
AliceTalks : an object-oriented Alice

AliceTalks!, an object-oriented reengineering of Alice

LAFORIA, Institut Blaise Pascal, Université Pierre et Marie curie

4 place Jussieu 75252 cedex 05

Abstract

This work related an experiment in combinatorial problems formulation and resolution using
the CSP model. We argue that the object-oriented programming provides a suitable technology
for this task and the use of objects allows to extend the power of problems formulation.

Constraint satisfaction programming (CSP) is a powerful paradigm for solving combinatorial
problems. It provides a general and rigorous formalism which allows to state and solve a great
deal of problems. This idea is exploited in the Alice system which proposes an original manner
for solving CSP from a mathematical statement. The reconstruction of Alice using the object-
oriented technology contributes to the system AliceTalks, which solves CSP and provides an
interface that allows the user to understand the solution.

1 Introduction

Constraint satisfaction programming is a powerful paradigm for solving complex
combinatorial problems, which has gained attention recently. Typical constraint satisfaction
problems include : allocation problems (e.g. human resource management) , scheduling problems
(e.g. scheduling vehicles on an a assembly line, scheduling trains, boats or planes), planning (e.g.
human resources), etc. The notion of constraint was initially seen as an algorithmic problem, e.g.
by [Mackworth 77] and [Laurire 78] who see constraint graphs as networks of relations for finite
domains. Complex combinatorial problems have been studied extensively in operation research,
graph theory and artificial intelligence for over two decades, leading to the elaboration of a rich
theoretical framework. The main notion that came up from these works is arc-consistency
[Mackworth 77]. Most existing algorithms are based on the exploitation of arc-consistency :
forward-checking [Haralick & Elliott 80], full look-ahead, and various extensions (e.g.
backjumping, [Prosser 93]). These mechanisms have been later incorporated into logic
programming languages (Prolog III [Colmerauer 89], CHIP [Van Hentenryck 89], CLP (R) [Jaffar
& Lassez 87]). More recently these mechanisms have been integrated with object-oriented
languages [Puget 94], [Caseau 94] or [Avesani et al. 90], [Roy & Pachet 96].

However, most difficult problems are still out of reach, even using state of the art CSP
algorithms or languages. The main reason is well known in AI : general-purpose algorithms are
by definition limited, because they do not have the knowledge specific to the problem instance.
The idea of exploiting knowledge about problem instances was explored initially by J.-L. Laurière
in the Alice system [Laurière 78]. The system was the first to propose a precise problem
formulation language and a scheme for combining formal reasoning and constraint propagation
to solve combinatorial problems. Even though it was validated on few examples, and shown to
be sometimes more efficient than specialized procedures [Laurière 79], this experience is difficult
to share : Alice did some extraordinary things but it was difficult to anticipate its behavior, and
fully understand its design. On some problems Alice would perform better than specialized
procedures, and on some others it would yield poor results. Since Alice is the only system so far
to have shown that a non trivial form of knowledge, the formal reasoning could be integrated
successfully within constraint satisfaction mechanisms, it is important to understand precisely its
essential contributions without referring to a particular implementation of the system.

~ 1 ~

AliceTalks : an object-oriented Alice

We report here a project consisting in the reconstruction of Alice using the object-oriented
technology. This reconstruction has one practical goal : produce a system that behaves exactly as
Alice did, but in a totally transparent way, so that we can study precisely its behavior. More
generally this experiment is taken as an example of a successful reconstruction of an AI system
using the object-oriented technology. The system is called AliceTalks, both by conformance to a
tradition of systems ending by « Talk » written in Smalltalk, and because we wanted Alice to talk,
at last.

2 Alice

The ALICE system was developed by J.L. Laurière in the 70’s [Laurière 76]. Alice stands for
« A Language for Intelligent Combinatorial Exploration», and is both a language - based on set
theory - to state constraint satisfaction problems, and a program to solve these problems. The
range of problems Alice can state is roughly the set of finite domain constraints satisfaction
problems, i.e. problems which consist in finding a solution - a collection of values for the variables
- in a finite space which satisfies a given set of constraints. Alice has been used to efficiently solve
real-world problems such as time scheduling, architecture design or real-world railway planning
[Laurière 78].

2.1 Description of the system

A complete description of Alice may be found in [Laurière 76], [Laurière 78], as well as
chapter eight of [Laurière 86]. [Laurière 96] reports recent improvements in the system. It should
be noted that J. Pitrat developed a declarative version of Alice, using only production rules and
meta-rules. Although this latter system should be considered more as a research prototype than a
fully-fledged system, its reconstruction using only a declarative formalism (rules) shed new lights
on the inner machinery of the system, such as the graph module [Pitrat 93].

A problem in Alice is stated using mathematical symbols and concepts from set theory and
function theory. Alice distinguishes two types of constraints : the formal ones which rest on the
domain and the simple ones which modify the domain. Then it creates a two-fold internal
representation : a graph and a set of constraints. The graph represents the current state of
variables of the problem and can be seen as a "compiled" representation of constraints the
system considers as simple. For instance, Alice keeps the constraint f(8)+10g(4)-
f(1)f(3)+9¹0 in its formal representation, while constraints as x=45, f(3)<1 or g(1)¹g(4) are
simple enough for the system to decide to propagate them in the graph.

A general control loop based on backtracking oscillates « intelligently » between two activities :
1) brute force in which domains reductions are propagated using the graph and 2) intelligent
search in which constraints are formally analyzed to generate simpler constraints,. The system
loops over the constraints set until each constraint is treated, and all information is translated
from the formal structure to the compiled one. The solution is finally constructed by a simple
enumeration of the graph.

One of the key in Alice’s intelligence is the systematic use of heuristics along the reasoning
process. Heuristics are used to make choice for constraints, for variables, for values, and for
algorithms. These heuristics account for a large part for the ability of Alice to adapt its general
search procedure to specific problem instances [Laurière 79].

It is interesting to note that Alice is in fact an extension of the general CSP model. It identifies
constraints with a tree structure well-adapted to the process of formal reasoning ; but, like any
classical CSP system, it uses a graph to represent the knowledge of the problem, since every step
of its resolution is aimed to reduce domains of variables.

~ 2 ~

AliceTalks : an object-oriented Alice

2.2 Limitations and remarkable things about Alice

There are a number of features in Alice which make it a truly remarkable and unique system, by
contrast with existing approaches in constraint satisfaction. Problems are stated using a formal,
declarative language, which does not require any knowledge on constraint satisfaction from the
user. Standard simple mathematical concepts like functions and equations are sufficient to
express all combinatorial problems. No procedural « hacks » are introduced in the language :
Alice is self contained and self sufficient in the sense that it decides by itself how to interpret
problem statements. The resolution is based on an association of graph propagation and
constraint symbolic manipulation. This allows Alice to avoid combinatorial explosion, by
combining constraints and manipulating them in order to extract information. It is important to
note that the main characteristic of formal reasoning is that it is in general terribly inefficient, but
can sometimes produce information that would otherwise require a tremendous amount of
enumeration to get. Alice is somehow able to draw the line between brute force and smart
thinking : it will try to make clever formal reasoning only if it deems it worthwhile, and has a set
of good heuristics to make this decision. Also Alice proved that a general and formal reasoning
supported by good heuristics could efficiently deal with large real-world problems [Laurière 79].

Although Alice was validated on a number of examples, this experience is difficult to share :
implemented in PL/I and later in C, Alice remains a black box. Too few information are
accessible about the resolution strategy which is chosen and applied, the trace facility is scarce,
and the system is hardly embeddable into a larger application. No extension of the system has
been developed : Alice is a pioneer system which remains unique in its capacity to mix deduction
and propagation of constraints, but it somehow became a « mythical » system with no direct
lineage.

3 AliceTalks : revisiting Alice in an object-oriented context

AliceTalks was born from the will to turn Alice into a more open and adaptable system. This
reconstruction use the object-oriented technology, for obvious reasons. This section reports on
this experience, describes the out-coming system and relates what of clarity and modularity we
gained in the system design.

3.1 Project context

AliceTalks was constructed in Smalltalk, with a team of six people. The overall tendency was
to try to reuse as much code as possible. This decision led to the effective reuse of various
frameworks :

For problem formulation and parsing, the framework ParserGenerator from ParcPlace has been
used [ParcPlace 95]. This framework made it a lot easier to write the compiler for our system, by
allowing the rules to be written in a declarative way. The formal reasoning part was implemented
using a Prolog interpreter written in Smalltalk [Aoki 95]. Part of the constraint library was built using
the constraint library of BackTalk, a library of constraint satisfaction algorithms in Smalltalk [Roy
& Pachet 97]. The interface of AliceTalks was implemented using HotDraw, a framework for two-
dimensional structured drawing editors [Johnson 96]. Finally, because of the large size of the
project we used an application management tool to handle the problems related to collaborative
work (Application Management [Heeg 95]).

3.2 Features

Problem formulation in Alice was often hard due to its limitation to domains with literal
values. In AliceTalks, we extended the original language of Alice by providing facilities for
specifying problems with complex domains. The formulation language is also enhanced to the
range of problems where variables are either integers or any objects belonging to any class, and

~ 3 ~

AliceTalks : an object-oriented Alice

constraints are expressed either by the send of a message to a composite variable or by
mathematical expression.

Since we want to build an open system where the user could understand the solution provided
by the system, we integrate an interactive interface with the system : by analogy with a Smalltalk
debugger, a synchronous viewer shows a detailed chronological account of the steps. It displays
the trace in a structured way and allows to filter information to get only a viewpoint on the
solution.

Finally, an effort has been done to integrate the identification and use of heuristics in the
system. Since number of steps of the solution are principally based on choice criteria, we
developed sophisticated tools for creating or editing heuristics and linking them to point in the
program. The user can also influence on search efficiency with no direct code modification.

3.3 Overall design

AliceTalks is made of six modules ; five extend the existing modules of Alice and one evolves
the ability to work on the solution efficiency. The Problem compilation module builds the
representation of the knowledge of the problem from the input description. The Control module
controls the search of solutions using a backtrack procedure, and manages the context stack. The
Graph module organizes and checks data about unknown variables. The Formal reasoning module
encompasses the constraints of the problem and deduces new constraints, while it maintains the
whole consistency. The Output visualization module shows current tree search and state of the
problem while it controls process speed and breakpoints. Finally, the Heuristic module is in charge
of connecting heuristics to the inner strategy for improving its efficiency.

Each module communicates with each other through well specified protocols (see Figure 1) :
1) Control loop chooses one constraint, according the Heuristics and gives it to Formal reasoning or
Graph. 2) Graph accepts only simple constraints whose propagation is immediate and returns
problem solutions if they exist. 3) Whenever the current context is inconsistent, Graph and Formal
reasoning report the contradiction to Control. They exchange themselves information : Graph
signals Formal reasoning when any value of variable is either forbidden or assigned ; Formal reasoning
asks Graph for domain of values when it treats a constraint of its.

Figure 1. The division of Alice into functional modules. On the left, the initial design
of Alice. On the right, the design of AliceTalks enhanced by the Heuristics module

The next sections will give an overview of main notions in AliceTalks ; and so, we will use the
design pattern vocabulary [Gamma & al 95].

3.4 Problem formulation and compilation

Problems are formulated as the computation of functions between finite sets, which satisfy
constraints. Thus, no knowledge of Smalltalk is required to state a constraint problem.

~ 4 ~

AliceTalks : an object-oriented Alice

The figure shows a statement of the n-queens problem. It aims to place n point on a
chessboard so that there is only one point on every row, column and diagonal. This problem
contains 2(1+n²/4 - n) constraints and may be very bothering to formulate. In AliceTalks, we
reconstruct the high-level semantic constraints of Alice. Logical expression syntax includes
quantified formula and conditional expression using the logical implication operator. With these
facilities, formulating the 8-queens problem becomes very easy.

Figure 2. The formulation of the n-queens problem in AliceTalks.

The translation between the problem formulation and its internal representation requires a
parser and a compiler. We used the framework ParserGenerator [ParcPlace 95], an advanced tool
integrated in VisualWorks, and developed by ParcPlace. It allows to generate a left-to-right
descending parser and a compiler for a grammar specified in a simple rule-based formalism. The
out-coming syntactic tree is then analyzed by builders. First a semantic analysis checks
declaration part consistency ; then construction produces the initial state of the problem.
Compilation uses the Visitor pattern. Recall that the Visitor pattern is used for representing
explicitly a processing to be performed on the elements of an object, usually a tree. It lets the user
define a new operation without changing the classes of the elements on which it operates. Each
specific builder is a Visitor which walks through the syntactic tree.

We show in Figure 3 the compilation overview from the problem statement to the object
representation.

Figure 3 the Alice construction of the initial knowledge of a CSP

~ 5 ~

AliceTalks : an object-oriented Alice

The visitors are organized in a hierarchy that essentially regroups their common behaviors.
This allows to apply several treatments to a node by only changing the class of the visitor to use
The Figure 4 shows all these features with an example.

Figure 4 Example of connection between a syntactic node and two visitors. The visitor
class is responsible of the processing.

3.5 Formal reasoning

The global issue of Formal reasoning is to empty constraints set as quickly as possible, so that
the solution may be found directly in the graph.

One of the main ideas of Alice is that it generates constraints from other constraints and for
that rewrites constraints in a regular form. AliceTalks’s rewrite system is a set of equivalencies
used as a pattern-directed program that returns as output a simplified term equal to a given input
term. Rules are applied in any order to any matching sub-term until no further applications are
possible. The convergence of the rules system garantees a regular expression unique for any term
to simplify. In our system, a term represents an expression that appears in a constraint and may
be simplified. Instead of finding a normal form - which is impossible for any expression in
general, AliceTalks rewrites expressions in a regular form. This notion of rewriting logical regular
expressions in order to solve problems was already introduced in Alice but without a real
formalization. We’ll relate the Alice’s symbolic computation and deduction of constraints to the
field of term-rewriting (see section 5)

3.5.1 Algebraic simplification
Normalization of Alice (understand simplification in the current vocabulary of symbolic calculus)
is performed by applying rewriting rules and aimed to simplify expressions and consequently the
complexity of the constraints. The rules we wanted to use, are easily represented by Prolog
clauses. So, instead of twisting the rules to fit the object-oriented language, we used the MeiProlog
in [Mei 95]. Rules are written exactly as if they formed a Prolog program (see Figure 5).

0 + X -> 0, !.
X + 0 -> 0, !.
X >= Y -> isConstant(X), isConstant(Y), eval(X >= Y), !.
(X + -(X))+ Y -> Y, !
(X + Y) -> (Y + X), !. si Y <order< X (*)
(X/Y + (Z/Y)) -> (Z + X)/Y, !.

~ 6 ~

AliceTalks : an object-oriented Alice

(*)The function <order< returns true if the first argument is before the
second one in the order of Alice expressions. We need to order sums for
controlling commutativity and associativity of expressions [Bachmair 91].

Figure 5 Any rewriting rules used by AliceTalks for normalizing.

The framework MeiProlog is also well-adapted to the symbolic expression system of
AliceTalks : both AliceTalks expressions and internal MeiProlog terms are represented by trees.
The MeiProlog rule base requires as input a literal description which is then translated in a
structure of tree whose terms exactly identify the components of the expression. The string
representation is itself produced using the Interpreter pattern : each significant node class asks its
sons for their MeiProlog string, and merges the results.

3.5.2 Propagation global of constraints
The second important behavior of the Formal reasoning module is the application of a collection

of algorithms on the structure of constraints in order to deduce simpler constraints. The
algorithms perform two types of operations and thus two different patterns have been used for
technical design. On one hand, algorithms of coefficients simplification are well implemented
using the Interpreter pattern, because this feature is intrinsic to constraint and also to expression.
Recall that the Interpreter pattern applies to trees and redefines a behavior for each type of node it
is significant to. On the other hand, the Strategy pattern provides exactly what we wanted
AliceTalks to offer, as modularity and extensibility. Indeed it defines a family of algorithms,
encapsulates each one and lets the algorithm vary independently from clients that use it. Thus
constraint is passed as argument to algorithm main function. Each generic algorithm is
implemented in a class. It is instanced whenever treatment it specifies has been chosen to
simplify a constraint. Hence this instance represents one of its applications with a particular
context. Using this design, elaborating new algorithms does become easy.

3.5.3 Propagation local of one constraint
The third behavior of the Formal reasoning applies on one constraint. The local filtering of a

constraint attempts to reduce domains of values for any variables related by this one. For reasons
of performance and also because we thought of reusability of frameworks, we reuse a class of
BackTalk [Roy ?], a framework for satisfaction constraint with filtering.

3.6 On extending CSP formulation to objects

CSP paradigm is a general model which has the interesting property to be independent of the
semantic of the constraints. Thus we extend our CSP formalism without any real difficulty. We
tend also to hook a higher level of semantic on our variables and constraints. Variables have
values in a set of composite objects and constraints appears with the form of the send of a
Smalltalk message (see Figure 6 : A simple problem on domain of rectangles.).

~ 7 ~

AliceTalks : an object-oriented Alice

Figure 6 : A simple problem on domain of rectangles.

We observe that the number of variables is reduced comparing to the same problem without
the object facility of statement. Therefore the CSP is clearly more understandable. [Roy & Pachet
97] have recently shown that the complexity of the object-CSP problem is reduced too. However
the use of object in CSP makes us to forget Alice reasoning. There's only on treatment for object
constraint : local filtering. In section 4.2, how the object-oriented technology let us to reuse one
class for this operation.

4 What we gain from an object-oriented conception of Alice

The object-oriented technology properties match exactly the design of AliceTalks. Indeed
Alice is described with four modules which exchange information. For an obvious preoccupation
with being the most closed to the original system, we chose to divide our system in a similar way.
The objet programming is also well-adapted to our experiment. Besides to be modular, OO
conception let the implementers build a clear and well-defined program. We try to exploit this
property for our work.

4.1 Constraints and expressions hierarchy

In a symbolic manipulation point of view, constraints have a dual nature : a constraint is both
a relation to satisfy, and a syntactic expression. Each constraint has, in AliceTalks, a type which is used
by the control module to decide for instance which constraint will be chosen at each cycle. The
syntactic aspect is necessary for manipulating formally the constraint, and combining constraints
with each other. There are therefore two different hierarchies of classes in AliceTalks : a
hierarchy for representing Boolean and arithmetic expressions from a syntactic point of view, and
a hierarchy for representing types of constraints. A constraint is then represented by an instance of
a given constraint type, which points to an instance of the corresponding expression. Syntactic
expressions are designed to provide easily functions of rewriting ; they are represented by a tree
whose nodes are connectors. Constants and variables are the leaves. Figure 7 shows relative
position between constraint types and expression classes on one instance.

~ 8 ~

AliceTalks : an object-oriented Alice

Figure 7 the equality constraint "0 = 9 + f(5*x) - x" and its syntactic expression are
related to constraints types and classes of expressions.

Constraint types are organized in a hierarchy where constraints are distinguished by the nature
of their operator symbol. Specific properties of a constraint type are exploited, using the Interpreter
pattern. For instance, class SuperiorOrEqualConstraint redefines method for simplification
because Alice proposes for this type an more clever formal algorithm than classical one.

This two-fold hierarchy allows to add new type of constraints or expression. Besides adding
properties in the class, a small number a methods should be redefined to provide a specific
semantic. For instance, a new type of constraint should redefined the tests of satisfaction and
contradiction of the constraint. If any formal smart deduction is known it would be redefined
in the class with the method createAndAddSimplerConstraints

Thanks to this hierarchy, we extended the system with object constraints (see section 3.6).

4.2 Reuse in symbolic computation by using patterns

As we said in section 3.5, we reuse the framework MeiProlog to provide our system a "on-
line" rules-based system. We use also the strategy pattern to implement symbolic computation, as
linear combination. Thus we are potentially able to reuse classes of algorithms from other
systems. We practically include a class of BackTalk [Roy ?], a framework for constraint
satisfaction, for local filtering.

The Visitor pattern has a direct application in the manipulation of the Alice Expressions. It
allows to regroup common steps and features of several algorithms. When an existing algorithm
has similarities with an existing one, heritage of algorithm really simplifies the definition. For
instance, implementation of the evaluation of the maximum should be obvious, if it inherits from
the evaluation of the minimum of an expression. Only methods for unary minus, unknowns and
difference must be redefined.

~ 9 ~

AliceTalks : an object-oriented Alice

4.3 Modularity in AliceTalks

This section describe briefly the other modules of AliceTalks. Graph and Control complete the
inner system, whereas the modules Heuristics and Output Visualization behave as point of
communication with the inner machinery of AliceTalks.

4.3.1 Graph
The Graph module represents the CSP knowledge and manages the simple constraints

propagation. It replaces standard CSP algorithm like values propagation used by BackTalk and
IlogSolver. Compilation of simple constraint simulates a total AC algorithm, limited to unary and
binary-linear constraint. A simple structure of graph supports this feature. It contains as many
sub-graph as functions to find in the goal of the problem. (see the example of n-queen). For
each, a sub-sub-graph for each domain of function and a sub-sub-graph of values in the co-
domains of the same. The Graph module propagates also domain reduction and detects failure of
an instantiation as soon as possible. Semantically, the Graph module includes all potential
solutions of the problem and in particular the real ones, if they exist ; that's the reason why it is in
charge to enumerate solutions as soon as there is no more constraint to check.

4.3.2 Control
The Control module represents the control loop which coordinates Graph and Formal reasoning

at top level. It makes choices intelligently and reconsiders them if it finds no solution. It pushes
and pops context, using a classic backtrack strategy. That way, it develops a search tree
containing problem states it has explored. Context only represents current state of the problem
i.e. graph and constraints to satisfy. Indeed it suffices to let the control know at which point it has
left the search in this branch. To save context with the slightest code, we used the BOSS
(BinaryObjectStorage) mechanism. Like all searches by exploration, control loop calls a number
of heuristics to decide which state to visit in the search tree it builds.

4.3.3 Heuristics
In most of the CSP solver, heuristics are determined once, by the designer himself. In

AliceTalks, strategy is open and may be defined by the user. This latter can decide (in the place of
the system) which heuristic will be applied at each key-point of the search procedure . So
heuristics have a double location : they are involved in the deep mechanism of the program and
may however be specified from a browser. To take account this feature of the system, we added
the module Heuristics. The module proposed a real efficient tool for testing heuristics. Definition
of heuristics takes on two aspects, the informal one and the structural one. Heuristic is viewed as
both a function and comment. It is a calculation resource to guide the system while it 's walking
through the state space of a problem. It must possess also a comment which explains its
features : role, context of application, argument, result, use.... Figure 8 shows the interface for
informal definition.

~ 10 ~

AliceTalks : an object-oriented Alice

Figure 8 Interface for creating user-defined heuristics

Heuristic is first of all designed by a symbol derived from the name of the function it holds.
The body is stored in a method of the library, which refers to the context of the call, like the
caller module or methods of test. Cross references may be done also : heuristic may combine the
results of simpler heuristics. Therefore it is obvious that the way heuristics are used depends
largely on the context they are called in. In AliceTalks, every definition of heuristic is supported
by a caller. It represents a main module -Graph, Control or Formal reasoning- and is the sole entity
that allows to access local and global context from the tool interface. The introduction of a caller
is also the solution of the following problem : "how writing a method without knowing explicitly
where it will be executed ?". The answer is impossible unless we have a reference on an object
with public methods which return significant information.

A heuristic is finally designed by its name, its body and the library it belongs. Libraries are
ordered by type of action performed by their components. This concept is defined in the class
AHeuristic. One instance of this class represents one heuristic ready to be evaluated. With this
tool, creating a particular library becomes very simple : we only have to subclass the category of
heuristics of the same type.

4.3.4 Output visualization
While visualization of the solution, the system adapts itself to the requirement of the users and

helps them to understand the solution search. This concerns the Output visualization module and
the tools -the tracer and the filter editor - it involves. The Figure 10 shows, on an example, the
tracer when the system has just found the first solution. The tracer keeps track of the search and
displays significant events. It indents traces in a list : traces with the same indentation concerns
the same task. Each trace provides local context of the step or event it is supposed to signal.
Global state of the problem is permanently shown since the tracer should above all show a global
information on the solution.

~ 11 ~

AliceTalks : an object-oriented Alice

Figure 9 Interface of the tool which visualizes Output trace for the
send+more=money problem

Thanks the trace filter editor, he can modify state of a trace and consequently avoid or set on its
notification. So solution may be viewed just with the point of one type of action. For instance,
Figure 9 only shown graph actions and control loop.

All modules are clients of the tracer. When they want to signal an important event, step or
result, they sent it a message of trace. To preserve modularity and readability of the system, client
and tracer should never know each other. That's why trace is reified. Distinction is made by the
module which sends the trace.

4.4 Adaptation to domains

Syntax may be extended. Facilities are provided by the use of a framework and appropriate
pattern. Changing the parser is done by sub-classing the compiler to inherit from
ParserGenerator facilities and then adding rules. Extending syntactic (or semantic) analysis is
simply done by creating a new class of syntactic node and methods in Visitor classes that concern
it.

Alice problem specifications can include Smalltalk code. Code in declaration part is compiled
and executed just before the construction of problem. It may besides affect global objects
provided it already exists in the environment. Smalltalk block is even allowed in constraint
definition. Of course this extension should be used carefully : the block must return a value
significant in the constraint it appears in.

New constraint type may be added. It must be done by heritage and redefinition of methods
for accessing, simplifying, properties testing and displaying.

New algorithm may be added. It may be included in a base of Strategy patterned algorithms
for constraint generation. Heuristics should refer to it in order to apply it for a particular context.

5 Related and future work

Several CSP systems are today available and are even used at an industrial level. They mostly
include a graphical interface for specifying CSP. This way of formulation intrinsically integrates
object-oriented components since constraints relate graphical objects like square or circle. As
example, we want to mention : 1) Equate [Wilk 91], which formulate constraints using
mathematical-like equations where domains of variables are set of objects 2) Kaleidoscope
[Freeman-Benson & Borning 92], a CSP framework mixing declarative aspect of constraint and
imperative nature of OO languages.

~ 12 ~

Permanent fields
Information zone

Historic

AliceTalks : an object-oriented Alice

[Roy & Pachet 97] studied in the BackTalk system, the difficulty to integrate constraint
satisfaction programming and object languages for conception of problems. Objects CSP
problems include composite objects and constraints on objects. The complexity of the
formulation influences directly the efficiency of the resolution. Also formulating complex CSP
with objects helps to divide specification into several levels of complexity, consequently
improving the solution. The declaration of constraints in an object language allows to replace
constraints by methods, applied on object variables.

One of the main ideas of Alice is that it performs generation of constraints and separately
applies rewriting rules for simplification of constraints. A great work has been done recently on
rewriting and automatic deduction. [Jouannaud 93] describes a survey of the main applications of
rewriting, which is now an important sub-field of in computer science. In particular formal
calculus systems use term rewriting rules to compute a normal form of any expression whenever
it's possible(because it's unfortunately not in general) [Bachmair 1991]. Term rewriting is also
exploited in automatic theorem (logical formula) proof as in Coq [Huet & al 95]. We'll try to
relate our work on CSP to symbolic rewriting of logic and arithmetic expressions.

Our experience has shown up the difficult problem of the problem formulation into a
constraint-oriented representation. In particular, problems that are generally formulated in a
natural language remain not obvious to translate in a declarative way. Difficulties come from the
lack of method to state correctly a problem. Initial and final state should be defined and all rules
to modify the current state should be declared in the form of constraints. In order to facilitate the
problem's rules formulation, our system allows high-level semantic operations such as
implications in the problem statement. But more efforts can be made to improve the language of
formulation of our system.

6 Conclusion

In the range of problem resolution, it is important to be able to precisely formulate the
problem in a general formalism including efficient algorithms. The CSP approach appears as the
most adapted for this task. So we reconstruct Alice, an AI architecture in constraint
programming, using the object-oriented technology. Classic AI architecture were designed with a
closed vision of the world. Things are changing, and these architectures are no longer adapted.
Object-oriented reengineering allows to open these architecture, by making them adaptable to
specific domains. In our CSP formulation, we can use variables with objects domains and
constraints on objects. As gain from our experiment, we built a modular and open system that
allows the user to understand how the former solves some problem.

References

[Aoki A. 1994] Aoki A. Object-Oriented Analysis and Design Techniques. S. R. Center.
Tokyo, Japan. 1994.

[Avesani et al. 1990] Avesani et al. XXX. . 1990.

[Brant J.M. 1995] Brant J.M. HotDraw. Ph. D. thesis, University of Illinois, Urbana-
Champaign, 1995.

[Caseau 1994] Caseau XXX. . 1994.

[Gamma E. & Helm R. & Johnson R. & Vlissides J. 1995] Gamma E. & Helm R. &
Johnson R. & Vlissides J. Design Patterns - Elements of reusable Object-Oriented Software.
Addison-Wesley, 1995.

~ 13 ~

AliceTalks : an object-oriented Alice

[Haralick R.M. & Helliott G.L 1980] Haralick R.M. & Helliott G.L Increasing tree
search efficiency for constraint satisfaction problems. Artificial Intelligence . vol 14, pp. 263-313,
1980.

[Heeg G. 1995] Heeg G. Application Management 1.2 Versioning and Packaging for
ObjectWorks Smalltalk, User’s manual. Objektorientierte Systeme. Dortmund (Germany). Heeg
systems. February 1995.

[Jaffar J. & Lassez J.L. 1987] Jaffar J. & Lassez J.L. Constraint logic Programming.
Proceedings of IEEE 4th international Conference on Logic Programming, Melbourne. M. Press, 25-29 may
1987.

[Johnson R. 1992] Johnson R. Documenting frameworks using patterns. Proceedings of
OOPSLA'92, pp. 63-76, october 1992.

[Laurière J.L. 1976] Laurière J.L. Un langage et un programme pour énoncer et résoudre
des problèmes combinatoires. Ph. D Thesis, University Pierre et Marie Curie, Paris, 1976.

[Laurière J.L. 1978] Laurière J.L. A Language and a Program for Stating and Solving
Combinatorial Problems Artificial Intelligence. Artificial Intelligence . vol. 10, pp. 29-127, 1978.

[Laurière J.L. 1979] Laurière J.L. Toward efficiency through generality. the sixth
International Joint Conference on Artificial Intelligence, Tokyo, Japan. vol. 2, pp. 519-521, 1979.

[Laurière J.L. 1986] Laurière J.L. Intelligence Artificielle, Résolution de problèmes par
l'homme et la machine. Eyrolles, Paris. 1986.

[Laurière J.L. 1996] Laurière J.L. Propagation de contraintes ou programmation
automatique. Laforia Institut Blaise Pascal-CNRS, University Pierre et Marie Curie Paris. juin 1996.

[Lenat D.B. 1982] Lenat D.B. The nature of Heuristics. Artificial Intelligence . vol. 19 (2),
pp. 189-249, 1982.

[Mackworth A.K. 1977] Mackworth A.K. Consistency in networks of relations. Artificial
Intelligence . vol 8, pp. 99-118, 1977.

[Pachet F. & Roy P. 1995] Pachet F. & Roy P. Mixing constraints and objects: a case
study in automatic harmonization. TOOLS Europe '95, Prentice-Hall, pp. 119-126, 1995.

[ParcPlace 1995] ParcPlace VisualWorks Advanced Tools User’s Guide, release 1.2.
ParcPlace-Digitalk, Sunnyvale (Ca),. 1995.

[Pitrat J. 1993] Pitrat J. Penser autrement l'informatique. Hermès, Paris. 1993.

[Prosser P. 1993] Prosser P. Domain filtering can degrade intelligent backjumping.
Proceeding of the 13th. Joint conference on Artificial Intelligence., Chambery. pp 262-267,

[Roy P. & Pachet F. 1997] Roy P. & Pachet F. Conception de problèmes par objets et
contraintes. Journées Francophones des Langages Applicatifs-JFLA'97,, janvier 1997.

[Van Hentenryck P. 1989] Van Hentenryck P. Constraint Satisfaction in Logic
Programming. Logic Programming. MIT Press, Cambridge,MA. 1989.

[Borning A. 1994] Borning A. Principles and Practice of Constraint Programming. 2nd
International Work PPCR '94, Rosario, Orcas Island, Washington, USA. Springer-Verlag, vol. 874, 2-4
may 1994.

[Colmerauer A. 1990] Colmerauer A. An Introduction to Prolog III. Communications of the
ACM . vol. 33 (7), 1990.

~ 14 ~

AliceTalks : an object-oriented Alice

[Freeman-Benson B. & Borning A. 1990] Freeman-Benson B. & Borning A.
Kaleidoscope: Mixing Objects, constraints and Imperative Programming. Proceedings of
OOPSLA/ECOOP '90, Ottawa, Canada. ACM, SIGPLAN Notices, pp. 77-88, 1990.

[Puget J.F. 1992] Puget J.F. Programmation Par Contraintes Orientée Objet. 12th
International Conference on Artificial Intelligence, Expert Systems and Natural Language, Avignon, France,
pp. 129-138, 1992.

[Van Hentenryck P. 1989] Van Hentenryck P. Constraint satisfaction in Logic
Programming. MIT Press, Cambridge, Massachusetts. 1989.

[Wilk M. 1991] Wilk M. Equate : An Object-oriented Constraint Solver. Proceedings of
OOPSLA'91, Phoenix, Arizona, USA. ACM SIGPLAN Notices, vol. 26, n°11, pp. 286-298,
November 1991.

[Huet G. & Oppen D.C. 1980] Huet G. & Oppen D.C. R. Book Equations and rewrite
rules : A survey. Formal Language Theory: Perspectives and Open Problems. New York. Academic Press
ed, pp. 349-405,

~ 15 ~

	1 Introduction
	2 Alice
	2.1 Description of the system
	2.2 Limitations and remarkable things about Alice

	3 AliceTalks : revisiting Alice in an object-oriented context
	3.1 Project context
	3.2 Features
	3.3 Overall design
	3.4 Problem formulation and compilation
	3.5 Formal reasoning
	3.5.1 Algebraic simplification
	3.5.2 Propagation global of constraints
	3.5.3 Propagation local of one constraint

	3.6 On extending CSP formulation to objects

	4 What we gain from an object-oriented conception of Alice
	4.1 Constraints and expressions hierarchy
	4.2 Reuse in symbolic computation by using patterns
	4.3 Modularity in AliceTalks
	4.3.1 Graph
	4.3.2 Control
	4.3.3 Heuristics
	4.3.4 Output visualization

	4.4 Adaptation to domains

	5 Related and future work
	6 Conclusion

