexity, shown by Equations 10 and 11. As in
Section 4.1, the classification task is undertaken as a 10-fold
cross-validation.

c∗ = argmin
cs∈C

pp
(

eT
1 |cs

)
, (10)

pp
(

eT
1 |cs

)
= p

(
eT

1 |cs

)−1/T
. (11)

4.3 Subsequence matching classifier

A novel supervised learning method is proposed for com-
parison with the Markovian methods described in Sections
4.1 and 4.2. The primary motivation behind the subsequence
matching method is that for a chord sequence to be ubiquitous
with a composer it is not necessarily the case that it must be
repeated a large number of times in that composer’s canon, as
is assumed by a probabilistic model. Rather, it is possible for
a unique chord sequence to appear only a handful of times in
a few very popular jazz standards for it to be associated with
that composers’ style. A further motivation is to overcome the
limitations of global order bounded Markov models and to
consider longer chord sequences as complete entities, rather
than segmented into n-gram chunks.

The subsequence matching method builds a model simply
by concatenating all the chord sequences in a given class,
transposed 12 times as in Section 4.1. To prevent false chord

sequences which bridge songs being learnt, each standard is
padded with starting and ending symbols. To assess how well
a given jazz standard with a chord sequence length T matches
a model, all possible subsequences from length T to 1 are
selected and searched for in that model. The count ct for all
subsequences length t that occur both in the standard and the
model is recorded. A score, s, is then returned, summing all
counts multiplied by their length (Equation 12). The classifi-
cation system favours long subsequences that, in contrast to
Markov models, need only occur once in the training corpus
to be counted.

s =
T∑

t=1

ct · t . (12)

4.4 Results

Classification accuracies for the three classifiers are tabu-
lated in Table 3, showing classification accuracy averaged
over 100 runs with confidence intervals at the 95% confi-
dence level. Markovian2 (without chord type simplifications)
achieves the highest classification accuracies for the composer
(63.9%), subgenre (46.8%), performance style (31.3%), and
meter (70.2%) collections. Classification accuracy will not
give a full indication of performance when comparing collec-
tions containing a different number of classes, reflected in the
baseline accuracies obtained from the majority classifier (see
Section 3.3, Equation 1). Therefore, for each classifier, the
t-statistic from a pairwise t-test over all 100 runs against the
baseline accuracy is used as a performance measure.1 These
19 t-statistics for each collection are then used to compare
overall performance between collections with a further paired
t-test. Across all 19 classifiers (two Markovian, 16 Pérez-
Sancho n-gram and the subsequence matching classifier) a
paired t-test at the 0.01 level shows classification by composer
to be significantly easier compared to subgenre (t (18) =
8.238, p < 0.001, corrected2) and subsequently subgenre
is significantly easier to classify compared to performance
style (t (18) = 18.877, p < 0.001, corrected) and finally
classification by performance style is significantly more suc-
cessful (t (18) = 3.854, p < 0.001, corrected) compared to
classification by meter.

Markovian2 (without chord type simplifications) outper-
forms the next most successful classifier significantly in the
composer (t (99) = 50.443, p < 0.001), subgenre (t (99) =
28.448, p < 0.001), performance style (t (99) = 36.932,
p < 0.001) and meter (t (99) = 20.046, p < 0.001) with sig-
nificance judged by a paired t-test of classification accuracies
across all 100 runs.

It is highly possible that classifiers not simplifying chord
names (Markovian2, Pérez-Sancho FS1 and Pérez-Sancho

1t = √
N x̄−θ

σ where the average observed classification accuracy x̄ ,
standard deviation σ , is obtained over N repeated runs and compared
to θ , the null hypothesis equating to the baseline accuracy.
2All corrected p-values are Bonferroni corrected by dividing the
significance level, α, by the number of simultaneous hypotheses.
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282 Thomas Hedges et al.

Table 2. Opening chord sequence of ‘’Round Midnight’ by Thelonius Monk as it appears in the Real Book in the original key and encoded into
the four feature sets.

Real Book: E� m, C halfdim7, F halfdim7, B� alt7, E� m7, A�7, B m7, E 7,

FS1: I m, VI# halfdim7, II halfdim7, V alt7, I m7, IV 7, V# m7, I# 7,
FS2: A m, F# halfdim7, B halfdim7, E alt7, A m7, D 7, E# m7, A# 7,
FS3: I min, VI# dim, II dim, V maj, I min, IV maj, V# min, I# maj,
FS3: A min, F# dim, B dim, E maj, A min, D maj, E# min, A# maj,

Table 3. Classification accuracies averaged over 100 10-fold classification tasks for classification over composer, subgenre, performance style
and meter collections. Best performing classifiers judged by t-statistic are indicated in bold for each collection and classifier type. All t-statistics
are significant at the 0.01 level after Bonferroni correction. Classifiers potentially biased by not simplifying chord types are indicated (*).

Classifier Global Composer (9 classes) Subgenre (8 classes) Performance Style (9 classes) Meter (2 classes)
order bound Baseline acc. 14.8% Baseline acc. 13.7% Baseline acc. 13.9% Baseline acc. 50.0%

Accuracy t(99) Accuracy t (99) Accuracy t (99) Accuracy t(99)

Markovian1 3 59.0%±0.2 438.2 43.7%±0.2 248.8 27.4%±0.2 131.3 62.4%±0.3 79.0
Markovian2* 3 63.9%±0.2 526.9 46.8%±0.2 275.6 31.3%±0.2 151.1 70.2%±0.3 125.4

Pérez-Sancho FS1* 1 53.9%±0.2 454.4 44.0%±0.2 270.1 25.7%±0.2 99.5 62.8%±0.4 71.0
Pérez-Sancho FS1* 2 55.0%±0.2 406.9 45.3%±0.2 270.0 24.7%±0.2 101.6 62.5%±0.4 61.6
Pérez-Sancho FS1* 3 55.0%±0.2 412.9 42.4%±0.2 313.9 26.4%±0.3 96.3 63.6%±0.4 74.5
Pérez-Sancho FS1* 4 55.4%±0.2 420.6 39.5%±0.2 246.7 23.8%±0.2 81.4 63.0%±0.4 66.9
Pérez-Sancho FS2* 1 58.7%±0.2 438.1 43.1%±0.2 274.0 27.1%±0.2 117.2 57.1%±0.4 38.2
Pérez-Sancho FS2* 2 59.7%±0.2 409.4 39.3%±0.2 235.8 26.8%±0.2 105.2 64.8%±0.3 85.2
Pérez-Sancho FS2* 3 59.5%±0.2 479.6 40.0%±0.2 261.4 23.1%±0.2 94.2 58.7%±0.3 50.4
Pérez-Sancho FS2* 4 58.8%±0.2 382.2 39.9%±0.2 224.9 25.0%±0.2 99.3 67.0%±0.3 97.2
Pérez-Sancho FS3 1 47.7%±0.2 276.6 30.9%±0.2 194.3 23.2%±0.2 83.1 62.2%±0.4 63.3
Pérez-Sancho FS3 2 50.6%±0.2 288.6 36.7%±0.2 257.5 25.4%±0.2 109.3 63.3%±0.4 62.3
Pérez-Sancho FS3 3 49.9%±0.2 347.1 40.4%±0.3 200.9 24.4%±0.2 100.3 61.0%±0.4 49.1
Pérez-Sancho FS3 4 50.2%±0.2 296.2 40.4%±0.2 238.0 24.4%±0.2 88.4 60.5%±0.4 50.5
Pérez-Sancho FS4 1 38.8%±0.2 270.8 30.9%±0.2 194.3 21.5%±0.2 76.1 55.7%±0.3 35.5
Pérez-Sancho FS4 2 40.2%±0.2 285.6 36.8%±0.2 257.5 20.3%±0.2 57.6 53.5%±0.4 17.7
Pérez-Sancho FS4 3 37.9%±0.2 236.7 30.3%±0.2 161.2 18.6%±0.2 48 53.4%±0.4 15.2
Pérez-Sancho FS4 4 36.5%±0.2 191.5 32.4%±0.2 166.1 16.5%±0.2 24.5 61.4%±0.3 69.4

Subsequence Matching N/A 55.6%±0.2 427.3 37.1%±0.2 227.0 23.8%±0.2 13.9 60.4%±0.3 58.2

harmonicVP1 3 61.1%±0.2 419.7 45.4%±0.2 298.0 37.9%±0.2 204.7 99.4%±0.0 2081.6
harmonicVP2 3 58.8%±0.2 496.4 47.2%±0.2 273.1 26.7%±0.2 108.9 65.3%±0.4 76.9
melodicVP 3 50.2%±0.2 322.4 46.2%±0.2 288.1 31.1%±0.3 133.9 89.2%±0.2 393.9
allVP 3 67.3%±0.2 533.5 57.6%±0.2 462.0 38.8%±0.2 206.5 90.6%±0.2 396.1

FS2) gain a bias because of notational differences between
sources (see Pachet et al. (2013) and arguments for chord
simplification in Section 3.2). This is particularly problematic
for the composer collection as composer classes are typi-
cally built from separate sources. For example, the Michel
Legrand Songbook provides detailed chord symbols in com-
parison to the Real Books and many fakebooks, resulting in
high recalls of 0.927 and 0.898 (Table 4) for Markovian2
and Pérez-Sancho 4-gram FS2 respectively. These drop no-
ticeably to 0.787 and 0.463 respectively for Markovian1 and
Pérez-Sancho 4-gram FS4, which simplify chord types but
are otherwise identical. Therefore, removing the nine affected
classifiers, the highest performing classifier is found to be
the Markovian1 (59.0%) which outperforms the subsequence

matching classifier (55.6%) by a statistically significant
(t (99) = 34.778, p < 0.001) amount.

As the easiest to classify collection, and the main focus
of the current study, Table 4 provides further insight into
the classification of the composer collection with the high-
est performing Markovian, Pérez-Sancho and subsequence
matching classifiers. Certain patterns are maintained across
all three classifiers, in particular that Michel Legrand, Bill
Evans and Charlie Parker return high recalls for all classifiers.
Additionally, Bill Evans returns a relatively low precision
in comparison with recall, implying this part of the model
contains high probabilities for universally common 4-grams.
Finally, it is noticeable that Duke Ellington, John Coltrane and
Wayne Shorter are difficult to classify, returning low recalls,
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Predicting the composer and style of jazz chord progressions 283

Table 4. Performance measures averaged over 100 10-fold classification tasks for the composer collection classified by three classifiers.

Classifier Class Recall Precision F-measure

Markovian2
Accuracy:
63.9%±0.2

Thelonius Monk (66) .540 .710 .613
John Coltrane (64) .315 .433 .364

Bill Evans (56) .866 .596 .706
Charlie Parker (54) .739 .807 .772

Richard Rodgers (47) .783 .658 .714
Michel Legrand (45) .927 .816 .867
Duke Ellington (43) .330 .363 .345
Pepper Adams (40) .771 .762 .766
Wayne Shorter (32) .563 .554 .559

Pérez-Sancho
4-gram
classifier,
FS2
Accuracy:
59.5%±0.2

Thelonius Monk (66) .456 .570 .506
John Coltrane (64) .345 .455 .392

Bill Evans (56) .857 .525 .651
Charlie Parker (54) .715 .882 .789

Richard Rodgers (47) .696 .744 .718
Michel Legrand (45) .898 .690 .780
Duke Ellington (43) .319 .278 .297
Pepper Adams (40) .680 .789 .730
Wayne Shorter (32) .405 .545 .464

Subsequence
Matching
Accuracy:
55.6%±0.2

Thelonius Monk (66) .549 .625 .584
John Coltrane (64) .395 .506 .444

Bill Evans (56) .768 .638 697
Charlie Parker (54) .736 .667 .699

Richard Rodgers (47) .707 .468 .563
Michel Legrand (45) .765 .572 .654
Duke Ellington (43) .182 .346 .238
Pepper Adams (40) .578 .484 .526
Wayne Shorter (32) .179 .587 .273

although in the case of Wayne Shorter this may be because
the small class size creates a sparse model.

5. Supervised classification with multiple
viewpoint classifiers

Musical structure is a complex multi-dimensional landscape,
a property that has been modelled by multiple viewpoint
Markov models, applied to melodic structure by Pearce (2005)
and extended for classification tasks by Conklin (2013a). In-
tuitively, it seems beneficial to model the interaction between
melody and harmony as it captures the composer’s choice of
chords to support melodies and vice versa. Likewise, since
music is perceived as a temporal sequence, information of
duration should also improve model performances.

Different structural features of music (such as root, duration
and pitch) are modelled as primitive viewpoints and their
inter-relations as linked viewpoints (such as pitch⊗duration).
All selected primitive and linked viewpoints are modelled as
separate Markov models and the likelihood of a sequence
as the geometric mean across all selected viewpoints (Con-
klin, 2013b). Multiple viewpoint models are able to combine
the performance of individual expert models to outperform
a single model with the same information (Pearce, Conklin
& Wiggins 2005), reducing the sparsity of complex repre-
sentations allowing for better generalization of training data.

This increase in model performance seems likely to extend to
classification. Conklin (2013a) reports that a multiple view-
point model of melodic attributes consistently outperforms a
model that represents the same information as a single linked
viewpoint.

5.1 Multiple viewpoint representation

Five primitive viewpoints represent the harmonic, melodic
and temporal structure of a jazz standard (Figure 3). The
work of Conklin (2010) is drawn on for the representation of
chords, with root and type viewpoints representing the chord
attributes exactly as described in Section 3.2 with chord type
simplification. Root I nterval ∈ {−1, 0, 1, . . . 11} represents
the interval in semitones between successive roots. The pitch
viewpoint represents melodic pitch as an integer from the set
pitch ∈ {−1, 0, . . . 11} where −1 represents a rest. Duration
is represented as a positive integer ∈ {0, 1, . . . 15120} where
2520 represents one quarter note. A ‘timebase’ (Pearce, 2005,
p. 63) for the database of 2520 is calculated from the lowest
common multiple of 5, 7, 8, 9, 12 representing the number
of division in a quarter note; for quintuplet 16th notes, septu-
plet 16th notes, 32nd notes, nontuplet 32nd notes and triplet
64th notes (all of which are present in the database). The
vocabulary size is given by multiplying the timebase by the
longest possible duration in quarter notes (six). Lead sheets
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284 Thomas Hedges et al.

Fig. 3. The opening four bars of John Coltrane’s ‘Giant Steps’ represented by the five primitive viewpoints of (chord) root, (chord) type, (chord)
rootInterval, (melodic) pitch and duration.

Table 5. Four multiple viewpoint models with primitive and linked viewpoints.

harmonicVP1 harmonicVP2 melodicVP allVP

root root pitch root
type type duration type

rootInterval rootInterval ptich⊗duration rootInterval
duration root⊗type duration

root⊗type rootInterval⊗type pitch
rootInterval⊗type root⊗type

root⊗type⊗duration rootInterval⊗type
root⊗type⊗duration

ptich⊗duration
root⊗type⊗pitch

are segmented at every chord change if a harmonic viewpoint
is present and at every note onset if a melodic viewpoint is
present. Four viewpoint models (Table 5) are constructed com-
paring viewpoint models with (harmonicVP1) and without
(harmonicVP2) temporal information, with melodic and tem-
poral information (melodicVP), and with harmonic, melodic
and temporal information combined (allVP).

The global order bound of the multiple viewpoint Markov
model was determined with a 10-fold cross-validation entropy
test of all the collections for all five primitive viewpoints
(Table 6). The third order is retained as the global order bound
for the multiple viewpoint models as the optimal order for
the root and type viewpoints. Although the average cross-
entropy for the rootInterval, duration and melody viewpoints
is lower for the second order, as the difference is small and the
interpolated smoothing will incorporate lower order models,
a third-order model is retained.

5.2 Results

The supervised classification by multiple viewpoint Markov
models is implemented with a 10-fold cross-validation proce-
dure, transposing all jazz standards 12 times, with results for
the four collections tabulated in Table 3. The allVP classifier
(67.3%) significantly outperforms its nearest rival (including
classifiers from Section 4) in the composer (t (99) = 58.953,

p < 0.001), subgenre (t (99) = 90.991, p < 0.001) and per-
formance style (t (99) = 7.415, p < 0.001) collections, whilst
harmonicVP1 significantly outperforms (t (99) = 118.977,
p < 0.001) allVP in classification by meter. Taking all 23
classifiers into account, a comparison of t-statistics by paired
t-test shows classification by composer to still be signifi-
cantly more successful than by subgenre (t (22) = 8.761,
p < 0.001, corrected) and performance style (t (22) = 18.110,
p < 0.001, corrected), but it is no longer significantly easier
to classify compared to meter (t (22) = −0.932, p = 0.819,
corrected).

The improved classification by meter is exemplified by an
average classification accuracy of 99.4% for the harmonicVP1
classifier. It is clear that the improved performance is gained
from the duration viewpoint as the harmonicVP2 achieves an
average accuracy of only 65.3% and is significantly (t (99) =
26.714, p < 0.001) outperformed by the Markovian2 classi-
fier (70.2%).

Further insight into classification by composer (as the pri-
mary classification task of the current study) is shown in Table
7, with associated recall, precision and F-measures for the four
multiple viewpoint classifiers.As observed in Section 4.4 high
recalls are returned for Bill Evans, although Charlie Parker
and Michel Legrand are less consistent. Again, Bill Evans
returns a low precision despite high recalls, especially for
the melodicVP classifier (0.323). Duke Ellington and Wayne
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Predicting the composer and style of jazz chord progressions 285

Table 6. Relative performance of bounded variable-order Markov models that use primitive viewpoints, measured by average cross-entropy per
symbol of a 10-fold cross-validation over all collections.

Global order bound root type rootInterval duration melody

0 3.742 2.116 1.836 2.865 3.739
1 1.629 1.129 1.585 2.262 3.443
2 1.613 1.122 1.555 2.198 3.283
3 1.582 1.115 1.580 2.254 3.300
4 1.583 1.126 1.645 2.441 3.571
5 1.593 1.151 1.787 2.768 3.934
6 1.646 1.214 1.988 3.198 4.153
7 1.720 1.313 2.247 3.685 4.247
8 1.817 1.449 2.546 4.171 4.287
9 1.924 1.631 2.883 4.607 4.307
10 2.050 1.852 3.232 4.977 4.322

Shorter are consistently the lowest ranked composers by recall
and F-measure. The fact that these patterns are consistent
across a wide variety of classification methods strongly sug-
gests that they are not merely coincidental, but an intrinsic
property of a composer’s style. It is interesting to note that the
harmonicVP1 (61.1%) outperform the harmonicVP2 (58.8%)
model by only a small amount, although this is found to be
statistically significant (t (99) = 22.233, p < 0.001). This
implies the addition of temporal information does not improve
the classification of chord sequences by composer.

6. Classifying subsequences within compositions

The classification methods presented in Sections 4 and 5 can
be used as the basis for an analysis of chord subsequences
within a composition. Arguably, this is more interesting than
simply classifying a piece with a label, since jazz musicians
in particular are adept at borrowing and manipulating subse-
quences of chords from the œuvre of other musicians. For the
examples presented in this section the harmonicVP1 classifier
is chosen as the best performing classifier on chord sequences
only.

Such an analysis may be able to shed some light on the
certainty of classifications, as shown in two extracts from ‘Boo
Boo’s Birthday’ by Thelonious Monk (Tables 8 and 9). The
transition probabilities, p(e j

i |c), are calculated with the third-
order harmonicVP1 classifier and the posterior class proba-
bilities, p(c|e j

i ), used to find the most likely class (indicated
in bold). The opening four bars (Table 8) show considerable
uncertainty within the classifications, with four different com-
posers returned and all posterior probabilities below 0.4. On
the other hand, the chromatic descent over the following four
bars (Table 9) shows more certainty, with four of six transitions
classified correctly. The whole standard is classified correctly
as Thelonious Monk at probability 0.962, giving some in-
dication of the uncertainty in the opening bars, but no clue
as to where the uncertainty might lie, or what precisely is
stylistically typical. Such feedback is particularly useful for

style specific generation in identifying idiomatic sequences
and patterns (Collins, 2011).

6.1 Subsequence selection algorithm

With these points in mind, this section presents an algorithm
to identify and label subsequences of chords within a jazz
standard to find all of the maximal length subsequences (see
Figure 4) classified for a given set of composers. Maximal
length subsequences are defined as subsequences labelled by
class that cannot be extended forwards or backwards without
re-classification.

A subsequence selection algorithm is applied to find the
maximal length subsequences classified for a given set of com-
posers. First, the classifications of all possible subsequences
for all possible lengths down to a minimum threshold of 8
are calculated. The subsequences are arranged in a directed
acyclic graph (Figure 4) with the longest subsequence span-
ning the whole piece at the root and the shortest subsequences
at the leaves. Each vertex representing a subsequence e j

i has
two parents: e j+1

i and e j
i−1 respectively. To select all subse-

quences that cannot be extended any further without being
reclassified, a vertex is selected for return if it is classified in
a different class to both its parents (or its only parent if it is at
the start or finish). To reduce the number of subsequences re-
turned, pieces are divided into sections (defined on the original
lead sheet) preventing subsequences from bridging sections.

6.2 ‘Giant Steps’ by John Coltrane

Figure 5 displays a global map of the selected subsequences
for ‘Giant Steps’ by John Coltrane with chord sequences of
the jazz standard in Table 10. For the classification process
‘Giant Steps’ was removed from the training corpus to pre-
vent a trivial classification of its subsequences. Subsequences
classified as John Coltrane (green) and Bill Evans (red) are
identified, with the subsequence spanning the whole song
correctly classified to John Coltrane. In particular bars 1–
4 outline an idiomatic Coltrane Changes progression (see
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Table 7. Performance measures averaged over 100 runs for the composer collection classified by four multiple viewpoint classifiers.

Classifier Class Recall Precision F-measure

harmonicVP1
Accuracy:
61.1%±0.2

Thelonius Monk (66) .527 .625 .571
John Coltrane (64) .454 .538 .492

Bill Evans (56) .897 .579 .704
Charlie Parker (54) .656 .741 .695

Richard Rodgers (47) .733 .619 .670
Michel Legrand (45) .832 .696 .757
Duke Ellington (43) .249 .380 .300
Pepper Adams (40) .675 .729 .700
Wayne Shorter (32) .442 .510 .473

harmonicVP2
Accuracy:
58.8%±0.2

Thelonius Monk (66) .483 .594 .532
John Coltrane (64) .459 .508 .482

Bill Evans (56) .886 .579 .700
Charlie Parker (54) .666 .749 .705

Richard Rodgers (47) .655 .598 .625
Michel Legrand (45) .815 .661 .729
Duke Ellington (43) .203 .287 .238
Pepper Adams (40) .689 .736 .711
Wayne Shorter (32) .378 .452 .412

melodicVP
Accuracy:
50.2%±0.2

Thelonius Monk (66) .374 .875 .523
John Coltrane (64) .638 .380 .476

Bill Evans (56) .763 .323 .454
Charlie Parker (54) .679 .767 .720

Richard Rodgers (47) .467 .804 .590
Michel Legrand (45) .470 .769 .582
Duke Ellington (43) .164 .356 .224
Pepper Adams (40) .610 .512 .556
Wayne Shorter (32) .148 .539 .231

allVP
Accuracy:
67.3%±0.2

Thelonius Monk (66) .577 .795 .668
John Coltrane (64) .667 .541 .597

Bill Evans (56) .877 .481 .621
Charlie Parker (54) .743 .838 .787

Richard Rodgers (47) .711 .873 .783
Michel Legrand (45) .777 .910 .838
Duke Ellington (43) .368 .508 .426
Pepper Adams (40) .860 .794 .825
Wayne Shorter (32) .377 .650 .476

Table 8. Chord sequence and associated transition and posterior class probabilities for bars 1–4 of Thelonious Monk’s ‘Boo Boo’s Birthday’.

Class (c) CM7 B7 E7 E7

p(e1−3|c) p(c|e1−3) p(e2−2|c) p(c|e2−2) p(e3−1|c) p(c|e3−1) p(e4
0|c) p(c|e4

0)

Thelonious Monk: .455 (.133) .093 (.166) .047 (.181) .349 (.261)
John Coltrane: .533 (.156) .078 (.138) .002 (.010) .178 (.133)
Bill Evans: .217 (.064) .003 (.006) .046 (.179) .089 (.067)
Charlie Parker: .466 (.136) .019 (.033) .005 (.021) .414 (.309)
Richard Rodgers: .328 (.096) .172 (.306) .001 (.004) .069 (.052)
Michel Legrand: .000 (.000) .004 (.007) .088 (.340) .068 (.051)
Duke Ellington: .371 (.109) .186 (.331) .006 (.024) .045 (.034)
Pepper Adams: .655 (.192) .002 (.003) .033 (.129) .027 (.020)
Wayne Shorter: .391 (.114) .005 (.010) .029 (.113) .100 (.074)

Figure 3) reflected in the fact that no other composers are
returned until the start of bar 4. Bars 4–15 suggest stylis-

tic similarity with Bill Evans, which is plausible given they
shared part of their careers in the Miles Davis Sextet.
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Table 9. Chord sequence and associated transition and posterior class probabilities for bars 4–8 of Thelonious Monk’s ‘Boo Boo’s Birthday.’

Class F7 E7 E�7 D7 DM7�11 D�7

(c) p(e5
1|c) p(c|e5

1) p(e6
2|c) p(c|e6

2) p(e7
3|c) p(c|e7

3) p(e8
4|c) p(c|e8

4) p(e9
5|c) p(c|e9

5) p(e10
6 |c) p(c|e10

6 )

TM: .536 (.245) .029 (.481) .438 (.199) .267 (.204) .634 (.299) .009 (.289)
JC: .144 (.066) .003 (.050) .396 (.180) .442 (.337) .043 (.020) .001 (.033)
BE: .258 (.118) .005 (.085) .372 (.169) .099 (.076) .636 (.300) .003 (.089)
CP: .195 (.089) .000 (.007) .228 (.104) .112 (.086) .043 (.020) .001 (.023)
RR: .143 (.065) .001 (.019) .233 (.106) .169 (.129) .247 (.116) .004 (.125)
ML: .156 (.071) .002 (.027) .064 (.029) .024 (.018) .028 (.013) .006 (.203)
DE: .383 (.175) .004 (.075) .257 (.117) .079 (.060) .088 (.042) .001 (.020)
PA: .131 (.060) .007 (.115) .018 (.008) .046 (.035) .069 (.033) .001 (.045)
WS: .244 (.111) .008 (.141) .194 (.088) .072 (.055) .331 (.156) .005 (.174)

Fig. 4. The directed acyclic graph of all subsequences of all lengths
(from 8) classified as J.C. (John Coltrane), C.P. (Charlie Parker) or
T.M. (Thelonious Monk). A vertex is selected for return only if it is
classified in a different class to both its parents. The above example
would return subsequences e11

1 , e11
2 , e10

3 and e11
4 .

6.3 ‘Pretty Late’ by Pachet and d’Inverno

‘Pretty Late’ by Pachet and d’Inverno (Table 11) provides
an interesting case for the subsequence classifier. The piece is
based on ‘Very Early’by Bill Evans but without making direct
quotations of substantial length. Interestingly, the classifier is
sensitive to this influence, identifying the three subsequences
spanning the three main sections as Bill Evans (Figure 6),
strengthening the credibility of the classifier. The coda sec-
tion closes with a Coltrane-esque chain of thirds in bars 58–
61: BM7, A�M7, EM7#11, E�M7, prompting the subsequence
spanning the whole coda to be classified as John Coltrane.

7. Discussion and conclusion

The machine learning techniques presented in the current study
have shown that to a large extent, composers can be identi-
fied computationally by their chord sequences alone. Marko-
vian and novel subsequence matching classifiers (Section 4)
returned similar results (accuracies of 59.0% and 55.6% re-
spectively, compared to a baseline accuracy of 14.8%),
reinforcing trends found in chord sequence classification of
the composer collection. Multiple viewpoint representations
for classifiers were implemented in Section 5 incorporating
harmonic, melodic and temporal information improving clas-
sification accuracy to 67.3%. Finally, an algorithm for
selecting stylistically prominent subsequences within a jazz
standard found plausible interpretations of two lead sheets
(Section 6).

Classification across different partitionings of the corpus
provides useful information on what partitionings are rele-
vant to the style of a chord sequence. Notably, classifying by
composer (67.3%) was significantly more successful than by
subgenre (57.6%), and classifications by performance style
(38.8%). The poorer classification accuracies for the more ar-
bitrary partitionings of the corpus by performance style imply
that the classification models do not simply find patterns by
chance in any given partitioning of a training set. These results
suggest that individual composers have a distinctive harmonic
style, which does not hold so well for subgenres. Another
possible explanation is that while composers are unambigu-
ous, subgenre is not. Therefore, the poor performance of style

Fig. 5. The subsequence selection algorithm applied to ‘Giant Steps’ by John Coltrane.
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Table 10. Chord sequence for ‘Giant Steps’ by John Coltrane. Bars are represented by cells which are divided equally by a vertical bar where
appropriate.

Table 11. Chord sequence for ‘Pretty Late’ by Pachet and d’Inverno. Bars are represented by cells which are divided equally by a vertical bar
where appropriate.

Fig. 6. The subsequence selection algorithm applied to ‘Pretty Late’ by Pachet and d’Inverno.
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prediction may be explained in part by spurious labelling and
in part by an inconsistent effect of style on chord progressions.

Markovian classifiers presented in Section 4.1 significantly
outperformed similar n-gram classifiers presented by
Pérez-Sancho et al. (2009), both with chord simplifications
(63.9% to 59.5%) and without (59.0% to 50.6%). It is expected
that these differences in performances are due to variations
in representation, particularly how pieces in different keys
are made equivalent. Whilst the current study transposes to
all 12 tonal centres (regardless of mode), Pérez-Sancho et al.
(2009) transpose all pieces to the same key. This is likely to be
problematic since jazz standards are often ambiguous in key,
modal, without key, or modulate.

It is particularly interesting that the subsequence matching
classifier in Section 4.3, which is entirely independent of
frequency of occurrences, finds similar results to the Marko-
vian classifiers, which are probabilistic and therefore reliant
on events occurring often in a training corpus. Additionally,
the subsequence matching classifier considers subsequences
of variable lengths, whilst the third-order Markovian classi-
fiers only observe 4-gram chunks. Finally, the subsequence
matching classifier considers subsequences as whole entities,
whilst a Markovian classifier assigns high probabilities to
chunks for which it can easily predict the suffix given a prefix.
Despite the fundamental differences in these two approaches
to classification, they return similar findings. This implies that
identifiable stylistic patterns can be labelled as stylistically
typical with fairly high confidence.

The use of multiple viewpoint classifiers was motivated by
a recent study (Conklin, 2013a) in folk melody classification.
Accuracies for all four classification tasks improved by a
small but statistically significant amount, with a classifier
incorporating harmonic, melodic and temporal information
performing best (67.3%). For chord sequences alone, it was
found that temporal information increased the classification
accuracy only from 58.8% (harmonicVP2) to 61.1% (har-
monicVP1).

For classification by meter, the discrepancy between the
performance of the harmonicVP1 (99.4%) and harmonicVP2
(65.5%) strongly suggests that chord duration alone is suffi-
cient to classify between the two meter classes. This is perhaps
unsurprising considering that the chord durations in quadruple
meter are mainly four quarter notes long (occasionally two)
and chord durations in triple meter are mainly three quarter
notes long (occasionally one or two, but importantly never
four). This intuition is confirmed, as a zeroth-order classi-
fier comprising of the duration viewpoint segmenting only at
chord changes, returns an average classification accuracy of
99.8%±0.0.

A subsequence selection algorithm returned plausible read-
ings of two lead sheets in Section 6. This novel application of
machine learning techniques could provide a useful feedback
tool for composers and analysts, allowing them to discover
how exact subsequences of chords relate to other composers.
Additionally, such an application could provide the basis for
style specific generation (Collins, 2011). It is important to note

that it is very difficult to draw conclusions from the classifier
on whether a piece was influenced by a certain composer in
a historical sense. For example, the fact that ‘Giant Steps’
by John Coltrane contains long subsequences classified as
Bill Evans does not necessarily imply that John Coltrane was
influenced by Bill Evans or vice versa. It could also be pos-
sible that they were both separately influenced by an external
composer and did not influence one another directly despite
sharing stylistic qualities.
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