Combining Formal Reasoning Techniques with CSP

Anne Liret, Pierre Roy, Francois Pachet.

(1) L1P6, 4 PLACE JUSSIEU, 75252 PARIS CEDEX 05, FRANCE.
e-mail: {liret, roy, pachet}@poleia.lip6.fr

20 octobre 1997

1 Introduction

Finite-domain constraint satisfaction programming (FDCSP) is a powerful pa-
radigm for solving combinatorial problems. The success of FDCSP comes from the
fact that lots of combinatorial problems fit naturally in this paradigm (e.g. sche-
duling, planning). These techniques are usually based on enumeration procedures
augmented with various forms of pruning techniques, such as arc-consistency [15].
However, there are numerous examples in which theses techniques are clearly ” misfit
overkill”. In particular, we are interested in studying a class of situations in which
formal reasoning techniques can be substituted to pure enumeration to find solu-
tions more easily or more quickly. Examples of such ”favorable situations” are the
following:

e The Pigeonholes problem consists in locating (N + 1) pigeons in N pigeonholes,
such that a given hole accommodates at most one pigeon. This problem has
no solution. This can be found by simply remarking that it is equivalent to
finding an injection from a set into a smaller set. However, standard CSP
techniques spend an exponential time to prove unsatisfiability.

e The equality [4.M +3.N? = 34], where N and M are integer variables, illustrates
a different kind of formal reasoning. A simple reasoning on parity shows that
this equality has no solution : since 34 and 4. M are necessarily even, we deduce
that 3.N2, and therefore N2, have to be even. N2 is even if and only if N is
even. Finally, M and N have to be even numbers, thus 4. M +3.N? is a multiple
of 4. Since 34 is not a multiple of 4, there is no solution. Using standard CSP
techniques, a combinatorial exploration of the domains is needed to obtain
this result.

o If we now consider the following set of constraints, {(1) X =Y ; (2) Z =Y (3)
X # Z }, one can easily prove, by reasoning, that these constraints conflict be-
cause (1) and (2) imply [X = Z], which obviously contradicts (3). A classical
strategy based on arc-consistency would find this result using huge combina-
torial exploration.

(o] In real world problems such as loan management, straightforward CSP formu-
lation involves non linear numeric constraints, thus leading to hard, or even
intractable, combinatorial problems. Frequently, formal reasoning can yield
analytic expressions of solutions.

Moreover, these favorable configurations may appear during the resolution of a pro-
blem. As variables get instantiated, the constraint set changes, and such favorable
situations may appear as a result of these partial instantiations.

In this paper, we are interested in identifying precisely such situations, and ela-
borating ways of combining some sort of ”formal reasoning” on constraints, with

classical enumeration techniques. This idea is not new and was the core of the Alice
system [9]. Alice proposed a scheme for combining formal reasoning and constraint
satisfaction to solve combinatorial problems. Alice was validated on several examples
[10], and shown to be sometimes more efficient than specialized procedures. Howe-
ver, the Alice experience was difficult to share, because Alice was basically a black
box. The performance relied on a judicious choice of complex heuristics ; too few
information was accessible about the resolution strategy, and the trace facility was
scarce. Strangely enough, while constraint satisfaction has received many attention
in the last twenty years, Alice has somehow become a ”mythical” system with no
direct lineage.

We claim however, that Alice contains still unexploited good ideas for solving
difficult combinatorial problems. More precisely, we consider it as a good starting
point for studying precisely these ”favorable situations”, in which a fine tuning
between formal reasoning (smart thinking) and brute force can save substantial
amounts of time. Consequently, we started a project to reconstruct Alice using
recent CSP technology. The aim of this system - called AliceTalks - is, eventually,
to gain insights on the nature of favorable situations, to somehow master the beast.

This paper describes the implemented system, and sketches our experiments in
progress.

2 The Original Alice System

Alice is a complex system, whose complete description may be found in chapter
8 of [11]. The system was also reconstructed by J. Pitrat using his declarative
language Maciste (see chapter 12 of [14]), this reconstruction clarified the inner
mechanism of propagation. However, to our knowledge, no systematic study of Alice,
and especially the formal reasoning capabilities, has been conducted.

2.1 Overview

Alice is at the same time a language for stating combinatorial numerical pro-
blems and a system for solving them (Alice stands for A Language for Intelligent
Combinatorial Exploration). The language is close to mathematical notations. A
problem in Alice is stated using mathematical expressions and concepts from set
and function theories.

The overall Alice system can be divided up in several modules: a parser, a
graph, a set of constraints and the resolution algorithm. All these modules are
responsible for particular tasks: the parser is used to generate a problem from a
mathematical description. The graph maintains a representation of the variables
and of the domains of the problem, and it is responsible for constraint propagation.
The constraint set maintains the list of constraints and is responsible for formal
reasoning. The resolution algorithm links together these different modules, and is
controlled by several heuristics.

The resolution is based on a classical backtracking procedure in which the pro-
blem is simplified at each cycle using two strategies: 1) constraint propagation as
in classical CSP to reduce the domains and 2) formal reasoning to generate simpler
constraints. Domain reduction for individual constraints in Alice may be compared
to constraints filtering, as defined in [2]. The global propagation scheme is similar
to the forward-checking algorithm, described in [6]. The formal reasoning part of
Alice is unique in the field of constraint satisfaction, and is described in the next
section.

2.2 Formal Reasoning in Alice

Formal reasoning in Alice takes two forms: normalization of constraints, and
combination rules. Normalization consists in rewriting all constraints in a unique
form to allow the system to handle them in a systematic fashion. This process al-
ready allows to infer non trivial instantiations or failures. For instance, the normali-
zed form of [X +2.Y = X] is [0 = Y. Similarly, the normalized form of [X = X + 1]
is [false].

Constraint combination aims at creating new constraints which are simpler to
handle. A particularly interesting case is when constraint combination leads to de-
ducing a value, as in the problem [X +Y =10 and X —Y = 0]. In other cases, the
mere introduction of a redundant constraint may dramatically improve the resolu-
tion as illustrated by [3] for scheduling problems. Of course, constraint combination
is an expensive process, and cannot be applied systematically. Deciding when to
combine constraints is a tricky part of Alice and is precisely what makes it difficult
to master.

3 AliceTalks: Revisiting Alice in an Object-Oriented
Context

AliceTalks was born from the will to turn Alice into a more open and adaptable
system. This section reports on this experience, describes the outcoming system and
relates what of clarity and modularity we gained in the system design and use.

AliceTalks is designed with four distinct, independent, modules, corresponding
to the original decomposition of Lauriére’s system. The parser improves the original
Alice parser in two directions: it offers a more natural syntax and is more flexible
since it is generated using a parser generator. The graph module is designed to
be completely independent of the other modules (this was not the case in original
Alice). The constraint set includes an extended formal reasoning mechanisms, as
described in the next section. Moreover we added a sophisticated tracing module,
described in Section 3.2, and a heuristic browser, which allows a fine-tuning of the
resolution strategy. We will now focus on the formal reasoning part of AliceTalks.

3.1 Formal Reasoning in AliceTalks

As in Alice, the symbolic reasoning in AliceTalks is based on two procedures :
1) normalization, and 2) combination rules. Each of these two procedures has been
extended in various ways.

Normalization of constraints is now seen under the light of standard rewriting
systems [7], [5]. The theory of rewriting which originates from algebra and theorem
proving, has quickly found a direct application in the development of formal calculus
system, such as Macsyma [13]. It has been recently applied to the conception of
prototyping systems [8] and proofs assistant based on types theory [4]. Rewriting
consists in replacing subterms in a given expression by equal terms with the aim
to obtain a normal form. This is ensured when the rule base is convergent; that
is all sequences of rewriting steps are finite (termination property) and end with
an irreducible unique expression (confluence property. The current rewriting rule
base of AliceTalks contains the so-called set of arithmetic and logical expressions
[1], augmented with functional terms. For instance, a constraint such as [z + y +
(y+t—z+2) =2.f(x) + (2.y) + (=2.f(z 4+ 0))] is rewritten as [0 = ¢ + z]. The
confluence of the rule base of AliceTalks has been checked using a Knuth-Bendix
standard completion program developed at LIP6 [12].

EsendMnreMnney Y] X

Stage: | + | - | 10 [V Stop at message

- AL - Constraint chogen (U= (-2 + (U7 1) + y)1] |
- AL - Trivially satisfied constraint @ [0 <= (37 0) + 11]]
- AL - Filtering constraint © 0 <= (-5 + 110 * r1) + ¥]]]
- AC - Deduction : {}

- AC - Conslreinl chosen [0 — e+ —-r2))
- AC - Fillering cunstrainl 0 = {2 + {1 +-r20)]
- AG - Domain redoction e in-[2], [3], 4], D, [B], [
- AG - Dormain redoction ninc-[3], [£], 121, 6], [7], 1O
- AC - Substitution of 2 ky 1

- AC - Constrsint chosen [O0=(1 1 e | £

AC Filtcring constraint ©)

+ o+ ni] “
AC Deduction : / -
- &C - Formal reasoning @ sebstitution o nby (1 + €)

- AC - Cangtrsint chogen [O0=(3 + [r +-r17)]
- AG - rhas only 1 remaining pogsthM
- AC - Substitution of + by 8

- A5 - Niamain redictinn

nin [3

!]
lime ol 0= 1 +-1)] -
rressage
node £ (== A+ (007l 4+ 300
durrizinTes, [O==1 10 fe 1 my]
[0== 14 + =117 1) % -v]))

[10=d e+ OO0 Ty -]
ressage] La contrainte apres la
tapLewel substitution de « par 8.

raph
| v

Fic. 1 — Ezcerpt of the resolution track of the send + more = money problem.
Emphasis is set on an "intelligent” phase of the resolution.

The combination rules can also be seen, from a theoretical standpoint, as yet
another rewriting system. This rewriting system applies to a set of constraints (ins-
tead of applying to an individual constraint), to produce an ”augmented” constraint
set, consisting of the initial constraint set and a set of redundant constraints. Of
course, this rewriting process is interesting only if the redundant constraints are in-
teresting, from the perspective of constraint satisfaction. Currently, we implement
this rewriting system with production rules, applied globally on the constraint set.
For instance, consider the two following constraints, which appear during the reso-
lution of the send+more = money problem: [N = 14+ E] and [10+ F = R+ R1+ N].
Note that in this situation, the domain of R1is {0,1} and the domains of N, R and E
have been reduced to {1 ... 8}. An interesting combination of these two constraints
in this case consists simply in ”"adding” the two constraints to create the constraint
[N+104+ FE =1+ E+ R+ R1+ NJ]. This constraint, once normalized is rewrit-
ten in [9 = R + RI1]. This constraint is, of course, redundant with the two original
constraints. However, in the current context of instantiation, a simple filtering of
this constraint produces the instantiations R1 = 1 and R = 8. (see Figure 1). Note
that without this constraint combination, filtering applied to the original constraint
set would not lead to any domain reduction, let alone variable instantiation !

3.2 The Tracing Mechanism of AliceTalks

In the original Alice system, only few information were accessible about the
resolution strategy. As a consequence, the user had no insights on the resolution, and

was therefore unable to adapt the resolution strategy or heuristics to the resolution
of a given problem.

We designed a tracing module that produces a detailed output of the resolution.
In order to give useable information about the resolution, this output reflects the
hierarchy of procedure calls (indentation). Furthermore, each trace event is typed
according to 1) the module that produced it (AG for Alice graph, AC for Alice
Constraint set, etc.), and 2) a label identifying the kind of trace generated. This
typology can be used to filter displayed information (see Figure 1).

The 1 shows the tracing module during the resolution of the send 4+ more =
money problem. At this particular step of the resolution, the variable s is instantia-
ted to 9 and the carry r2 to 1. The tracing module allows to identify clearly three
steps in the reasoning:

1. AliceTalks cannot perform any more domain reduction by constraint filtering.

2. AliceTalks chooses to perform a symbolic treatment on constraint [0 = (—1+
(—e+n))]. This results in trying to combine this constraint with other constraints
of the constraint set. In practice, this amounts to substituting variable n by
expression (1 + €) in all constraints involving n. In this process, constraint
[0=104¢e—r—rl—n]is rewritten in [0 = 9 — r — rl1].

3. Constraint [0 = 9 — r — r1] is chosen for treatment. Simple filtering results in
deducing that variable »r = 8 and r1 = 1.

As noticed above, this instantiations have been obtained without any choice nor
backtracking. Eventually, the resolution of the whole problem is achieved without
any backtracking at all.

4 Conclusion, Experiments in Progress

In the range of combinatorial problem, we have identified a set of situations
where formal reasoning is particularly interesting, because it allows to solve pro-
blems that classical CSP techniques cannot solve without any combinatorial enume-
ration. The Alice system was the first to exploit this idea. We have reconstructed
Alice with the aim to shed lights on Lauriére’s ideas. In the outcoming system,
AliceTalks, the rewriting rule base of Alice is complete and convergent, and the
constraint filtering procedure use the recent works on CSP. One way of combining
formal reasoning with classical constraint filtering, consists in handling constraints
in their normal form and combining them with symbolic deduction rules. We plan
to experiment AliceTalks on combinatorial problems in order to specify which si-
tuations are relevant to formal reasoning, and which heuristics can fine-tune the
combination of these two strategies.

5 References

[1] L. Bachmair. Canonical Equational Proofs. Progress in Theoretical Computer
Science. Birkhauser, Romual V. Book, University of California, 1991.

[2] C. Bessiére and J.Ch. Régin. Arc-consistency for General Constraint Net-
works : Preliminary Results. Proceedings of IJCAI’97, Nagoya, Japan, vol. 1, pp.
398-404, august 1997.

[3] Y. Caseau and F. Laburthe. Improved CLP Scheduling with Task Intervals.
Proceedings of the 11th International Conference on Logic Programming, MIT Press,
vol. 11, pp. 1994.

[4] C. Cornes, J. Courant, J-C. Filliatre, G. Huet, P. Manoury, C. Munoz, C.
Murthy, C. Parent, C. Paulin-Mohring, A. Saibi and B. Werner. The Coq Proof
Assistant Reference Manual, version 5.10. INRIA, report 0177, 1995.

[5] N. Dershowitz and D.A. Plaisted. Logic Programming cum Applicative Pro-
gramming. IEEE Symposium on Logic Programming, vol. 1, pp. 54-66, July 1985.

[6] R. Haralick and G. Elliot. Increasing Tree Search Efficiency for Constraint
Satisfaction Problems. Artificial Intelligence, vol. 14, pp. 263-313, 1980.

[7] J.P. Jouannaud and P. Lescanne. Rewrite systems, Handbook of Theoretical
Computer Science.North-Holland,Van Leeuwen. vol. B, pp. 243-319, 1990.

[8] C. Kirchner, H. Kirchner and M.Vittek. Implementing Computational Sys-
tems with Constraints. Proceedings of the first Workshop on Principles and Practice
of Constraint Programming, Providence, USA, Aris Kanellakis, Jean-Louis Lassez
and Vijay Saraswat, vol. 1, pp. 166-175, 1993.

[9] J.L. Lauriére. Un langage et un programme pour énoncer et résoudre des
problémes combinatoires. Ph. D. Thesis, University Pierre et Marie Curie, Paris,

1976.

[10] J.L. Lauriére. A Language and a Program for Stating and Solving Combi-
natorial Problems Artificial Intelligence. Artificial Intelligence, vol. 10, pp. 29-127,
1978.

[11] J.L. Lauriére. Intelligence artificielle, résolution de problémes par ’homme
et la machine. Eyrolles, Paris, 1986.

[12] P. Manoury, M. Simonot and J.L. Krivine. Des preuves de totalité de fonc-
tions comme synthése de programmes. Ph. D. thesis, Paris 7, Paris, France, 1992.

[13] MathLab. MACSYMA Reference Manual. The MathLab Group, Laboratory
for Computer Science, report Cambridge, USA, January 1983.

[14] J. Pitrat. Penser autrement l'informatique. Hermes, Paris, 1993.

[15] P. Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem.
Computational Intelligence, vol. 9, pp. 268-299, 1993. 1

