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Abstract: This paper discusses the relevance of the framework approach for building efficient and powerful
constraint satisfaction programming environments. Constraint satisfaction programming is a paradigm for
solving complex combinatorial problems. Integrating this paradigm with objects addresses two different objec-
tives. On the one hand, objects may be used to implement efficiently constraint satisfaction algorithms. On the
other hand, objects can be used to state and solve complex constraint problems more easily, and more effi-
ciently. Traditional systems offering an integration of the two paradigms use a language-based approach, i.e. are
extensions of existing programming languages, which integrate both paradigms in various ways. In this chapter,
we argue that the framework approach is more adapted to the requirements of embedded object oriented con-
straint satisfaction than the language-based approach. We propose such a framework for stating and solving
constraint problems involving object, and illustrate it on various examples.

Constraint satisfaction programming is a powerful paradigm for solving combinatorial problems, which was ini-
tially seen as an algorithmic issue [19, 20]. The first proposals for integrating constraints in a language were devel-
oped within the community of logic programming. Constraint logic programming (CLP) was primarily designed
to deal with specific computation domains like integer numbers. Its best known representatives are PROLOG III
[10], CHIP [3] and CLP (FD) [9].

Using CSP from within a programming language is a definitive advantage, compated to the situation where the
user must call an external system. Depending on what the language offers to the user, the integration of CSP
may take the three forms reviewed below: library, language constructs, or framework.

Library of generic constraints

In this approach the objective is to identify generic constraints that can be used in a wide range of applications,
(e.g. global constraints in CHIP [3]). This approach is adapted to classical problems, and in this case the only task
is to formulate the problem in terms of the predefined constraints. This can be summed up by the phrase
“constrain and solve”. For specific problems, since constraints are complex and domain independent, this for-
mulation may be hard to find.

The language construct approach

This approach is illustrated by CLAIRE [8], a language for building constraint solvers. CLAIRE does not propose
any predefined resolution mechanisms, but integrates general and efficient low-level constructs that can be used
to build specific solvers (i.e. a save/restore and a forward chaining rule mechanisms). This approach can be seen
as the opposite of the library approach: the user has a lot to do, but ends up with a efficient algorithms. This is
well suited to hard problems not identified as instances of well-known classes of problems.

The framework approach

The framework approach is an intermediary position. It comes from works aiming at integrating object-oriented
languages with constraints. Rather than providing specific computation domains as for CLP, the interest of inte-
grating constraints and objects is to provide extensible and flexible implementations of CSP (e.g. COOL [1],
ILOGSOLVER [26], LAURE [7]). Besides, objects provide facilities for domain adaptation. One particularly efficient
way to achieve domain adaptation is to provide frameworks [13] in which 1) general control-loop and mechanisms
are coded once for all, and 2) adaptation to specific problems can be achieved easily. More than a class library, a
framework is a “semi-complete” application containing integrated components collaborating to provide a reus-
able architecture for a family of applications. We now outline the features of such a framework.



1. From Theory to Practice

In this section, we introduce briefly the basic concepts underlying constraint satisfaction as defined in the tech-
nical and theoretical literature. For the sake of simplicity, these theoretical works are based on a simplified
model of constraint satisfaction, both from a technical and a conceptual viewpoint. We emphasize the fact that
this simplified model is not adapted to the context of real-world applications, and argue in favor of a non-
restrictive model of CSP. The implementation of this richer model of CSP is addressed, using the object-
oriented framework approach, in the following section.

1.1 Finite Domain Constraint Satisfaction: Basic Notions

Stating a combinatorial problem as a CSP amounts at characterizing a priori what properties a solution should
satisfy. A finite domain constraint satisfaction problem is defined by a set of variables, ecach variable taking its
value in a finite set, its domain; and by a set of constraints, defining the properties of the solutions. A solution is an
instantiation of all the variables satisfying every constraint.

A naive resolution mechanism may be described as follows (see for instance [25]):

Basic Enumeration Algorithm (BEA)
1) Choose a non-instantiated variable V of the problem.
2) Instantiate V with a value of its domain, and save the current state of the problem.
3) Check all instantiated constraints. If a constraint is violated, then backtrack to a previously saved
state of the problem.
4) If all the variables are instantiated then a solution has been found
1) Yield the solution.
i) Go backward to a previously saved state.
1) Gotol).

Figure 1. The basic enumeration algorithm (BEA) for constraint satisfaction problems

This procedure yields all the solutions of the problem, and is the core of all complete algorithms for finite do-
main constraint satisfaction. Of course this basic algorithm is very inefficient. We will review now the main im-
provements of these basic algorithms as they are described in the literature.

1.1.1 Arc Consistency

In the BEA, a constraint is used once all its variables are instantiated. The following example shows that con-
straints can also be used, actively, to anticipate dead-ends. Consider for instance two variables X and Y whose
domains ate {1,2,...,10}, and the constraint “X >Y”. If X is instantiated with 3, the constraint can be used right
away to reduce the domain of Y to {1,2}. This domain reduction prevents the algorithm from checking 3, 4, ...,
10 for Y. Note that this domain reduction does not discard any solution.

Domain reduction is the main tool for pruning branches of the search tree developed by BEA. The maximum
amount of “safe” domain reduction is determined by the property of arc consistency |5, 20]: a binary constraint C
holding on variables X and Y is are-consistent if, and only if

Lx[0Dom (X) ; Ly [L1Dom (Y) such that C (x, y) = true
and L)y Dom (Y) ; Lisc[JDom (X) such that C (x, y) = true.

Informally, a constraint is arc-consistent, if every value of the domain of a vatiable appears in at least one con-
sistent tuple of the constraint. This definition generalizes easily to non-binary constraints. A constraint can be
made arc-consistent by removing values in the domains of its variables. More precisely, arc consistency, for a
constraint C that involves variables X and Y, can be enforced as follows:

While C is not atc-consistent do
UxODom(X); [U y U Dom (Y), C (x,y) = false  Dom (Y) « Dom(Y) \ {y}]
UyDom(Y); [ x U Dom (X), C (x, y) = false U Dom (X) « Dom(X) \ {x}]

A CSP is said to be arc-consistent if all its constraints are arc-consistent. We wrote above that a constraint can be
made arc-consistent by reducing the domains of its variables, and that arc consistency is “safe”, in the sense that
it does not discard any solution. Therefore, arc consistency can be used during the execution of an enumeration
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algorithm to speed up the search by reducing the problem. This idea leads to much more efficient algorithms, as
explained in the next section.

1.1.2 Arc Consistency-Based Algorithms

The most efficient algorithms for solving CSPs are based on the BEA, augmented with arc consistency, which is
used to reduce the problem during the search. The main difference between these algorithms lies in the amount
of arc consistency enforced. For instance, the algorithm called real full look-ahead reduces the problem using arc
consistency as much as possible. Of course, enforcing arc consistency of the whole problem requires a consid-
erable amount of computation time. One could say that this method ‘Slowly explores a small search space”.

Real Full Look-ahead (RFL)

1) Choose a non-instantiated variable V of the problem.

2) Instantiate V with a value of its domain, and save the current state of the problem.

3) Enforce arc consistency for the whole problem.

If a variable domain is wiped out, then backtrack to a previously saved state of the problem.
4) If all the variables are instantiated then a solution has been found (stop).

5) Gotol).

Figure 2 Real full lookahead algorithm

In the algorithm called forward checking (see Figure 3), the reduction consists in enforcing arc consistency only for
constraints involving the last instantiated variable. Compared to real full look-ahead, this method prunes less
branches of the search tree, but it spends less time during domain reduction phase: this algorithm “Guickly explores
a large search space’.

Forward-Checking (FC)

1) Choose a non-instantiated variable V of the problem.

2) Instantiate V with a value of its domain, and save the current state of the problem.
3) Enforce arc consistency for the constraints involving V.

If a domain is wiped out then backtrack to a previously saved state of the problem.
4) If all the variables are instantiated then a solution has been found (stop).

5) Goto1).

Figure 3 Forward-checking algorithm

Many other algorithms have been devised that all fit in with this scheme. Differences concerns the amount of
propagation performed, and the backtracking strategies applied. We will now review several limitations of this
basic model in the context of real-world constraint satisfaction problems.

1.2 Restriction to Binary Problems

A binary CSP is a problem whose constraints hold on at most two variables. A theoretical result is that, for
every CSP, there exists an equivalent binary CSP “Equivalent” here means that there exists a one-to-one map-
ping between the solutions of the two problems. Based on this equivalence, most of the theoretical and techni-
cal works limit themselves to the study of binary CSPs, assuming that the equivalent binary CSP retains all the
properties of the original CSP.

This limitation is very restrictive, as illustrated by the following problem, and its statement as a binary CSP:

In the addition SEND+MORE=MONEY, replace each letter by a number between 0 and 9 so that:
1) S and M are positive.

2) S,E,N, D, M, O, R and Y are pairwise different.

3) The numeric addition obtained after replacing each letter by the associated number is correct.
There is only one solution to this problem: 9567 + 1085 = 10,652.

If one has to define this problem as a binary CSP, the resulting statement will look like the following:




Variables: 5, ¢ 1, d, m, 0, rand y whose domain is {0, 1, ..., 9}.
Constraints: s Ze; sEn  sEd et TZY

Variables: se, nd, mo, re, on and ¢y whose domain is {0, 1, ..., 99}
Constraints:  #d = d (10) “nd equals 4 modulo 107
[#d / 10] = n “whete [.] denotes the integer patt of a real number”
se = ¢ (10) and [se / 10] = s
re=¢(10) and [re / 10] = r
mo = 0 (10) and [mo / 10] = m
on=n (10) and [on / 10] = 0
9=y (10)and [ey / 10] = ¢
Vatriables: send, more and oney whose domain is {0, ..., 9 999}
Constraints:  send = nd (100) and [send / 100] = se
more = re (100) and [more / 100] = m0
oney = ¢y (100) and [oney / 100] = no
Variable: money with domain {0,...,99 999}
Constraints:  money = oney (1,000) and [money / 1,000] =

Variable: sendmore 1 {(0,0),(0,1),...,(0,9999),(1,1),...,(1,9999),...,(9999,0),...,(9999,9999)}
Constraints:  sendmorel =send and sendmore2=more

Variable: sendplusmore whose domain is {0,...,19 998}
Constraint:  sendplusmore = (sendmorel + sendmore2)

This representation is very cumbersome: it requires 49 binary constraints, 20 variables and 100,000,000 domain
values. We will see in Section 2.2.3 a more compact representation using non-binary constraints.

1.3 Intension vs. Extension

A constraint can be seen as a Boolean relation holding between variables. In the case of finite-domain CSP, this
relation can be expressed either in exzension or in intension. Defining a constraint in extension consists in provid-
ing the set of consistent tuples of values (see example below). Defining a constraint in intension consists in
providing a formula of satisfaction.

For instance, the constraint C holding on two variables X and Y, which requires that the value of X should be
greater than the value of Y can be either defined, in intension, by the formula “X >Y”, or in extension by the
set: Ext(C)={ (x,y) UDom(X) XDom(Y) | C(x,y)=true}. For instance, assuming that X and Y have domain {1,
2, 3}, the extension of constraint “X >Y”is {(2, 1), (3, 1), (3, 2)}.

The extensional representation of constraints is motivated by the desire to interpret CSP in the context of set
theory. Indeed, it is relatively easy in an extensional context to describe algorithms, and to prove various prop-
erties. However, in practice, the extensional representation of constraints raises several issues:

1) It requires an important memory space, especially for non-binary constraints, because the size of the Car-
tesian product of the domains grows exponentially with the number of variables.

2) In many cases, constraints are more naturally expressed in intension than in extension. Additionally,
evaluating a formula is often more efficient than checking that a tuple belongs to a set.

3) Representing constraints in extension is well suited to brute combinatorial reasoning, but is not adapted
for higher-level reasoning, such as formal reasoning.

1.4 Arc Consistency vs. Constraint Filtering

As we saw 1n Section 1.1.2, arc consistency is used, during the resolution, to reduce the size of the domains after
each instantiation. Unfortunately, enforcing arc consistency for a constraint is expensive since it requires, to
compute the Cartesian product of the domains. To address this issue, arc consistency is, in practice, replaced by
a weaker concept: constraint filtering. Filtering a constraint consists in performing only domain reductions that are
reasonably computable.

Constraint filtering ranges within two extremes. On the one hand, the “upper limit” for constraint filtering con-
sists in enforcing strict arc consistency, because enforcing more than arc consistency leads to discarding solu-
tions. On the other hand, the “lower limit” for constraint filtering consists in checking satisfiability once all the
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variables are instantiated, with no domain reduction. Indeed, this is a limit because otherwise the solver would
provide solutions that do not satisfy every constraints.

‘ Just checking satisfiability < Constraint filtering < Arc consistency

The main idea behind filtering is that its depends on the constraint considered. For instance, for constraint
“X >Y”, arc consistency is enforced, because only lower and upper bounds have to be considered. The corre-
sponding implementation using the BACKTALK solver is given in Section 2.3.1.

Conversely, for constraint “X +Y = 0", enforcing arc consistency is be very expensive, since all possible values
for X and Y have to be considered. In this case, a good filtering method consists in considering only the
bounds of X and Y. This is a good filtering because 1) it realizes almost arc consistency and 2) it is efficient,

since only the bounds are considered, instead of the whole Cartesian product Doz (X) X Dom (Y).

Consequently, one of the most important issues of constraint solving is to define filtering methods that are effi-
cient and as close as possible to full arc consistency. Of course, these two properties are conflicting, so the real
issue is to find the right compromise.

1.5 Enumeration Algorithms

There is a profusion of solving algorithms [11, 25] and each of them is adapted to specific situations, and none
of them is always better than the others. For instance, full look-ahead is especially efficient when the filtering of
a constraint is cheap and when there are strong dependencies between variables. Forward checking is interesting
for “weakly constrained” problems, especially when constraint are hard to filter. Unfortunately, these criteria are
hard to specify formally, and thus to automate. In practice, what is needed is to adapt an existing algorithm to
specific problems.

Another problem with the profusion of published algorithms is that they are usually described in the scope of
binary CSP, and it is not easy to adapt them in our context. Trying to implement an exhaustive library of algo-
rithms is therefore unrealistic, because there are virtually as many algorithms as there are problems! This situa-
tion led us to design a single resolution mechanism (see Section 2.2.4), with support for implementing specific
resolution algorithms adapted to specific problems.

1.6 No Utilization of Knowledge on Variable Values

Several works explored the possibility of exploiting the properties of domains seen as specific types (e.g. order-
sorted domains [6]). However, resolution algorithms implicitly assume no particular properties on the domain
values. Values are considered as reducible to atomic entities.

Note that, since no hypothesis on the domains values are made, solving CSPs in which domains are collections
of arbitrary objects does not raise any technical issue, as far as a language with pointers is used. However, in our
case, we claim that the structure and properties of objects involved in real world problems can be exploited by
the resolution process to compute solutions faster and to state problems more easily.

For instance, CSP techniques have been used to produce musical harmonization automatically. Such applica-
tions developed so far do not take advantage of properties of the musical structures handled. More precisely,
complex musical structures, such as chords and melodies, are handled as mere collections of atomic values. We
have shown that such an approach leads to building inefficient and bloated applications. We claim that objects
can be used to represent the structures of the problem explicitly as values for the variables, and that doing so
allows to improve the efficiency as well as the design of the resulting application. This point constitutes the
main motivation in integrating objects with constraint satisfaction and it will be developed in Section 2, and an
illustration is presented in Section 3.3.

To summarize, we outlined five restrictions of the standard theoretical constraint satisfaction model, in the
context of practical, real world object-oriented problems, which ate:

1. Restriction to binary constraints

Constraints defined in extension

Complexity of arc consistency

Profusion of algorithms

No utilization of knowledge on variable values

LAl



These limitations motivated the design of the BACKTALK framework, which we will now describe. As outlined
in the introductory section, BACKTALK is considered according to two viewpoints: the technical aspects (points
1 to 4) are examined in Section 2. Point 5 is considered in Section 3, where we discuss the statement of prob-
lems involving objects.

2. BACKTALK: the Framework Approach for Implementing Constraints

BACKTALK [28] is a framework for constraint satisfaction: it consists of a library of classes representing the con-
cepts of variables, domains, constraints, problems and solving algorithms, linked together by a propagation
mechanism  The requirements expressed in the preceding section prevailed throughout the design of
BACKTALK, which provides predefined high-level non-binary constraints and implements sophisticated filtering
mechanism as well as a resolution algorithm adaptable to specific cases.

2.1 Integration of BACKTALK in the Host Language

BACKTALK was designed as a traditional Smalltalk framework, with no modifications of the virtual machine. In
other words, BACKTALK is implemented without kernel support, so that it can be run on any platform supported by
Smalltalk. Moreover, BACKTALK introduces no syntactic extension to Smalltalk: stating and solving problems is
done using standard mechanisms, class instantiation and message sending.

2.2 Overall Design

BACKTAIK is implemented as a library of related classes, which we can classify into three main clusters: 1) vari-
ables, 2) constraints and 4) solving algorithms.

Constraint hierarchy| Algorithms hierarchy

Template method + Strategy

!

| Constrained variables hierarchl/

|
%

—

Figure 4 The overall design of the BACKT ALK system. 'Three main hierarchies provide constrained variables, constraints and
algorithms. Constraints, algorithms and variables are linked together by demons that are used to implement propagation mecha-
nisms efficiently.

2.2.1 Constrained Variables

Constrained variables are the basic building blocks of the framework. They represent the notion of an unknown
value, to be computed by the solver. Practically, it is the responsibility of constrained variables to inform the
solver of domain modifications. A variable is defined by a domain, a value within the domain, and a /be/ for dis-

play purposes.

The behavior of constrained variables depends heavily on the nature of their domain, therefore we reified vari-
ables into classes, and organized them into the hierarchy:



BTVariable ("domain’ 'constraints’ 'valueDemons’ ...)
BTBooleanVariable ()
BTIntegerVariable (‘'min’ 'max’ 'minEvent’ ‘'minDemons’ ...)
BTRealVariable ('precision’)
BTObjectVariable ("domainDictionary’ 'actualDomain’ ...)
BTOrderedObjectVariable ('minEvent’ 'minDemons’ ...)

It is important to note that the user does not have to be aware of this class hierarchy: BACKTALK automatically
chooses the most adapted class to instantiate, depending on the domain provided. We give below examples of
BACKTALK expressions, with their evaluation (“V” is a shortcut for BT Variable ), illustrating the behavior
of constrained vairables

“Creation of an integer variable, from the bounds of an interval”
x :=V label: 'x’ from: 1 to: 10 => ["x int[1..10]]

“Modifying the bounds of the domain of an integer variable”
X min: 3; max: 4 => ["x int[3..4]]

“Creation an Integer Variable from a collection of integers”
V label: 'Var’ domain: #(1 6 7 8 9),#(2 318 0 -5) => ["Var’ int[-5 0..3 6..9 18]]

“Creation an Object Variable from the collection of all Points”
V label: ‘'obj’ domain: (Point allinstances) => ['obj’ (0@ 0@ 142@74 0@ etc...)]

Constrained variables are also responsible for a part of the resolution mechanism (the demon mechanism). This
aspect will be emphasized in Section 2.3.

2.2.2 Expressions and Constraints

In the intensional model of constraint, constraints may be seen as “links” between several variables (instead of
sets of consistent tuples). Moreover constraint filtering depends on the nature of the constraint considered,
which leads naturally to the idea of organizing constraints into a hierarchy of classes. The root of this hierarchy
is an abstract class, BTConstraint . This class implements a default filtering algotithm, which consists in en-
forcing arc consistency. This default filtering is redefined in subclasses to implement specific methods, achiev-
ing a better compromise between reduction and efficiency.

To define a new class of constraint in BACKTALK one needs to create a subclass of class BTConstraint or
of any of its subclasses. Because all constraints are defined in intension in BACKTALK the new class will rede-
fine the formula of satisfaction.

Of course, defining specific filtering methods is not necessary because of inheritance. Indeed, when the user de-
fines a new constraint class, it benefits automatically from the filtering method defined in its superclass. In the
less interesting cases, the default filtering mechanism will be used by the newly defined constraint class. Specific
filtering methods are only used to implement more efficient filtering mechanisms.

2.2.2.1 Hierarchy of Constraints

Predefined BACKTALK constraints include arithmetic constraints, cardinality, difference and logical constraints.
There are also particular predefined constraints, dedicated to using specific object-oriented mechanisms, that will
be presented in Section 3.2. One important aspect of organizing constraints in such a hierarchy is to provide the
user with many ready for use constraints. Moreover, the user does not have to know anything more than the
class of the constraint to instantiate, and the appropriate creation method.

For instance, the constraint “X # Y”” will be stated by the following class instantiation message, where X and Y
denote constrained variables:

[BTAIIDIffCt on: X and: Y |
Other constraints are created similarly, using, as far as possible, the same creation interface. For instance, the

constraint “X + 2.Y - 5.Z 2 (” will be stated by the following class instantiation message, where X, Y and Z de-
note constrained variables:

BTLinearGreaterOrEqualCt
on: (Array with: X with: Y with: Z)
coefficients: #(1 2 -5)
value: 0

Figure 5 shows an excerpt of the hierarchy of constraints in BACKTALK:
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BTConstraint (isPersistent’ 'isStatic’ 'owner’)
BTBinaryCt ('x"'y")

BTBinaryExtensionCt (‘relation’)

BTComparatorCt ()
BTGreaterOrEqualCt ()
BTGreaterThanCt ()

BTEqualCt ()

BTPerformCt ('expression’)

BTUnaryOperatorCt ()
BTAbsCt ()
BTOppositeCt ()
BTSquareCt ()

BTGeneralCt ('variables’ 'arity’)

BTAIIDIffCt ('remainingVars’)

BTBlockCt ('block’)

BTIfThenCt ('ifBlock’ 'thenBlock’)

BTLinearCt ('expression’ 'constant’ ...)
BTLinearEqualCt ('min’ ...)
BTLinearGreaterOrEqualCt ('max’ 'maxList’)

BTNaryLogicalCt ('expression’ 'leftVariablesNumber’)
BTANdCt (‘trueVariablesNumber’)
BTOrCt (‘falseVariablesNumber’)
BTXOrCt (‘falseVariablesNumber’)

Figure 5. Excerpts of the hierarchy of predefined constraint classes in BACKI ALK

2.2.2.2 Expressions

BACKTALK provides another means of stating constraints, which is, in some cases, even simpler to use than ex-
plicit instantiation messages. The idea is to let the user state constraints using the syntax of standard arithmetical
and logical expressions. BACKTALK transform these Smalltalk expressions into constraint creation messages
automatically.

This notion of expression is purely syntactical. The idea is only to spare the user the explicit creation of con-
straints. In practice, this is realized by introducing a language of expressions, which is implemented as messages
sent to constrained variables. For instance, messages making up arithmetic expressions (e.g. +, *) are imple-
mented in the class of constrained variables, and yield particular expression objects. These expressions in turn
understand these same messages to yield more complex expressions “on the fly”. Finally, these expressions in-
deed behave like variables in the sense that they can be “constrained” using usual arithmetic operators (e.g. =, <,
>). These operators in turn are implemented in the expression classes to generated corresponding BACKTALK
constraints.

Consider for instance constraint: X + 2.y - 5.z 2 0. Instead of using the following syntax:

BTLinearGreaterOrEqualCt
on: (Array with: x with: x with: z)
coefficients: #(1 2 -5)
value: 0

it can be stated using the following Smalltalk expression: X + (2*y) -(5*z) >= 0.

2.2.3 Example

Since problems are stated to be eventually solved, there is no point in differentiating problems and solvers.
Problems and solving algorithms are thetefore represented in BACKTALK by a single class BTSolver . A
problem basically consists of a collection of variables and a collection of constraints. The protocol for creating
problems is illustrated below on the cryptogram: “send + more = money”.

First, a problem is created by instantiating class BTSolver . Then variables and constraints ate stated. Finally,
the problem is initialized by sending message “pbm variablesTolnstantiate: letters ”, which
specifies that solving this problem amounts at instantiating all the eight letters. The print: messages sent to
the problem defines how solutions will be printed.



sendMoreMoney
| letters se nd m o ry send more money pbm |
"The problemis created by instantiating class BTSol ver"
pbm := BTSolver new: 'send + more = money’.
"Constrained vari ables creation. The domains of s and mare
restricted to 1..9 as required in problem statement”
(letters := OrderedCollection new: 8)
add: (s := V from: 1 to: 9); add: (e :=V from: 0 to: 9);
add: (n :=V from: 0 to: 9); add: (d := V from: O to: 9);
add: (m :=V from: 1 to: 9); add: (o := V from: 0 to: 9);
add: (r :=V from: 0 to: 9); add: (y := V from: 0 to: 9).
"Arithmetic expressions that are to be used to declare the
actual constraints”
send := (1000*s + (100*e) + (10*n) + d).
more := (1000*m + (100*0) + (10*r) + e).
money := (10000*m + (1000*0) + (100*n) + (10*e) +y).
"Constraints statenent"
(send + more - money) @= 0.
BTAIIDiffCt on: letters.
"Pattern used to display the eventual solution"
pbm print: s; print: e; print: n; print: d; print: '+’;
print: m; print: o; print: r; print: e; print: '=’;
print: m; print: o; print: n; print: e; print: y.
"The resulting probl ent
pbm variablesTolnstantiate: letters

Once created, such a problem can be sent solving messages (e.g. printFirstSolution
printAllSolutions , printNextSolution , allSolutionsDo: aBlock ) as follows:

>

pbm printFirstSolution
(send + more = money) 0.002sec ; 1 bt ; 2 choices
9567+1085=10652

pbm printAllSolutions
SOL 1: (send + more = money) 0.002sec ; 1 bt ; 2 choices
9567+1085=10652

No more solutions.
(send + more = money) 0.004sec ; 4 bt ; 3 choices

Message printFirstSolution (tesp. printAllSolutions ) triggets the computation of the first so-
lution (resp. of all solutions). For each solution, information related to the resolution is printed, as well as the
solution itself. Information printed includes the name, the resolution time, the number of backtracking (bt )
and the number of branches developed (choices ).

2.2.4 Solving Algorithm

As we wrote, a wealth of algorithms has been developed for solving constraint satisfaction problems. Their re-
spective efficiency is highly dependent of the nature of the problem to solve, so none of them can be considered
better than the other ones. More generally, as claimed in [6], “wo constraints solver to ounr knowledge holds all the tech-
nigues that we have found necessary to solve [particular problems]”. This speaks for the design of a general and extensible
solving algorithm, which can be augmented, if necessary, with specific mechanisms.

A second remark is that enumeration algorithms are based on the same basic idea: combining a propagation
mechanism with a more or less sophisticated backtracking strategy. As argued in Section 1.5, we propose to
unify all these algorithms into a single control loop, and use inheritance to adapt the control loop to specific
cases, using the “Strategy” [14]. This control loop implements the following general scheme:

General Solving Algorithm (GSA)
1) Choose a non-instantiated variable V and a value x of Dom(V).
Instantiate V with x, and save the current state of the problem.
Filter constraints to reduce the domains of the remaining problem variables.
If there is an empty domain then backtrack to a previous state.
) If instantiation is complete then
If a solution 1s found then stop;
Else backtrack to a previous state.
6) Goto 1).
In this algorithm, Point 1) is generally undertaken by heuristics. Point 3) is the core of the algorithm. Depend-
ing on the actual algorithm considered, Point 3) ranges from “doing nothing” (algorithm BEA described in Sec-
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tion 1.5) to “enforce arc consistency on all constraints”. Point 4) triggers a backtracking to a previous state of
the problem. The strategy used for choosing this “previous state” is an important characteristic of the algo-
rithm.

This general algorithm is implemented in class BTSolver | and represents the default solving procedure. The
main job of this default control loop is to implement an efficient and robust save/trestore mechanism, which
takes into account the modifications of domains performed by filtering methods. It also handles arbitrary modi-
fications of the problem during the resolution, such as dynamic constraint creation or suppression.

The algorithm is described in Figure 6. We use here the “Template Method” pattern [14]: the algorithm is de-
composed into several methods, each of them representing a part of the algorithm. It uses methods forward
and backward | which are redefined in subclasses.

firstSolution

“goes forward until a solution is found”

[self solutionFound] whileFalse: [self moveForward].
~self solution

moveForward

“goes forward until a failure occurs, which triggers a backtracking”
[self domainWipedOut] whileFalse: [self forward].

self backward

forward

“saves the state of the problem and chooses an instantiation to enforce”
self saveContext.

self makeAChoice

backward

“chooses a previously saved state of the problem and restores it
| context |

context := self choosePreviousAContext.

self restoreContext: context

makeAChoice

“chooses a variable to instantiate and a value for this variable. Then
performs the instantiation and triggers constraint propagation”
currentVar := self chooseAVar.

currentVal := currentVar nextValue.

self propagatelnstantiationOf: currentVar

Figure 6. The basic control loop for enumeration algorithms. Parts of this control loop are redefined in concrete subclasses, following
the “Template Method” pattern

This solving mechanism, which is close to real full lookahead method, is implemented in class BTSolver
Using the “Template Method” and “Strategy” design patterns, one can subclass BTSolver  to implement other
algorithms by redefining some of the five methods above.

Default Algorithm

‘ forward ‘ ‘ backward ‘ ‘ propagate‘

A
Forward checking

Backjumping

‘ backward ‘ ‘ propagate‘

Figure 7 A graphical representation of the library of algorithms, which are represented as classes, following the Strategy pattern.
Three classes are represented here: forward checking and backjumping are subclasses of the defanlt algorithm class that implements
three key methods, following the Template Method pattern. Subclasses redefine some of these methods, and inberits the others.
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2.3 Constraint Propagation

This section aims at presenting the mechanism implemented for constraint filtering in BACKTALK, as defined in
Section 1.4. We examine here how we implement constraint filtering in the BACKTALK framework. The main
idea is to implement filtering as a set of special methods, called demons, that will be triggered automatically by
the solving algorithms, at the right time. This demon mechanism allows to specify filtering methods in a modu-
lar and efficient way. We show in the next section that this mechanism can also support the definition of
higher-level global constraints.

2.3.1 The Demon Mechanism: Filtering According to Events

The main idea is to decompose the filtering procedure for a given constraint into a set of independent methods
that take in charge only a part of the filtering procedure. This allows to define a more efficient propagation
mechanism and to define the filtering methods more easily by decomposing it into several elementary methods.
The key idea 1s that the domain of a variable can undergo 1) the suppression of one of its elements, 2) the sup-
pression of several eOlements, 3) and 4) the modification of its lower or upper bound and 5) its reduction to a
singleton (L.e. instantiation). We propose to implement the filtering procedure of a constraint with at most five
methods, one for each event. Note that a constraint does necessarily respond to all the five events.

Technically, when a constraint C is created, the solver declares a set of demons associated to each variable in-
volved in C. Each demon cortesponds to a specific domain reduction event (value, min, max, remove ot do-
main changes). When a variable undergoes a dmoain reduction, the corresponding demon will trigger the exe-
cution of the corresponding filtering method implemented in the class of C.

For instance, constraint “X >Y” has to be filtered when the upper (resp. lower) bound of X (resp. Y) is de-
creased (resp. increased). Therefore, when such a constraint is created, the following methods declares the two
corresponding demons:
postDemons
“Defines the demons constraint ‘self’ has to respond to. In this case,

self is filtered when the maximum bound of x is changes (i.e. decreased)
and when the minimum bound of y increases”

x addMaxDemonOn: self.
y addMinDemonOn: self

the corresponding filtering methods follow:

max: v
"Here v is necessarily x since no maxDemon is defined for y."
y max: v max; remove: v max

min: v
"Here v is necessarily y because no minDemon is defined for x"
X min: v min; remove: v min

As said in Section 1.4, to ensure the correctness of the solver, constraint filtering has at least to test that a con-
straint is satisfied once all its variables are instantiated. This is done in BACKTALK by a method called
minimalFiltering , which is automatically executed when a variable is instantiated to check that no con-
straint is violated, otherwise, a failure is raised that provokes a backtracking.

2.3.2 High-Level Constraint Definition

The demon mechanism described above can support the definition of high-level constraints. This is a typical
use of BACKTALK as a black-box framework, following the terminology of [18], that is by composition of exist-
ing components, instead of inheritance.
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Figure 8 A diagram of the demon mechanism. The algorithm performs reduction messages to ils variables. The variables propa-
gate these reductions as events 1o its demons (a variables can have between 1 and 5 demons, corvesponding to its instantiation, the
modification of its bounds, the suppression of a value and an arbitrary modification of its domain). Then, the demons forward the
events to constraint associated with it. Depending on the event it receives, the constraint will trigger the execution of one of its fil-
tering methods, which causes new modjfications to the domains of its variables.

2.3.2.1 Using Dynamic Constraint Management to Control the Resolution

BACKTALK was designed in such a way that constraints can be dynamically created or removed during the reso-
lution of a problem. When a constraint is removed during the resolution, it is restored when the system back-
tracks. Thanks to this save/trestore mechanism, dynamically created constraints can be used to define high-level
constraints without implementing new classes.

Consider a constraint expressing that depending on some condition, a constraint has to be satisfied. For in-
stance, if variable X=1 then vatiables Y and Z should be equals, otherwise they should be different. To imple-
ment such a constraint class one need to write filtering methods as shown in the previous section, which can be
discouraging. Instead, BACKTALK allows to “compose” the existing filtering methods for each of the con-
straints appearing in the conditional statement automatically.

Conditional constraints atre instances of class BTIfThenElseCt | which composes existing constraints. An
instance of BTIfThenElseCt  holds three blocks representing the components of a conditional statement:
ifBlock ,thenBlock andelseBlock . For example:

x:=Vfrom:1to: 2. y:=Vfrom: 1to: 2. z:=V from: 1 to: 2.
BTIfThenElseCt on: x
if: [x value = 1]

then: [y @= z] else: [BTAIIDIffCt on: y and: z].
SOL1L:x=1;y=1;z=1
SOL2:x=1;y=2;2=2
SOL3:x=2;y=1;2=2
SOL4:x=2;y=2;z2=1

We give below the filtering method value : for conditional constraint. The evaluation of the ifBlock s yields
either true, false or nil, and triggers the evaluation of thenBlock , the elseBlock ot nothing.

value: aVar
ifBlock value == nil ifTrue: [*self].“nothing to do”
self remove. “restored after backtrackings”

Condition  ifTrue: [thenBlock value]
ifFalse: [elseBlock value]

2.3.2.2 Disjunctive Constraints

A similar example of using BACKTALK as a black-box framework is given by the definition of disjunctive con-
straints. Disjunctive constraints are often needed, for instance in scheduling problems, to specify that a resource
must be used by at most one process at a time. BACKTALK provides a general mechanism for creating disjunc-
tive constraints from existing ones, which uses a class called BTDisjunctiveCt

“The constraint states that tasks t1 and t2 are not simultaneous”
BTDisjunctiveCt either: [t1 precedes: t2] or: [t2 precedes t1]

2.4 The Resulting Framework

To summarize, the BACKTALK framework is essentially made up of four distinct class hierarchies, which entet-
tain complex relationships. As far as the user is concerned, defining a constraint problem amounts to the defi-
nition of a small number of subclasses, and, for each of them, a limited number of methods. The difficult patts
of constraint satisfaction processes are reused, mainly by inheritance. In this respect, BACKTALK is a white-box
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framework [18]. The only composition mechanism offered by BACKTALK is the ability of defining higher-level
constraints by composition, as seen in the previous section.

Efficiency is an important issue, and the design of BACKTALK was strongly influenced by efficiency objectives.
Figure 9 shows the performance of BACKTALK on several well-known combinatorial problems, and compares it
with the ILOGSOLVER system.

The difference between the performance of BACKTALK and ILOGSOLVER, renowned for its efficiency, is con-
stant (BACKTALK is 15 times slowet). This means that the complexities of are the same. This difference of effi-
ciency is due to the host language, Smalltalk, which is known to be slower than C++. On problems involving
objects (the 3 last lines of the table), BACKTALK is mote efficient. This is due the way is can be used to state
and solve such problems [24].

Problem Instance BACKTALK ILOGSOLVER
send + more = money 0.016 0.01
donald + gerald = robert 0.252 0.4
8 queens 0.021 0.01
40 queens 0.181 0.1
100 queens 1.813 0.5
magic square 4x4 0.129 0.01
magic square 5x5 7.490 0.5
magic square 6x0 821.045 50.0
Automatic Harmonization™ BACKTALK ILOGSOLVER
harmony: 12-note melody 1 sec. 180 sec.
Harmony: 16-note melody 1.5 sec. 240 sec.

Figure 9. Resolution times of BACKTALK on well-known numeric problems, compared to ILOGSOLVER, one of the most effi-
cient commercial solvers, written in C+~+. * The automatic harmoniation problem is described and the resulls presented here are
explained in Section 3.3.

We will now examine the other side of BACKTALK: what are the benefits gained by combining objects and con-
straints for defining and solving constraint satisfaction problems?

3. BACKTALK: Objects for Stating Constraint Problems

In the previous section, we considered object-orientation as a means of designing and implementing a constraint
satisfaction solver. In this section, we address the opposite issue, that is: how can our framework be used for
stating and solving object-oriented constraint satisfaction problems? We show that there are two radically dif-
ferent ways to constrain objects. We also examine how to mix, as much as possible, the natural mechanisms of
object-oriented programming with constraints.

3.1 Constraining Objects: Two Approaches

As already written, constraint satisfaction is based on the notion of constrained variable, which represents un-
known values to be computed by the solver. In the previous sections, these values were implicitly considered as
atomic (i.e. numerical) values. When solving problems, whose unknown values are complex structures, it be-
comes necessary to represent the concept of unknown objects. The purpose of this section is therefore to answer
the following question: “What happens when unknown values become objects?”’

Two different approaches can be used to address this issue: whether constraints are put /nside objects or outside
objects. The choice of one of these approaches is of utmost importance as for reusability, easiness and effi-
ciency as well. The following sections introduce these two approaches.

3.1.1 Constraints within Objects: Constraining Partially Instantiated Objects

A natural way to constrain objects is to consider attributes as constrained variables, thus leading to the notion of
partially instantiated objects. A partially instantiated object is an object whose attributes are constrained variables in-
stead of being fully-fledged objects. This approach, called attribute-based, corresponds to the following idea: constrain-
ing an object amounts at expressing a property holding on its attributes.

Figure 10 illustrates the attribute-based approach. Circled question marks represent constrained variables, which
are indeed the instance variables of the objects, and square boxes represent partially instantiated objects. Simple
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arrows are internal constraints, also called structural constraints, which express properties of the objects. The
double arrow represents an external constraint:

Object 1 Object 2

D>y D<)
osd >

—— Intra-object constraint

=——— Inter-object constraint

Figure 10. Graphical illustration of the attribute-based approach for constraining objects. Instance variables are considered as con-
strained variables. Constraints are therefore “Inside” objects.

3.1.2 Constraints outside Objects: Constraining Fully-Fledged Objects

The orthogonal approach consists in putting the constraints outside objects that need to be constrained. This
approach, henceforward called c/ass-based, aims at handling fully-fledged instead of partially instantiated objects. The
idea is to use classes as natural domains for constrained variables by putting objects in the domains. Figure 11 il-
lustrates the class-based approach. Question marks represent the variables, and boxes represent fully-fledged
objects. In this case, objects ate in the domains of the constrained variables.

object 15

object 10

Figure 11. Graphical illustration of the class-based approach for constraining objects. Objects are in the domains of constrained vari-
ables. Constraints are therefore “outside” objects.

3.1.3 Illustrating the Two Approaches

Given a set of rectangles with their sides parallel to the axis, consider the problem of finding two squares that do
not overlap each other. We assume that a rectangle is determined by the coordinates of its upper-left and lower-

right vertices (i.e. left | right |, top and bottom ). Let us express this problem using both attribute-based
and class-based approaches.

Using attribute-based approach, one would define partially instantiated rectangles, say R1 and R2, whose attrib-
utes ate the constrained variables of the problem. In this case, the constraint “being square” and the non-
overlapping constraint would be defined as arithmetical relations between these constrained attributes. The
problem statement would look as follows:
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“Rl is a square”
(R1 top) - (R1 bottom) = (R1 right) - (R1 left)

“R2 is a square”
(R2 top) - (R2 bottom) = (R2 right) - (R2 left)

“Rl and R2 do not overl ap”
(R1 right < R2 left)

OR (R1 top > R2 bottom)

OR (R1 left > R2 right)

OR (R1 top < R2 bottom)

Defining this problem following the class-based approach would lead to state vatiables R1 and R2, whose do-
mains contain fully-fledged rectangles, and to define constraints directly between these variables. The following
problem statement illustrates this point:

“Rl is a square”
R1 isASquare

“R2 is a square”
R2 isASquare

“Rl and R2 do not overl ap”
R1 doNotOverlap: R2

Whete it is to be understood that iISASquare  (resp. doONotOverlap: ) messages state constraints holding
on the R1 (resp. R1 and R2) constrained variable(s).

3.1.4 Comparison of the Two Approaches

Intuitively, the attribute-based approach answers the question: “What happens when unknown values become
partially instantiated objects?” while the class-based approach answers the question: “What happens when un-
known values become fully-fledged objects?”. The two problem statements above illustrate the fundamental dif-
ferences between them, which are concerned with predefined class reuse, constraint definition, problem struc-
ture and efficiency as well.

As for class reuse, when using the attribute-based definition, one has to deal with partially instantiated rectangles
that cannot be instances of predefined Smalltalk classes. In other words, the attribute-based forces to define ad
hoc classes. Conversely, the class-based approach allows predefined classes to be reused as is. The idea is that
the class-based approach does not depend on class implementation (encapsulation is not jeopardized by class-
based statements while it is by attribute-based).

As for constraint definition, in the attribute-based case, atithmetical constraints are used to state the problem.
Conversely, the class-based definition uses constraints directly holding on the rectangle constrained variables.
The question that arises here is how to define these “class-based” constraints? We will address this issue in Sec-
tion 3.2.

The structutes of the two problems are radically different both in terms of variables and constraints. The atttib-
ute-based problem is a numerical CSP, whose objects are mere collections of variables while fully-fledged object
structures ate used in the class-based problem as values for variables. This leads to dramatic efficiency differ-
ences (see Section 3.3 and [28]).

3.2 Defining Class-Based Constraints

Recall that the central question here is “What happens when unknown values become fully-fledged objects?” In the previ-
ous section we wrote that using the class-based approach for stating problems involving objects leads to the

statement of constraints holding directly on object variables (i.e. constrained variables whose domain contains
fully-fledged objects).

Numerical problems involve constraints that ate generally combinations of basic operators (e.g. +, -, *, /, =, #,

> < S, 2, XY). Of course, other constraints have to be considered for specific problems, such as graph theory
constraints (e.g. cycle constraint in CHIP) or set theory constraints (e.g. cardinality and distribution constraints
[27]). However, these constraints have generally a well-known semantics and are in limited number.
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On the contrary, when stating problems involving objects using the class-based approach, as illustrated in the
previous section, we need to define constraints expressing arbitrary properties of objects. The general idea is
that any Boolean expression involving objects is likely to be used as a constraint. For instance, in Section 3.1.3,
one can assume that class Rectangle implements a method, say ISAsquare , testing if a rectangle is a square.
In this case, our purpose is to use this method in order to create a constraint. BACKTALK provides two differ-
ent means of stating such constraints.

3.2.1 A General Mechanism: Block Constraints

The simpler, and the most general way to use directly methods to state constraints is to use block constraints,
which allow to define constraints by way of any Smalltalk BlockClosure = whose evaluation yields a Boolean.

For instance, consider two constrained variables, R1 and R2, whose domain contains instances of class

Rectangle . A constraint requiring the two rectangles do not overlap can be defined as follows, as far as
method doNotOverlap:  is defined in class Rectangle
BTBIlockCt
on: R1 and: R2

block: [:a :b | a doNotOverlap: b]

The block has one argument for each variable involved in the constraint. These arguments are not the con-
strained variables, but rather possible values for these variables. Indeed, during the resolution of the problem,
these arguments will be assigned values of the domain of the corresponding variable. In other words, the block
can use the language of the values in the domains (i.e. the methods defined in their class). For instance, in the
block constraint defined above, argument a (tesp. b) is assigned a value picked up in the domain of R1 (resp.
R2) when the block is evaluated.

To give another example, consider two vatiables, C1 and C2, whose domain contains Smalltalk classes. The
following block constraint forces the value of variable C2 to be a subclass of the value of C1:
BTBlockCt

on: C1 and: C2
block: [:a :b | b inheritsFrom: a]

Howevet, block constraints are useful for many problems because they allow complex relations to be stated as
constraints. For instance, we used such constraints to implement a simple application that finds design patterns
in a standard Smalltalk image, which is not reported here for space limitations.

Block constraints are a general means of defining arbitrary constraints on arbitrary objects. Of course, because
of this generality, the filtering method of implemented in class BTBIOCKCt is not efficient; it consists in en-
forcing arc consistency by computing, in the worst case, the Cartesian product of the domains of the variable,
according to the definition of given in [20].

Block constraints are particularly well adapted to prototyping applications rapidly, although they are often re-
placed by user-defined constraints in the final application for efficiency reasons.

3.2.2 An Efficient Mechanism: Perform Constraints

Block constraints, introduced above, are the most general type of “class-based” constraints provided in
BACKTALK. These constraints cannot be efficiently implemented in their full generality, because nothing is
known about the semantics of the corresponding block. However, there exist families of “class-based” con-
straints for which an efficient filtering method can be provided. One of them is the family of constraints de-
fined by a single Smalltalk message. This is the purpose of perform constraints.

Perform constraints are used to specify that there is between two variable X and Y a relation defined by a
method selector 7, 1.e. the value Y'is the image of the value X by the method named 7. Notice that a perform
constraint C holding on variables X and Y and whose message is 7z can be stated as the following block con-
straint:

BTBlockCt on: X and: Y block: [:a :b | (a perform: m) = b]
A perform constraint is made up with two constrained variables, say X and Y, and an arbitrary Smalltalk selector
(possibly with arguments), and it means that variable Y is deduced from variable X by applying it the associated
selector. Consider for instance a variable X whose domain contains Smalltalk rectangles and a variable Y whose
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domain contains integer numbers. Stating a perform constraints between X and Y associated to selector area
will ensure that the value of Y (a number) is the area of the value of X (a rectangle).

The following BACKTALK session illustrates the creation of perform constraints, and how consistency is main-
tained between vatiables linked by a perform constraint. When variable Y is assigned value false , the petform
constraint is used right-away to remove every vowel from the domain of X. Conversely, removing all the vowels
of the domain of variable ¥ would have caused variable X to be assigned value false.

x :=V label: ‘x’ domain: #(ab c d e f). = ["X (#a #b #c #d #e #f)]
y := (x btPerform: #first) btPerform: #isVowel. => ["X first isVowel’' (t f)]
y value: false. =>["X first isVowel’' (f)]

X =>["'X (#b #c #d #f)]

3.2.3 Using Methods for Constraints: Choosing the Right Approach

Block and perform constraints are implemented using second-order abilities of Smalltalk. Their purpose is to
put the language of objects at uset's disposal. This is a sine gua non to allow the statement of constraint satisfac-
tion problems involving fully-fledged objects. Moreover, these particular constraints favor the reusability of
predefined class, since their methods can be used straightforwardly to define constraints.

An important thing to remark is that stating constraint problems involving complex objects using the class-
based approach, complex constraints can be defined, by way of perform of block constraints, from methods im-
plemented in the corresponding classes. On the contrary, when using the attribute-based approach, constraints
expressing relations between complex objects have to be stated in terms of rock-bottom objects (i.e. attributes
of complex objects). This implies an overhead in problem's statement, and is very often less efficient, as argued
in Section 3.3.

3.3 Stating Problems Involving Objects: A Case Study in Automatic Harmonization

This section reports the design of a system that solves harmony exercises. It illustrates the points discussed in
the previous sections because harmony exercises, hereafter referred to as AHP (Awutomatic Harmonigation Prob-
lems), are particulatly representative of “object + constraint” problems. Solving a harmony exercise consists in
finding harmonization of a melody, e.g. the melody shown by Figure 12, or, more generally, any incomplete musi-
cal material, which satisfies the rules of harmony. The standard exercise is to harmonize four voices (see Figure
13 for a solution of the melody below).
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Figure 12. An initial melody to harmonize (the beginning of the French national anthem, 18 notes).

The constraints needed to solve the AHP can be found in any decent treatise on harmony [29]. The problem is
an interesting benchmark because it involves many complex objects (e.g. chords). Moreover, there are various
types of constraints which interact intimately: 1) horizontal constraints on successive nofes (e.g. “two successive
notes should make a consonant interval”), 2) vertical constraints on the nozes making up a chord (e.g. “no interval
of augmented fourth, except on the 5" degree” or “voices never cross”) and 3) constraints on sequences of chords
(e.g. “two successive chords have different degrees”).

3.3.1 Previous Attempts at Solving Harmony Exercises with Constraints

Harmonization of a given melody naturally involves the use of constraints, because of the way the rules are
stated in the textbooks. Indeed, several systems proposed various approaches to solve the AHP using con-
straints. The pioneer was Ebcioglu [12], who designed a constraint logic programming language (BSL) to solve
this problem. His system not only harmonizes melodies (in the style of J.-S. Bach), but is also able to generate
chorales from scratch. Although interesting, the architecture is difficult to transpose in our context because
constraints ate used passively, to reject solutions produced by production rules.
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Figure 13. A solution proposed by BACKT ALK from the initial melody of Figure 12.

More recently, [30] proposed to solve the AHP using CLP, a constraint extension to Prolog [16]. Their results
are poor: more than 1 min. and 70 Mb of memory to harmonize an 11-note melody (see Figure 15). Ovans [22]
was the first to introduce the idea of using arc consistency techniques to solve the AHP, but his system is pootly
structured and imposes an unnatural bias on the representation of musical entities. The system proposed by
Ballesta [2] is much more promising. Ballesta uses IlogSolver to solve the AHP, and uses both objects and con-
straints.

All these systems are based on a representation of musical structures as atomic vatiables and structural con-
straints. In other words, and using our terminology, they follow the attribute-based approach. For instance, in
Ballesta's system, 12 attributes are defined to reptresent one intetval. Nine constraints are then introduced to
state the relations that hold between the various attributes.

As a result, constraints have to be defined using a low-level language, thus requiring a translation of harmonic
and melodic properties, given in harmony treatises, in terms of numbers. The constraint representing the rule
expressing that relations of parallel fifth are forbidden between two successive chords is given below as it is ex-
pressed in Ovan's system.

parallel-fifth(c i,M;i,C i+1 ,Miy ) @-perfect(c 11 ,Mirr ) (€ -C 41 ).(M {-Mjyy ) <O

where

perfect(c ;,m;) ©|c ;-m;| [{7,19}

Figure 14. The constraint corresponding to the parallel fifth rule, expressed in Ovan's system, based on CI.P.

Moreover, the attribute-based approach leads to stating a huge amount of constraints and variables. For in-
stance, in Ballesta's system, to state the AHP on a N-note melody, 726 XIN - 28 variables are defined.

3.3.2 Our Approach for Solving Harmony Exercises

The poor performance of existing systems, see Figure 15, led us to experiment a radically different approach.
The drawbacks of these systems can be summed up as follows: first, there are too many constraints. The ap-
proaches proposed so far do not structure the representation of the domain objects (e.g. intervals, and chords).
When such a structure is proposed, as in Ballesta's system, objects are treated as passive clusters of variables.
Second, the constraints are treated uniformly, at the same level. This does not reflects the reality: a musician rea-
sons at various levels of abstraction, working first at the note level, and then on the chords. The most important
harmonic decisions ate actually made at the chord level. This separation could be taken into account to reduce
the complexity.

These remarks led us to reconsider the AHP in the light of the class-based approach for object + constraint
problems, that is, with a reverse viewpoint from our predecessors. Rather than “starting from the constraints”,
and devising object structures that fit well with the constraints, we “start from the objects”, and fit the con-
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straints to them. Indeed, a lot of properties of the domain objects may be more naturally described as methods
instead of constraints.

To do so, we reuse an object-oriented library, the MusES system [23], which contains a set of around 90 classes
that represents the basic elements of harmony, e.g. notes, intervals, scales and chords. In our application, the
domains contain musical objects provided by MusES. The constraints hold directly on these high-level objects,
using the methods defined in the corresponding classes. These constraints are instances of block and perform
constraints, introduced in Section 3.2.

The main idea here, is to consider high-level objects of the problem, namely chords, as possible values for con-
strained variables. In other words, domains contain fully-fledged chords, which are instances of MusES class
Chord . As a consequence of reifying chords as values for variables, the resulting system is very much under-
standable, because constraints can be stated using directly the language of chords. For instance, the rule forbid-
ding parallel fifth is simply defined by the following BACKTALK expression:

BTConstraint
on: chord and: nextChord
block: [:c1 :c2 | c1 (hasParallelFifthWith: c2) not ]

Moreovet, the problem to solve is much smaller, since for a N-note melody, only 5XN constrained variables are
created (to be compared to the 726 XN - 28 variables in Ballesta's system). This results in improving efficiency in
a dramatic way, as shown in Figure 15, which gives the performance of our application compared with the sys-
tems of Ballesta and Tsang. Ovan's work is not reported here since it addresses a simpler problem, namely two-
voice harmony exercises instead of four voice.

11 notes 12 notes 16 notes
Tsang (CLP) 60 sec. ? ?
Ballesta ILOGSOLVER) ? 180 sec. 240 sec.
BACKTALK + MusES 1 sec. 1 sec. 1.5 sec.

Figure 15. Comparing the performance of our solution with previous approaches using CSP to solve the AFIP.

4. A Complete Application: Crossword Puzzle Generation

As shown in crossword puzzle generation is a highly combinatorial problem that can be solved by procedural
approaches [15, 17, 21]. Addressing this problem with a declarative approach leads generally to inefficient sys-
tems [4, 31]. The reason is that a standard puzzle contains about 30 words slots, leading to a huge search space
of about 10'™ combinations if the dictionaty contains approximately 150,000 wozrds.

The problem consists in finding a crossword, given an initial empty puzzle with open and closed cells and a list
of words. Standard CSP techniques are not able to cope with this problem. Here, we show how domain-
specific knowledge can be expressed using the full range of features of BACKTALK to solve this problem. This
knowledge is three-fold: topologic knowledge, lexical knowledge, and knowledge on letter distribution.

4.1 Choosing the Right Algorithm

The crossword problem is a typical example of a “weakly constrained” problem. Intuitively, the idea is that in-
stantiating a variable with a given word will have a limited impact on the variables not directly crossing it. This is
explained by the fact that the distribution of letters in words is quite uniform, except for special letters (such as
“q”, see 4.3). Therefore we chose the forward-checking algorithm. Exceptional cases due to non-uniform dis-
tribution of letters are examined in Section 4.3.

4.2 A Filtering Method for Intersection Constraints

The crossword problem, in its basic form, contains only intersection constraints. Knowledge on intersection
can be used to devise an efficient filtering method for these constraints. The method follows:

19



filter intersection between X and Y:

e (i, ]) := intersection of X and Y.

« Compute possi bl eLetters (X,i) =the set of possible letters at position i for X.

* Remove from domain(Y) words that don’t contain one of possi bl eLett ers (X,i) atj.
e Compute possi bl eLetters (Y,j) =the set of possible letters at position j for Y.

e« If possiblelLetters(Y,) O possi bl eLett ers (X,i) then remove from domain(X) words that
don’t contain one of possi bl eLett ers (Y,j) at position i.

It is easy to show that this procedure achieves full arc consistency for the intersection constraint. The complex-
ity is linear, to be compared to the quadratic complexity of the default filtering method!

4.3 Exploiting Knowledge on Letter Distribution
A particular knowledge is that all letters are not distributed uniformly in words. A typical example is that letter

“q” 1s almost always followed by letter “u” (at least, in English and French). There are numerous examples of
this kind of rule, such as: “no word starts by the same consonant twice” or “j is never repeated twice”, “letters
are rarely repeated three times”, and so forth. These regularities are not always true, but only give strong indica-

tions on letters not yet found.

It is possible to express this piece of knowledge in terms of constraints and variables, by considering a virtual con-
straint between two patallel words V and V', only when certain conditions are satisfied (here, letter “q” appeats).
Of course, it would be awkward to actually add dynamically this virtual constraint to the problem, because this
vittual constraint is already represented by constraint U between V' and W,

Figure 16. The letter “q” implicitly creates a relation between N andNI" | which corresponds to the intersection between N’ and W.

A way to implement this “virtual constraint” is to define a conditional constraint, called

LetterDependencyCt . The statement of this constraint consists in 1) a condition on values of vatiables,
and 2) a set of intersection constraints to filter when the condition is satisfied:
BTIfThenCt

on: wordVariableList

if: [there exists a variable v, whose value contains a “q"]

then: [filter intersection between v ', parallel to v, and w (perpendicular to v at
position of letter “q")]

4.4 Results

We conducted a series of experiments on crosswords, with and without these three kinds of knowledge. Figure
17 1llustrates the effect of exploiting knowledge on letter distribution.

—_
[ K]
=
[an]

[+ ]

a
5
h g e
. o
blifglof{t]r]y
A. Word ‘antigue’ is fixed before the | B. Without rule g’ — ‘u’, word ‘rome’ C. With rule 'q> — ', the variable

resolution. is tried, which leads to the development | parallel to ‘antique’ is only instantiated
of a useless search tree. with words having a ‘n’ in 2" position.

Figure 17. The resolution of a crossword.

These experiments show cleatly that our approach allows to reduce the domains of word variables, thereby re-
ducing the number of backtracks. The following table gives execution times and number of failures when com-
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bining the various knowledge representations described in this section. Expectedly, the best strategy is achieved
when combining all three types of knowledge with forward checking.

Specialized filtering First fail heuristic Knowing ‘q’ 2> ‘v’ CPU (in sec) fails
NO NO NO > 3,600 > 5,000
YES NO NO 545 10,546
YES NO YES 166 3,396
YES YES NO 23 268
YES YES YES 6 36

5. Summary

The framework paradigm offers a smooth and efficient integration of CSP with objects. One way to assess the
relevance of this approach, as opposed to the language-based approach, is to compare it with two extreme cases:
CHIP and CLAIRE. The main difference with CHIP is that since BACKTALK provides the relevant concepts of
CSP as classes, it allows to redefine them by inheritance, thus gaining flexibility. The difference with CLAIRE is
that BACKTALK imposes the main control-loop, whereas CLAIRE leaves it to the responsibility of the user: since
CLAIRE has all the abilities of a complete hybrid language, it is suitable for highly specific applications. Table 1
illustrates the position of the framework approach.

Approach Main characteristics Examples

Library Parameterized high-level constraints CHrp

Framework Control-loop, simple constraints BACKTALK, ILOGSOLVER
Language Low-level language constructs CLAIRE

Table 1 The three approaches in proposing CSP mechanisms to a user

The framework approach is claimed more comfortable for standard applications because it provides relevant
predefined abstractions. By hiding from the user the difficult mechanisms of CSP techniques, while allowing
him to redefine parts of it, BACKTALK achieves a desirable feature of frameworks, that is a good compromise
between efficiency and complexity. This echoes Steve Jobs” opinion concerning interface builder frameworks:
“Simple things should be simple, complex things should be possible.”
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