
Generating non-plagiaristic Markov sequences
with max order Sampling

Alexandre Papadopoulos, François Pachet and Pierre Roy

Abstract Plagiarism is usually studied from an analysis viewpoint: how to detect
that a text contains copies of another one. In this chapter we study plagiarism from
the generation viewpoint: how to generate a text with a guarantee of non-plagiarism.
More precisely, we address the problem of Markov sequence generation with for-
bidden k-gram constraints. This problem is addressed in two steps. In a first step, we
show that, given a Markov transition matrix and a set of k-grams, we can build effi-
ciently an automaton that represents exactly the language of all sequences that can
be generated from a Markov model, and that also do not contain any of the k-grams.
The size of the automaton is bounded by the size of the forbidden k-grams, and so is
the time for building it. This automaton can be used to solve the algebraic problem
(i.e. considering non-zero probabilities are uniform), by a simple walk. In a second
step, we show that the automaton can be extended so as to be exploited by a belief
propagation scheme, in order to produce perfect sampling of all the solutions.

1 Introduction

Markov chains are a powerful, widely-used technique to analyse and generate se-
quences that imitate a given style [4, 13], with applications to many areas of auto-
matic content generation such as music, text and more generally sequential data. A
typical use of such models is to generate novel sequences that “look” like or “sound”
like the original.

Alexandre Papadopoulos
UPMC Paris 6, UMR 7606, LIP6, 75005, Paris, France e-mail: alexandre.papadopoulos@lip6.fr

François Pachet
Sony CSL, 6 rue Amyot, 75005 Paris, France e-mail: pachetcsl@gmail.com

Pierre Roy
Sony CSL, 6 rue Amyot, 75005 Paris, France e-mail: roypie@gmail.com

1

2 Alexandre Papadopoulos, François Pachet and Pierre Roy

From a corpus of finite-length sequences considered as representative of the style
of an author, a Markov model of the style is estimated based on the Markov hypoth-
esis, which states that the future state of a sequence depends only on the last state,
i.e.:

P(si+1|s1, . . . ,si) = P(si+1|si).

The equation above describes a Markov model of order 1. The definition can be
extended to higher orders by considering prefixes of length k greater than 1.

P(si+1|s1, . . . ,si) = P(si+1|si−k+1, . . . ,si).

Variable order Markov models are often used to produce sequences with vary-
ing degrees of similarity with the corpus [2]: an increased Markov order produces
sequences that replicate larger chunks of the original corpus, thereby improving
the impression of style imitation. However, a Markov process can yield long-range
effects, in spite of its local nature. The result of such effects is that undesirable
substrings of a length greater than the Markov order can be generated, with a high
frequency. For example, it has been long observed [4] that increasing the order tends
to produce sequences that contain chunks of the corpus of size much larger than the
Markov order.

We illustrate this phenomenon on a text corpus: Johnston’s English translation of
Pushkins Eugene Onegin – a reference to Markov, as he used the same corpus (in
Russian) for his pioneering studies. Here, an element of the Markov chain is a word
of the text or a sentence separator, and a sequence is a succession of such elements.
We obtained the following sequence with a Markov order of 1:

Praskovya re-baptized “Polina”. Walking her secret tome that rogue, backbiter, pan-

taloon, bribe-taker, glutton and still eats, and featherbeds, and enjoyment locked him all

went inside a day wood below the flower was passion and theirs was one who taught her

handkerchief has measured off in caravan the finest printer with pulsesracing down, he’ll be

nothing could draw it abounded.

On top of the text, we draw the longest subsequences that appear verbatim the
corpus, or chunks, assigning different colours to different lengths. For example, this
generated sequence contains the chunk “[...] that rogue, backbiter, pantaloon, bribe-
taker, glutton and [...]”, which is a seven-word-long subsequence from the corpus.
The maximum order of a sequence is the maximum length of its chunks (seven, in
our example).

With an increased Markov order of 3, we obtained the following sequence:

Generating non-plagiaristic Markov sequences with max order Sampling 3

Love’s frantic torments went on beating and racking with their strain and stress that

youthful heart. It all seemed new – for two days only – the estate provides a setting for

angry heirs, as one, to admire him – and replies: “Wait, I’ll present you – but inside a day,

with custom, love would fade away”. It’s right and proper that you transcend in music’s own

bewitching fashion the foreign words a maiden’s passion found for its utterance that night

directed his.

This sequence makes, locally, more sense than the one generated with order 1.
However, its maximum order is 20 (i.e. it contains a twenty-word-long subsequence
copied verbatim from the corpus). To any reader familiar with the corpus, this would
read like blatant plagiarism.

More generally, we generated a few hundreds of sequences of size 30 based on
this corpus, of varying order (from to 1 to 3): Figure 1 shows the distribution of
chunk sizes observed for each Markov order. With a Markov order 2, sequences
already tend to contain chunks from the corpus of length greater than 2, up to 22.
Markov order affects training: when estimated from a corpus, the Markov model
learns all continuations of sequences of k states or less. However, this parameter k
does not limit the maximum order of the generated sequence.

To avoid this type of plagiarism, we are interested in generating Markov se-
quences with a guaranteed maximum order. In other words, we want to forbid all
sequences of length equal to the maximum order, that appear in the corpus. But
other types of undesirables sequences can occur, too. For example, anti-patterns [5]
are minimal sequences (in terms of size) that do not appear in the corpus, and yet
have a high probability according to the model estimated on the corpus. Although
a Markov process will reproduce anti-patterns with a high probability, it can be ar-
gued that their absence in the corpus has a structural justification, and, therefore, we
may want to explicitly prevent their occurrences in generated sequences. Cyclical
patterns are small sequences of words repeated several times successively. Although
long cyclical patterns are unlikely, short cyclical patterns have a non-trivial proba-
bility of occurring, and make no sense when generating text. If a cyclical pattern has
a period longer than the Markov order, again we need another means to explicitly
forbid it.

This chapter addresses precisely the problem of sampling Markov sequences that
contain no forbidden substring, or no-good for short. Such properties cannot be
guaranteed with greedy approaches like random walk. Our contribution combines
techniques from constraint satisfaction, automaton theory and statistical inference.
From a satisfaction viewpoint, we consider a constraint enforcing that generated
sequences contain none of the imposed no-goods. Following a common approach in
constraint programming [3, 12], we represent such a constraint with an automaton

4 Alexandre Papadopoulos, François Pachet and Pierre Roy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

fr
eq

ue
nc

y

chunk size

order 1
order 2
order 3

Fig. 1 Chunk size distribution for different Markov orders in a sequence of size 30

that accepts the set of such sequences. However, we show that canonical methods
are not satisfactory for building this automaton. We present an algorithm that builds
this automaton in linear time with respect to the set of no-goods, an aspect that has
been covered in detail in previous work [9]. In a second, novel, step, this automaton
is used to define a factor graph that encodes the distribution of Markov sequences
containing no no-good. Belief propagation is then applied to sample such sequences
in an exact manner.

2 A Simple Example

We consider the corpus made of ABRACADABRA, where each element is one of
the symbols A, B, C, D or R. With k = 1, the Markov chain estimated on this corpus
is given by the following transition matrix:

A B C D R

A 0 0.5 0.25 0.25 0
B 0 0 0 0 1
C 1 0 0 0 0
D 1 0 0 0 0
R 1 0 0 0 0

Generating non-plagiaristic Markov sequences with max order Sampling 5

During a training phase, these probabilities are estimated according to their fre-
quency in the corpus. Here, in the four continuations for A in the corpus, two are
with B, one with C and one with D. A sequence is a Markov sequence, according to
an order k Markov chain, if every k-gram of the sequence has a continuation with a
non-zero probability. For example, ABRADABRACA is a valid Markov sequence,
but ABRACADABA is not a valid Markov sequence, because the probability of
having A after B is zero.

We can encode a set of Markovian sequences, ignoring probabilities, using an
automaton.

Definition 1 (Automata). A deterministic finite-state automaton, or, simply, au-
tomaton, is a quintuple A = 〈Q,Σ ,δ ,q0,F〉, where Q is a finite non-empty set of
states, Σ , the alphabet, is a finite non-empty set of symbols, q0 ∈Q is the initial state,
δ is the transition function which maps a state q and a symbol a to the successor
δ (q,a), and F ⊆ Q is the set of final, or accepting, states.

Definition 2 (Accepted language). The word w, a string of symbols in Σ , is ac-
cepted by A if and only if there exists a sequences q0, . . . ,qp of states, such that
δ (qi−1,ai) = qi, for all i, 1 ≤ i ≤ p, and qp ∈ F . The set of words accepted by A,
denoted L(A), is the language accepted by A.

In order to represent an order k Markov chain, we create an alphabet Σ where
each symbol corresponds to a state of the Markov chain, a k-gram. Then, a valid
order k Markov transition is represented by two symbols, such that their two cor-
responding k-grams overlap on their common k− 1 symbols. A valid Markov se-
quence of length n is represented by a word of length n−k+1 on this alphabet. For
example, for k = 2, the sequence ABRA corresponds to a sequence of three 2-grams
〈A,B〉, 〈B,R〉, 〈R,A〉. We can assign three symbols a1,a2,a3 ∈ Σ to those three 2-
grams in their respective order. The Markov transition A,B→ R is represented by
the word a1a2, and the sequence ABRA by the word a1a2a3.

Definition 3 (Markov Automaton). A Markov automaton associated to a Markov
chain is an automatonA, such that in each accepted word a1 . . .ap in L(A), for each
i < p, aiai+1 corresponds to a non-zero probability Markov transition.

B

D

R

C
A

R

A

B

D

C

Fig. 2 A Markov automaton for the ABRACADABRA corpus, with k = 1

Figure 2 shows a Markov automaton for the Markov chain estimated on ABRA-
CADABRA with k = 1. This automaton is essentially a syntactic rewrite of the

6 Alexandre Papadopoulos, François Pachet and Pierre Roy

Markov chain, with a different semantics attached to its states and transitions. Since
the automaton accepts sequences of arbitrary length, all states are accepting. Each
transition is labelled by a symbol corresponding to a Markov state. A notable prop-
erty of a Markov automaton is that all transitions labelled with a given symbol point
to the same state. Furthermore, we can impose, at the expense of minimality, that all
transitions pointing to a given state are labelled with the same symbol. For example,
on Figure 2, all transitions labelled with R point to the same state, but transitions
labelled with D and C also point to this state. In order to enforce the second invariant
too, we need to make three copies of this state, for C, D and R. Satisfying those two
invariants allows us to introduce the following notation.

Definition 4. We relate states and the labels of its ingoing transitions, using the
following notation:

• Let a be a symbol of the alphabet, Q(a) is the unique state q to which a-labelled
transitions point.

• Let q be a state in Q, a(q) is the label of the transitions pointing to q, i.e.
Q(a(q)) = q.

Using this notation, a Markov transition between the k-grams corresponding to
a1 and a2 is represented in A by a transition between Q(a1) and Q(a2), labelled
by a2. We can now represent the set of Markov sequences containing no forbidden
no-good with the following automaton.

Definition 5 (No-good Automaton). LetM be a Markov automaton, and N a list
of strings accepted byM, called no-goods.

For a given no-good a1 . . .aL ∈ N , let A(a1 . . .aL) be an automaton such that
L(A(a1 . . .aL)) = {w∈ Σ ∗ | a1 . . .aL is a substring of w}, i.e. the language of words
containing at least one occurrence of the no-good. An automaton NG is a no-good
automaton forM and N if:

L(NG) = L(M)∩
⋂

a1...aL∈N
L(A(a1 . . .aL))

For example, in the ABRACADABRA corpus, with k = 1 and a max order
limit of 4, we have 7 max order no-goods: ABRA, BRAC, RACA, ACAD, CADA,
ADAB, DABR. The Markovian sequence ABRADABRACA does not satisfy the
maximum order property: it contains the no-goods ABRA, ADAB, DABR, BRAC,
RACA. The Markovian sequence RADADACAB does not contain any no-good of
size 4, and so satisfies the maximum order 4 property: its max order is strictly less
than 4. Figure 3 shows a no-good automaton, forbidding those no-goods. Again, all
states are accepting, and the labels in the states correspond to prefixes of forbidden
no-goods. Note that all transitions pointing to any given state are labelled with the
same symbol.

Generating non-plagiaristic Markov sequences with max order Sampling 7

RA AB

B

AD

D

RAC

C

ABR

R

ADA

A

R

A

D

AC

C

ACA

A

CAD

CA

B

C

DB C

BR

BRA

A B D

B

R

A

B D C

DA

D C

DAB

B

C

A

R B A C

D

D

A

Fig. 3 A no-good automaton for the ABRACADABRA corpus, with k = 1 and maximum order
less than 4

3 Building the No-good Automaton

The no-good automaton can be built in a generic fashion, using standard automata
theory operations that implement Definition 5. Initially, we build a Markov automa-
ton. Then, for each no-good, this automaton is intersected with the negation of the
automaton recognising sequences containing the no-good. The complexity of this
procedure is dominated by the complexity of intersecting a number of automata. A
straightforward intersection algorithm runs in O(tN) time, with t the maximum size,
in number of states, of any of the automata, and N = |N | the number of no-goods.
And it is unlikely that an algorithm with a better complexity exists [7, 8]. Therefore,
we cannot tractably compute the no-good automaton in a generic way, without ex-
ploiting its particular structure. Furthermore, this method does not give any bound
on the size of the final automaton (other than O(tN)).

We present, in this section, an algorithm that builds the no-good automaton in
time linear in the size of the set of no-goods. As a corollary, we show that the size of
this automaton is linear too. More precisely, this algorithm takes as input a Markov
automaton and a list of no-goods, and operates as follows: build a trie with the no-
goods, compute their overlaps, and finally use this structure to remove from the
Markov automaton all sequences containing a no-good.

Algorithm 1 first computes a trie of the no-goods, where all states but the ones
corresponding to a full no-good are accepting states. This ensures that a no-good
is never accepted. This trie is connected to the original Markov automaton by dis-
connecting from the Markov automaton any transition that starts a no-good, and
use those transitions to start building the trie. However, this is not sufficient. The
key part of the algorithm is to add connections between overlapping no-good pre-
fixes. For example, if we have two no-goods ABCD and BCEF, the prefixes ABC
and BCEF overlap on BC. This means that the automaton not only should not ac-
cept ABCD, but it should not accept ABCEF either. This connection is made using

8 Alexandre Papadopoulos, François Pachet and Pierre Roy

cross-prefix transitions: we add a cross-prefix transition, labelled with E, between
the state for ABC and the state for BCE. Cross-prefix transitions ensure that, by
avoiding a particular no-good, we will not inadvertently complete another no-good.
In order to compute them, Algorithm 1 uses an adaptation of the Aho and Corasick
[1] string-matching algorithm: a transition that does not extend the no-good of the
current no-good prefix is a cross-prefix transition, and points directly to the no-good
that starts with the longest suffix of the current prefix. Finally, we add transitions in
the trie for any state missing some valid Markov transitions. Those transitions either
point back to the original Markov automaton, for Markov transitions that do not start
any no-good, or point to the states of the first layer of the trie, for Markov transitions
that start a new no-good. Since we kept the transitions to the non-accepting states
that complete a no-good, we know we are not introducing any no-good. Now, we
can finally remove those non-accepting states (line 33). It is important to observe
that all the steps we described maintain the invariant that for each state of the au-
tomaton being built, the label of all its incoming transitions is always the same. This
property will be exploited for sampling the sequences recognised by the automaton.

The algorithm adds exactly once each transition of the resulting automaton.
Therefore, it runs in time linear in the number T of transitions of the final automa-
ton. Let N = L.|N |, where L is the size of a no-good, be the size of the input N .
When constructing the trie, it creates exactly N transitions. During the next phase,
the added transitions are exactly those added by the Aho and Corasick algorithm.
Their number is linearly bounded by N, a (non-trivial) result from Aho and Cora-
sick [1]. Finally, the number of transitions added to each state during the completion
phase is bounded by |Σ |, which is a constant independent of N .

Note that the general idea of this algorithm is similar to the algorithm by [14],
which computes shortest paths with forbidden paths. However, they operate in a very
different context, and are only interested in the shortest paths of a graph, whereas
we are interested in all the sequences accepted by the original Markov automaton.

4 Sampling Sequences with a Maximum Order Guarantee

We now describe how to sample Markov sequences containing no forbidden no-
good, with its correct probability, using the no-good automaton computed in the
previous section. As a first approximation, one can use the no-good automaton to
generate new sequences, since all walks in this automaton produce valid sequences.
The transition probabilities of the original Markov model are used for walking in
this automaton, by choosing the successor of a state q as follows: with a(q) the label
of all transitions pointing to q, choose a transition labelled with b with probability
P(b|a(q)). We show in the next section that this produces a crude approximation
of the probability of sampled sequences. However, if we impose a given sequence
length, we can use belief propagation and do perfect sampling, by exploiting a spe-
cial case where belief propagation is, by principle, exact and polynomial.

Generating non-plagiaristic Markov sequences with max order Sampling 9

Algorithm 1: Computing the no-good automaton
Data: N the set of forbidden no-goods
M← 〈Q,Σ ,δ ,q0,F〉: a Markov automaton
Result: Any word containing at least one no-good is not
recognised byM
// Remove transitions that start a no-good

1 forall the a1 . . .aL ∈N do
2 q← Q(a1)
3 Clear outgoing transitions of q
4 w(q)← (a1)

// Compute the trie of no-goods
5 Qtrie← /0
6 forall the a1 . . .aL ∈N do
7 q← q0
8 i← 1
9 while δ (q,ai) exists do

10 q← δ (q,ai)
11 i← i+1

12 for a j, i≤ j ≤ L do
13 q′← NewState(Qtrie)
14 F ← F ∪{q′}
15 δ (q,a j)← q′

16 w(q′)← (a1, . . . ,a j)
17 a(q′)←{a j}
18 q← q′

19 F ← F \{q}

// Compute cross prefix transitions
20 forall the q ∈ Qtrie do
21 S(q)←{q′ ∈ Qtrie|w(q)is a strict suffix of w(q′)}
22 forall the q ∈ Qtrie in order of decreasing |w(q)| do
23 forall the a ∈ Σ such that δ (q,a) exists do
24 forall the q′ ∈ S(q) do
25 if δ (q′,a) is undefined then
26 δ (q′,a)← δ (q,a) // transition is Markovian
27

// Markovian completion
28 forall the ∀q ∈ Qtrie do
29 {a1}← a(q)
30 forall the a2 ∈ Σ such that a1a2 ∈ C do
31 if δ (q,a2) is undefined then
32 δ (q,a2)← Q(a2)

33 Q← Q∪ (Qtrie∩F)

10 Alexandre Papadopoulos, François Pachet and Pierre Roy

Belief propagation [11] is an algorithm, or family of algorithms, for performing
statistical inference on graphical models, i.e. graph-based representations of distri-
butions over multiple variables. Specifically, we consider graphical models called
factor graphs. A factor graph is a bipartite undirected graph, representing the fac-
torisation of a probability function, where nodes represent either variables or factors,
and edges connect factors to the variables to which that factor applies. The sum-
product algorithm allows us to perform statistical inference, such as marginalising
or sampling the probability function.

4.1 Background on Belief Propagation

Suppose we have n random variables X1, . . . ,Xn, and a real-valued function g(X1, . . . ,Xn)
that can be expressed as the product of m factors:

g(X1, . . . ,Xn) =
m

∏
j=1

f j(S j),

where the factor f j is a function holding only on a subset S j ⊆{X1, . . . ,Xn} of the
variables. The corresponding factor graph is a bipartite graph G = (X ,F,E), where
X = {X1, . . . ,Xn}, F = { f1, . . . , fm}, and an edge (Xi, f j) is in E iff Xi ∈ S j.

Example 1. Consider a function holding on three variables X1,X2,X3, defined as the
product of four factors:

g(X1,X2,X3) = f1(X1,X2) · f2(X2,X3) · f3(X1,X3) · f4(X3)

Figure 4 shows the corresponding factor graph.

X3

f3
f2

f4

f1X1 X2

Fig. 4 The factor graph for the function g(X1,X2,X3) = f1(X1,X2) · f2(X2,X3) · f3(X1,X3) · f4(X3).

In general, functions that display a tree-structured factor graph have interest-
ing properties, since several statistical properties can be computed in an exact and
yet tractable way, by exploiting the independence between subsets of variables.
To illustrate this on our previous example, suppose factor f3 is suppressed, i.e.
g(X1,X2,X3) = f1(X1,X2) · f2(X2,X3) · f4(X3). The resulting factor graph thus be-
comes a tree. Suppose we want to compute the normalisation constant Z such

Generating non-plagiaristic Markov sequences with max order Sampling 11

that P(X1,X2,X3) =
1
Z · g(X1,X2,X3) is a probability function. In general, Z =

∑X1 ∑X2 ∑X3
g(X1,X2,X3), implying a summation over the whole cartesian product

of the domains of the variables of g, which is exponential in the number of variables.
However, by exploiting the tree structure of the factor graph, we can first compute
∑X3

f2(X2,X3) · f4(X3), which results in a function fX2(X2) on X2 only, and then we
can compute the sum ∑X1,X2

f1(X1,X2) · fX2(X2). In other words, we only perform lo-
cal summations at a time, on the cartesian product of the variables of a given factor,
and never on the whole set of variables.

The sum-product algorithm, first invented in 1982 by Pearl [10], is an algorithm
that computes the marginal function of a particular node, i.e. the function g(Xi) =

∑X1,...,Xi−1,Xi+1,...,Xn g(X1, . . . ,Xn) for some Xi, using the same strategy. Likewise, if
the factor graph is a tree, it gives the exact result in tractable time. This algorithm is
often referred to as message passing. In turn, this can be used to sample valuations
of X1, . . . ,Xn with their right probability. One needs to draw values for all Xi, from
X1 to Xn, choosing each time a value for Xi according to its marginal probability
g(Xi).

4.2 A factor graph model of max order sequences

We now apply those techniques to our application, and describe message passing, by
instantiating this procedure to the specific problem of sampling Markov sequences
containing no forbidden no-good of size L. The problem of generating a Markov
sequence of n variables X1, . . . ,Xn containing no forbidden no-good, is the problem
of sampling the function gmaxo defined as:

gmaxo(X1, . . . ,Xn) =

{
0 if X1, . . . ,Xn contains a no-good,
1
Z ·P(X1) · · ·P(Xn|Xn−1) otherwise

This function gmaxo can be represented in a straightforward way with a factor
graph, such as the one shown on Figure 5, for the case where k = 1, L = 3 and n = 5.
We have f1(X1) =

1
Z ·P(X1), fi(Xi−1,Xi) = P(Xi|Xi−1), and mi(Xi, . . . ,Xi+L−1) = 0,

if Xi, . . . ,Xi+L−1 is a no-good of size L, and mi(Xi, . . . ,Xi+L−1) = 1 otherwise.

m3

f2 X2 f3 X3 f4 X4 f5 X5X1

f1 m1

m2

Fig. 5 The basic factor graph for max order sequences, with a Markov order k = 1, a maximum
order L = 3 and a length of n = 5

12 Alexandre Papadopoulos, François Pachet and Pierre Roy

As it stands, this factor graph is not acyclic. In order to render it acyclic, one can
apply a naive, “brute force”, reformulation: we merge every subsequence of L− 1
consecutive variables into one single merged variable. As a result, we have only bi-
nary factors between every two consecutive merged variables, as shown on Figure 6.
When those variables are assigned two overlapping (L−1)-grams that combine into
an L-gram, and that this L-gram is not a no-good, the binary factor gives the Markov
probability of the L-gram; otherwise it evaluates to 0. However, this would not be
tractable in practice, since the alphabets of the merged variables contain all combi-
nations of L−1 elements of the original alphabet, and this is exponential in the max
order L.

X4X5

m1

m2

m3f1

X1X2 X2X3 X3X4

Fig. 6 The – inefficient – acyclic reformulation of the factor graph of Figure 5

We propose another reformulation, which exploits the no-good automaton. We
define a function g(X1, . . . ,Xn), where the domain of each variable Xi is the set of
states of the no-good automaton, and not the states of the original Markov model.
Recall that the states of the original Markov chain correspond to the set Σ of labels
of the no-good automaton. This function g is composed of simple binary factors,
and its factor graph decomposition is shown on Figure 7.

f1

mn−1

X1 X2 XnXn−1 fn−1

mnm1 m2

Fig. 7 The factor graph for max order using the no-good automaton

In order to define the factors involved in this factor graph, we exploit the fact
that, for each state q of the automaton, the label of all incoming transitions is the
same, denoted a(q). As we established earlier, this is satisfied both for the Markov
automaton and for the no-good automaton produced by our algorithm. The same
binary factor is applied along the sequence, i.e. ∀i ≤ n, fi = f , with f defined as
follows:

f (q,q′) =

{
P(a(q′)|a(q)), if q′ ∈ δ+(q) and q 6= q0,

0 otherwise

Generating non-plagiaristic Markov sequences with max order Sampling 13

This binary factor imposes that sequences are formed by walking the automaton,
with a probability given by the Markov probability. The unary factors impose that
sequences are formed by traversing the automaton from the initial state to an ac-
cepting state, and can additionally impose a bias on the element at a given position
of a solution. Suppose Pi(Xi) is a probability distribution on Σ , biasing the probabil-
ity of the Markov state occurring at position i, such that the probability of a sequence
X1, . . . ,Xn is the biased Markov probability P(X2|X1). · · · .P(Xn|Xn−1).P1(X1). · · · .Pn(Xn).
Typically, P1(X1) imposes the prior probability on X1. Hard unary constraints, where
some values are forbidden, and the remaining ones have a uniform probability, can
also be imposed under this formalism. The unary factors of our model are thus de-
fined as follows:

mi(q) =

{
0, if q = q0,

Pi(a(q)), otherwise

To this general definition, we need to add special cases for i = 1 and i = n. For
i = 1 we introduce to the equation the additional case m1(q) = 0 if q 6∈ δ+(q0),
stating that we can only start a sequence from a successor of the initial state of the
automaton. For i = n, we introduce the case mn(q) = 0 if q 6∈ F , stating that we can
only end a sequence on an accepting state of the automaton.

It is easy to verity that g(X1, . . . ,Xn) = gmaxo(a(X1), . . . ,a(Xn)), if we do not take
into account the unary factors mi, i> 1. Additionally, since each sequence of Markov
states correspond to a unique sequence of states in the automaton from the initial
state to an accepting state, each sequence of Markov states corresponds to a unique
sequence of states X1, . . . ,Xn with a non-zero g probability. As a result, sampling
gmaxo is equivalent to sampling g. Note that if we incorporate the additional unary
factors mi, i > 1 into the definition of gmaxo too, the exact same reasoning holds.

4.3 Sampling Max Order Sequences

Algorithm 2 is a description of the sum-product algorithm applied specifically to
our factor graph, and specialised for sampling sequences. The sum-product algo-
rithm is used to compute marginalisations, which in turn is used to sample so-
lutions with their correct probability, in the following way. Let gX1(X1) be the
marginalisation of g on X1, equal to ∑Xi,i>1 g(X1, . . . ,Xn). Intuitively, for a given
value q1 of X1, gX1(q1) gives us the probability that X1 = q1 in a sequence of val-
ues of X1, . . . ,Xn, drawn randomly according to this sequence’s probability. Sup-
pose we have drawn X1 = q1 with this probability, g(q1,X2, . . . ,Xn) is now a func-
tion of only X2, . . . ,Xn. If we marginalise this function on X2, we get a function
gX2(X2) = ∑Xi,i>2 g(q1,X2, . . . ,Xn), giving the probability gX2(q2) that X2 = q2 in
a sequence of values of X1, . . . ,Xn starting with X1 = q1, drawn randomly accord-
ing to its g probability. After repeating this process until all Xi have been assigned,
we end up with a sequence of values q1, . . . ,qn, drawn with the probability that

14 Alexandre Papadopoulos, François Pachet and Pierre Roy

X1 = q1 and X2 = q2 and . . . and Xn = qn, which is exactly the probability of the
valuation q1, . . . ,qn in the distribution g.

On the specific case where the factor graph is a tree, as in the model of Figure 7,
the sum-product algorithm performs in two phases only. A first phase from the leaf
to the root (for any arbitrarily chosen root) of the tree, and a second from the root
to the leaf. In our case, it is convenient to traverse the graph from Xn down to X1
(backward phase), and from X1 back to Xn (forward phase).

During the backward phase, at the i-th iteration, the algorithm considers only
the part of the factor graph from Xi to Xn, i.e. the function gi←(Xi, . . . ,Xn) =
mi(Xi). fi(Xi,Xi+1). · · · . fn−1(Xn−1,Xn).mn(Xn). It computes a message on Xi, which
is simply a probability distribution gi←(Xi) on Xi, equal to the marginalisation on
Xi of gi←(Xi, . . . ,Xn). At the end of the backward phase, the message on X1 is the
normalisation of the full function g on X1, i.e. g1←(X1) = gX1(X1).

At the beginning of the forward phase, the algorithm draws a value for X1 accord-
ing to gX1(X1). Then, at the i-th iteration of the forward phase, the algorithm has al-
ready instantiated X1, . . . ,Xi−1 to q1, . . . ,qi−1. It considers the part of the factor graph
from X1 to Xi, i.e. the function gi→(X1, . . . ,Xi)=m1(X1). f1(X1,X2). · · · . fi−1(Xi−1,Xi).
The message gi→(Xi) on Xi is essentially the marginalisation of gi→(q1, . . . ,qi−1,Xi).
Since the product gi→(X1, . . . ,Xi).gi←(Xi, . . . ,Xn) is equal to g(X1, . . . ,Xn), for a
value qi of Xi, the product gi→(qi).gi←(qi) is precisely the probability gXi(qi), i.e.
the probability that Xi = qi in a sequence on X1, . . . ,Xn starting with q1, . . . ,qi−1,
drawn randomly with probability given by g. Therefore, the algorithm draws qi with
probability gi→(qi).gi←(qi), and continues up to iteration n, when all variables are
instantiated. Note that when sampling several sequences, the backward phase needs
to be performed only once, and the forward phase will sample a new sequence every
time with its correct probability.

Algorithm 2: Sum-product algorithm for max order sampling
Data: Function g(X1, . . . ,Xn) and its factor graph
Result: A sequence q1, . . . ,qn, with probability g(q1, . . . ,qn)

// Backward phase
gn←(Xn)← mn(Xn)
for i← n−1 to 1 do

foreach q ∈ Q do
gi←(q)← ∑q′∈Q mi(q). fi(q,q′).gi+1←(q′)

Renormalise gi←

// Forward phase
q1← draw(g1←(X1))
for i← 2 to n do

foreach q ∈ Q do
gi→(q)← fi−1(qi−1,q)

Renormalise gi→
qi← draw(gi→(Xi).gi←(Xi))

return (q1, . . . ,qn)

Generating non-plagiaristic Markov sequences with max order Sampling 15

5 Evaluation

Following our opening example, we applied our algorithm on the “Eugene Onegin”
corpus (2160 sentences, 6919 unique words, 32719 words in total). On this cor-
pus, depending on the Markov order (ranging from 1 to 3) and the maximum order
parameters (ranging from 3 to 20), which both affect the number and the size of
no-goods, computing the no-good automaton takes consistently around 200ms and
never more than 300ms.

5.1 Solution loss

An interesting question is how likely a stochastic method finds sequences satis-
fying the maximum order property. In order to assess this, we try to estimate the
probability that a Markov sequence contain no no-good. We perform this estima-
tion by making simple solution counting: we count the number of sequences of a
given length with a non-zero probability, with and without a max order constraint,
and consider the ratio of the two values. Under the assumption that valid max order
sequences follow a distribution similar to that of all Markov sequences, this ratio
should be a good estimation of the probability of satisfying the imposed max order.
We first count the total number S of Markovian sequences of length n = 20, with
a Markov order 3, based on the Eugene Onegin corpus. This is obtained by raising
to the power of 20 the transition matrix where non-zero entries are replaced with 1.
We compare this to the number SL of Markovian sequences with a maximum order
of L, with L ranging from 5 (the minimum non-trivially infeasible value), to 20 (the
maximum value for which max order is not trivially satisfied). This is obtained by
raising to the power of 20 the adjacency matrix of the no-good automaton (i.e. the
matrix where 1-entries correspond to pairs of linked states). We call solution loss
the ratio 1− (SL/S): the closer it is to 1, the more Markovian sequences are “ruled
out” because they do not satisfy the maximum order property for L. We show the
results on Figure 8. Naturally, the constraint is tighter for low values of L. For L = 5
for example, there is no solution, leading to a solution loss of 1. For bigger values,
the solution loss is still close to 1, with less that 1% solutions left.

Note that a formal combinatorics approach for characterising this ratio has been
given by Guibas and Odlyzko [6], where they define a generating function for the
number of sequences of a given length not containing any forbidden pattern from a
list of forbidden patterns. This generating function has a closed form, which can be
used, in principle, to estimate the number of such sequences using partial fraction
decompositions. However, it is much more practical, and in principle equivalent, to
estimate this number based on the no-good automaton, as we did here.

16 Alexandre Papadopoulos, François Pachet and Pierre Roy

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 8 10 12 14 16 18 20

so
lu

tio
n

lo
ss

L

Fig. 8 Solution loss from MAXORDER, on “Eugene Onegin” with k = 3, n= 20, for various values
of L

5.2 Sampling

We compare the probability of generating a sequence by the two sampling methods
mentioned in Section 4: a random walk in the no-good automaton, and our fixed-
length belief propagation model. The purpose of this experiment is twofold: show
that a random walk in the automaton does not sample sequences correctly, and con-
firm empirically that our belief propagation-based model is indeed correct.

We applied each method to generate sequences of length 8, of Markov order 1
and with an imposed max order of 4. For the random walk method, we imposed
the length simply by rejecting shorter sequences. In total, we sampled over 20 mil-
lion sequences. Of those, 5 million were unique sequences. Concerning running
times, the baseline random walk-based procedure generated an average of 5500 se-
quences per second (counting only non-rejected sequences), while the exact belief
propagation-based method generated an average of 3500 sequences per second. To
measure empirical probabilities more accurately, we filtered only those that were
generated over 50 times, of which there were about 47000 with random walk, about
35000 with belief propagation (because of the slight time penalty for belief propa-
gation). We used a simple method to estimate the correct probability of a max order
sequence, by computing Z, equal to the sum of the probability of all unique se-
quences found by either method, and use 1/Z as the normalising constant, i.e. the
probability of a max order sequence is equal to its Markov probability divided by
Z. With the high number of sequences that we generated, this gave a reasonably
accurate estimation.

We plot our results on Figure 9. Each point on either graph corresponds to a
sequence. Its value on the x-axis is its actual probability, estimated as described pre-
viously, while the values on the y-axis is the empirical probability, i.e. the frequency
at which the specific sequence has been sampled compared to the total number of
sequences. Figure 9(a) shows that the baseline sampling approach performs rather

Generating non-plagiaristic Markov sequences with max order Sampling 17

poorly: many sequences, even of similar probability, are over or under-represented.
On the other hand, Figure 9(b) provides a striking empirical confirmation of the
correctness of the belief propagation model.

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 0.0001
 0.0002

 0.0003
 0.0004

 0.0005

pr
ob

ab
ili

ty
 (

ra
nd

om
 w

al
k

au
to

m
at

on
)

probability (estimated)

(a) Random walk in the automaton

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 0.0001
 0.0002

 0.0003
 0.0004

 0.0005

pr
ob

ab
ili

ty
 (

be
lie

f p
ro

pa
ga

tio
n)

probability (estimated)

(b) Belief propagation

Fig. 9 Sampling with random walk in the automaton compared to belief propagation. A point
corresponds to a sequence, having a certain probability (x-axis), sampled with a certain frequency
(y-axis).

5.3 Example

We conclude this section by showing an example of a text generated with this
method, with a Markov order 2 and a maximum order 6:

Look to the circle of our first ages from thirty down to the end . He’s moved . For cousins

from afar darlings then we’ll throw at him . Never . She was still helping the poor butterfly.

Happy is he apparelled . Is this the man of honour and the marriage-bed, in all the play

of hope ? He failed to understand and took deep in gloom and mist . I beseech, and

take a swill . He arrives, the girl’s attentive eyes are dreaming . But to the bereaved, as

if beneath her pillow, his father died . From her husband’s or the unaffected thoughts

of all that is the advent of the hall .

18 Alexandre Papadopoulos, François Pachet and Pierre Roy

By construction, chunk sizes are bounded by 6. For information, about 49% of
the chunks of the sequence were of size 5, 32% of size 4, and 19% of size 3. The
max order guarantee implies that no copy of size 6 or more is made from the corpus.

6 Conclusion

We have introduced the problem of generating Markov sequences satisfying a max-
imum order, or more generally, containing no forbidden sequence (no-good), an
important issue with Markov models that has not, to our knowledge, been addressed
previously. In a first step, we formulate the problem in the framework of automata
theory, and exhibit an automaton that solves the algebraic problem of generating
Markov sequences with no no-goods. In a second step, we extend the automaton
and associate it with a linear factor graph to achieve perfect sampling of these se-
quences, thereby closing the issue. The set of no-goods can be arbitrary (finite) so as
to encode any unwanted set of subsequences (not only coming from the corpus). In-
terestingly, the inverse problem (plagiaristic generation) consisting in guaranteeing
that at least one no-good is present in each generated sequence is not of the same
nature. This is work in progress.

References

[1] Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic
search. Commun. ACM 18(6), 333–340 (1975)

[2] Begleiter, R., El-Yaniv, R., Yona, G.: On prediction using variable order
markov models. J. Artif. Intell. Res. (JAIR) 22, 385–421 (2004)

[3] Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from con-
straint checkers. In: [15], pp. 107–122

[4] Brooks, F.P., Hopkins, A., Neumann, P.G., Wright, W.: An experiment in mu-
sical composition. Electronic Computers, IRE Transactions on 6(3), 175–182
(1957)

[5] Conklin, D., Weisser, S.: Antipattern discovery in ethiopian bagana songs.
In: Dzeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) Discovery Sci-
ence - 17th International Conference, DS 2014, Bled, Slovenia, October 8-10,
2014. Proceedings, Lecture Notes in Computer Science, vol. 8777, pp. 62–72.
Springer (2014)

[6] Guibas, L.J., Odlyzko, A.M.: String overlaps, pattern matching, and non-
transitive games. J. Comb. Theory, Ser. A 30(2), 183–208 (1981). DOI
10.1016/0097-3165(81)90005-4

[7] Karakostas, G., Lipton, R.J., Viglas, A.: On the complexity of intersecting fi-
nite state automata. In: IEEE Conference on Computational Complexity, pp.
229–234. IEEE Computer Society (2000)

Generating non-plagiaristic Markov sequences with max order Sampling 19

[8] Karakostas, G., Lipton, R.J., Viglas, A.: On the complexity of intersecting fi-
nite state automata and NL versus NP. Theor. Comput. Sci. 302(1-3), 257–274
(2003)

[9] Papadopoulos, A., Roy, P., Pachet, F.: Avoiding Plagiarism in Markov Se-
quence Generation. In: Brodley, C.E., Stone, P. (eds.) AAAI. AAAI Press
(2014)

[10] Pearl, J.: Reverend bayes on inference engines: A distributed hierarchical ap-
proach. In: Waltz, D.L. (ed.) Proceedings of the National Conference on Ar-
tificial Intelligence. Pittsburgh, PA, August 18-20, 1982., pp. 133–136. AAAI
Press (1982)

[11] Pearl, J.: Probabilistic reasoning in intelligent systems - networks of plausible
inference. Morgan Kaufmann series in representation and reasoning. Morgan
Kaufmann (1989)

[12] Pesant, G.: A Regular Language Membership Constraint for Finite Sequences
of Variables. In: [15], pp. 482–495

[13] Pinkerton, R.C.: Information theory and melody. Scientific American (1956)
[14] Villeneuve, D., Desaulniers, G.: The shortest path problem with forbidden

paths. European Journal of Operational Research 165(1), 97–107 (2005)
[15] Wallace, M. (ed.): Principles and Practice of Constraint Programming - CP

2004, 10th International Conference, CP 2004, Toronto, Canada, September
27 - October 1, 2004, Proceedings, Lecture Notes in Computer Science, vol.
3258. Springer (2004)

