

Metamodeling for Multidimensional Reuse
Hafedh Mili1 and François Pachet2

1Department of C. S., University of Québec at Montréal
P. O. Box 8888, Downtown Station
Montréal, Québec H3C 3P8, Canada
2Sony Computer Science Laboratory

6 rue Amyot, 75005 Paris, France
e-mail : hafedh.mili@uqam.ca, pachet@csl.sony.fr

Abstract

Metamodeling refers to the practice of representing objects at more instantiation levels than
the usual two, instance and class. The need for representing computational entities in general,
and objects in particular, at several levels of instantiation arises in many occasions. When
properly recognized as a case of metamodeling, it may lead to a better understanding of the
underlying application logic, and to a more reusable and efficient implementation. In this
paper, we look at manifestations of metamodeling through the study of three classes of
problems and describe design patterns that support the implementation of the most common
instances of metamodeling. We conclude by highlighting directions for further research.

Keywords: Metamodeling, design patterns, metaclasses, domain models, process models.

1. Introduction
Object-oriented structural modeling uses classes to represent the structure of similar application objects,
and associations to represent patterns of connections between application objects. Applications where the
representation of objects has to be queried or otherwise manipulated need to explicitly represent the
representation of objects [Diaz & Patton,1994] ; the act of representing the representation of objects is
called object metamodeling. More generally, we use the term metamodeling to refer to the practice of
representing computational entities at more instantiation levels than the usual two, instance and class. By
computational entity we mean pure data, objects in the OO sense, tasks, processes, or any computational
artifact that can be created, modified or otherwise manipulated during the execution of a program.

The need for metamodels is more frequent than one might first think, and has been practiced for some
time. In relational database modeling, meta-data consists of table descriptors, which are system tables
describing the data tables (their columns, domains for the columns, etc.) and integrity constraints, which
are, by and large, semi-declarative constructs to be executed during updates. A typical computer-assisted
manufacturing application needs two levels of instantiation/abstraction: one level to represent bills of
material, e.g. describing the composition of different manufactured products, and a second level to
describe actual manufactured products with stock numbers, locations in warehouses, etc. ; bills of
materials are representations or models of manufactured products. However, to the extent that they can be
created, consulted, and modified, they too need to be represented by a construct that describes their
structure, i.e. metaclasses.

When not part of the problem (e.g. bills of material and inventory management in the same
application), metamodeling is part of the solution: metamodeling is an abstraction mechanism in the
sense that, much like classification, it enables us to factor out the common parts among a set of individual
computational objects, and package their differences in a way that supports reuse, evolution, and
interoperability [Mili et al., 1995]. Also, much like classification, it enables us to replace extensions (i.e.
explicit occurrences of a concept) by intensions (the definition of the concept itself), and hence result into
an economy of representation. Finally, when applied in actual software projects, metamodeling and

metaprogramming (programs that generate programs) can result in great savings in development effort,
and in much better reuse potential by going one additional step from component-oriented reuse towards
generation-oriented reuse.

Recognizing instances of metamodeling, and distinguishing them from generalization, is not easy,
because generalization may, in simple cases, be used to implement metamodels. Further, implementing
metamodels is difficult, both conceptually, and because of lack of support in existing languages. For
instance, not only are metaclasses insufficient, but not all languages support metaclasses, and some that
do (e.g. Smalltalk) offer a restricted implementation of metaclass programming.

In this paper, we first look at manifestations of metamodeling through the study of three classes of
problems. In section 3, we describe design patterns that support the implementation of the most common
instances of metamodeling. We conclude in section 4 by highlighting directions for further research.

2. Recognizing metamodeling
The need for metamodeling arises when we need to represent information at different realms of
abstraction. Those « realms » could be different levels within the same domain of
representation/abstraction, or could belong to different domains. We have classified occurrences of
metamodeling into three groups, depending on the nature of the « realms »and their relationships.

2.1 Abstracting domain knowledge
Consider the example of a Savings & Loans Association whose member institutions offer different kinds
of loans with various payment schedules. This is a simplified version of an actual modeling problem, for
an actual such institution, on which one of the authors has worked. Generally speaking, different types of
loans have different payment formulas. The association between types of loans and payment formulas is
practically industry-wide. For example, all student loans have an initial deferment period, after which
regular payments must be made at a minimum pace, but a student may pay the remaining balance in full at
any point in time. It is also almost always the case that mortgages are to be paid back according to some
regular payments, and full payments usually carry a penalty because lending institutions usually turn
around and sell mortgages to potential investors with a guaranteed rate of annual return. For each one of
these modes of payment, there are a number of parameters such as frequency of payment, ranges of
allowable percentages, etc. Different member institutions of an S&L Association may offer different
subsets of these ranges. For example, institution A will offer 6 month, 1, 2 and 3 year fixed-rate
mortgages, while institution B will offer 1, 2, 3, and 5 year fixed-rate mortgages. An individual who
walks into a particular institution (e.g. A) will get a mortgage with a single value from these parameters,
e.g. a 3 year fixed-rate mortgage.

Loan

Mortage Consumption
Loan

Payment
Schedule

Payable_According

Student
Loan

MinMonthly
payable

monthPmt
duration :

Fixed
Regular

period
amount

Deferred, reg.
payable

startDate
period
amount

Figure 1. A simplistic model of loans and payment schedules.

A first-cut object model for this problem looks like Figure 1. This model says that « a loan » is
payable according to « a payment schedule », and that there are many types of loans, and many types of
payment schedules. What it fails to say is which schedules of payment are appropriate for which types of
loans, in general, and for individual institutions. If we had one payment schedule per loan type, we could

represent this easily within this model by specializing the association « Payable According » into three (or
more) more specific associations. However, the combinations can be numerous, and when we take into
account the specifics of individual institutions, they become unwieldy.

What is really at issue here is the fact that we are attempting to represent information about two
aspects, 1) about account types, and 2) about specific accounts of these types ; the latter have to abide by
the constraints and parameters of the former. The object model of Figure 1 shows « a model of» the
associations between individual accounts and individual payment schedules but very little about account
types in general: if we restrict ourselves to a single institution, it may show which payment schedules
apply to which accounts for this particular institution. We would need a separate model for each
institution. The way of handling this consists of representing information explicitly about types of loans,
types of payment schedules, and institutions, explicitly. Figure 2 shows such a model.

Loan PaymentSchedule
1 1

Payable According

....

LoanType PaymentSchedType
1 n

has

⊆

Institution

parameters

Figure 2. A complete model including a metamodel.

The upper part of the model is equivalent to the model of Figure 1. The lower part is the metamodel.
The classes LoanType and PaymentScheduleType represent types or classes of loans and payment
schedules, respectively, i.e. classes whose instances are themselves classes. The fact that a particular
institution uses a specific subset of the set of payment schedules practiced by the industry at large is
represented by the subset relationship (⊆ in Figure 2) between the association that is specific to individual
institution, and the general one. The knowledge that would have been embodied in separate models, one
per institution, is now represented by a single (meta)model (lower part of Figure 2), and some specific
instances of that model (e.g. a table). The explicit presence of this information is valuable for the purposes
of coding the desired behavior concisely and generically.

Component
Type

Composition

number

Component
Type

Composition

number

Figure 3. A (meta)model of bills of material.

A common instance of this general problem is the bill of materials problem in a manufacturing

organization. For each non-elementary product, the organization would have a recipe for the product
indicating its composition. For example, a Table is made of a Board and four Legs. A Chair is made of
two Boards, four Legs, and two Armrests. These recipes need to be stored and manipulated in the same
way that we need information about LEG123402 and CHAIR2364315, in which warehouse they are
stored, and whether LEG123402 is a component of CHAIR2364315. In this case, the recipes are

represented by a metamodel, and they are themselves models of the data (database). The metamodel is
shown in Figure 3.

2.2 Representing the modeling language
The need for representing modeling languages arises under many circumstances. We identify two general
categories of uses, (1) defining modeling notations and translating between them, and (2) abstracting
processing tasks. While the first case is important for model sharing/exchange, and is a necessary part of
any reuse infrastructure, we will highlight the major issues, and focus on the aspects related to design.

2.2.1 Describing and translating between modeling notations. Development methodologies include
modeling notations that allow us to represent « worlds » using the constructs of a modeling language.
Different methodologies use different notations, and it is important to understand the correspondences
between these notations to allow the people and the tools that speak these modeling languages to
exchange models and understand each other.

There are two strategies for addressing this problem. The first is to define a modeling language that is
a join, of sorts, of the various modeling languages. A particular notation can be thus obtained as a subset
and/or a specialization. A subset in the sense that only some constructs are used. A specialization in the
sense that a specific notation ascribes additional semantics to a construct or imposes additional constraints
to its use. In practice, this may lead to problems, as people who participate in standards committees can
attest: the hardest cases occur when different notations use close enough constructs that they would be
redundant, but not close enough that they are identical or that one subsumes the other.

The second approach seeks a notation for describing notations, or, more broadly, an ontology of
modeling notations. Fewer constructs are needed to describe notations then there are constructs in the
notations themselves. Figure 4 shows a simplistic model of a part of OMT ... in OMT. Generally
speaking, the more atomic the constructs of the meta language, the fewer constructs we need. However,
the descriptions tend to be more complex ; the challenge in choosing such a meta language is to find a
reasonable compromise. It is interesting to note that UML combines both approaches described above.
UML does have a set of constructs that is meant to handle 80% of the cases (whether that goal is attained
or not is another matter). For the remaining 20%, a metamodel is provided to support the addition of new
constructs, as needed.

Once the problem of defining notations has been resolved, comes the issue of translating between
notations. If the translation is to be systematized, translation rules need to be expressed in terms of
constructs of the source language, and constructs of the target language. One simple rule might say :

CLASSOMT ! TYPEODELL
More complex rules may be written that transform a configuration of constructs from the source language
to a configuration of constructs in the target language. For example :

TABLEREL(A)Λ TABLEREL(B) Λ TABLEREL({key(A),key(B)}) !
CLASSOMT(A)Λ CLASSOMT(B) Λ ASSOC_M_To_MOMT(A,B)

This rule translates a fragment of a relational conceptual model to an OMT model. A number of
systems have been developed to migrate relational database technology towards object-oriented databases
[Blaha et al., 1994], [Revault & Sahraoui,1995].

Class

name

Association

name

Attribute

name
type
cardinality

Participates
position
multiplicity

has-subclass

has

m

n

2 n

m

n

n

m

has

Class

name

Class

name

Association

name

Association

name

Attribute

name
type
cardinality

Attribute

name
type
cardinality

Participates
position
multiplicity

Participates
position
multiplicity

has-subclass

has

m

n

2 n

m

n

n

m

has

Figure 4. A metamodel of OMT in OMT.

For systems that need to contend with several modeling languages, an alternative approach to this
language-to-language translation might use a common “esperanto” to which models are translated back
and forth from their source language; the translation rules are written in terms of a common meta
language that helps describe both the “esperanto” and all the languages (see e.g. [Missaoui et al., 1998]).
This approach is more «economical» since it reduces the number of required translations from n2 to 2n,
but suffers from the limitations of the esperanto approach.

2.2.2 Process abstraction for algorithm reuse. Broadly speaking, class behavior that is dependent on
the definitional structure of the class may be decomposed into a structure access part, and a computation
part (see e.g. [Mili & Li, 1993]). The idea of collection class iterators may be seen as a simple example of
this, where we separate the iteration part from the actual computation to be performed on the individual
elements of the collection. The following C++ sample code illustrates the idea:

T Collection<T>::average() {
 CollectionIterator<T> it(this);
 T average;

int n = 0 ;
Node<T> current;

 while (! current = it.next()) {
 n = n + 1 ;
 average += current.value();}
 return average/n ;
}

In this case, the same function average() may be used on all the subclasses of Collection,
independently of how they are structured, provided that each subclass provides an iterator. We could go
one step further, if the structure of the class were available during run-time: even the iteration part may be
written once for all. This approach may be used to define e.g. a generic shallow copy operation, a
generic comparison operation, or a generic persistence operation. The following code excerpts show a
generic shallow copy operation:

RootObject* RootObject::shallowCopy(){
MyRootObject* cp = OneJustLikeMe();

DataMemberIterator it(this);
MemberNameType name;
while (! name = it.next())
 cp->setValueOf(name, this->getValueOf(name));
return cp;

}
We assume that setValueOf(MemberNameType, void*) and

getValueOf(MemberNameType) will do the “right thing”, and that users of getValueOf(..)
will do the proper typecasting with the returned value, and so forth. Note the class
DataMemberIterator, which knows how to access the list of data members of the current object.

In addition to reducing the amount of code that needs to be written, this approach may be almost
mandatory in applications where new classes are added to the system during run-time. In non-typed
languages such as Smalltalk and CLOS, new classes may be added, queried, instantiated, and
manipulated during run-time, without any problem. With Java, new classes that satisfy a pre-compiled
interface may be linked during run-time, but we cannot extend the interface during run-time. With C++,
neither is possible, and a metamodeling approach is required. We will show in section 4 design patterns
for implementing this for the case of C++ and like languages.

2.3 Behavioral metamodeling
Under behavioral metamodeling, we group descriptions of objects as computational entities, or processes,
that may have a location (memory space), resources scheduled for it, priorities, etc. Behavioral
metamodeling may manifest itself to varying extents depending on the variability in the computational
properties of the objects, and the desired flexibility of the run-time environment. Generally speaking, the
execution behavior of an application may be either embodied in the code of the application itself, or

stated declaratively for some run-time engine to interpret and enact. The trend has been to extract
execution behavior from application code to run-time environment code. Nowadays, the transparent
execution of distributed applications relies heavily on the explicit representation of run-time information,
ranging from distribution information (e.g. the location of database tables) to information usable by ORBs
(interfaces and locations of individual objects). Figure 5 illustrates this point.

dvorak
RS600
12.28.12.16

name
model
address

Machine ResidesOn Object
Type name

function

UserAccessibleTo

Jean
personnel

Marc
planning

oops
SPARC
13.20.12.32

Functions
name

competencies

Employee

name
competencies

accessibleTo

accessibleTo

residesOn

residesOn

an_instance_of

an_instance_of
an_instance_of

an_instance_of

an_instance_of

an_instance_of

Figure 5. Representing location and access information explicitly.

A yet more advanced use of behavioral metamodeling is the explicit representation and execution of

execution models. This is particularly valuable in distributed concurrent applications where different
mechanisms for message sending, message handling, synchronization, resource allocation strategies, etc.
(see e.g. [Briot,1996]) may be used or tested. Partially or fully reflective programming languages like
Smalltalk make it possible to describe those mechanisms in the language itself (see e.g. Actalk
[Briot,1989], and [Kuwabara et al.,1995]).

This approach has several advantages. By separating the execution model from the application logic,
it considerably reduces the size of applications. Further, it yields reusable executable models which may
be combined with other applications. It also yields far more reusable domain objects, which may then be
used under different circumstances (single user, multi-user, multi-user dis-tributed, multi-user, multi-
processor, client-server, etc.).

3. Designing metamodeling

3.1 Metamodeling = metaclasses ?
The origin of metaclass programming may be found in the ObjVlisp model [Cointe, 1987], which
proposed a unified model for representing objects, classes and metaclasses. In this model, a user may
define classes by freely specifying their superclass and metaclass, with no limitation. However, existing
object-oriented languages are nowhere close to providing such a general scheme. Most typed languages
do not provide any representation of classes at run time (C++, Eiffel). Java recently introduced a MOP in
which ad hoc representations of classes are introduced, but which give limited user control. Among
untyped languages, CLOS offers, in principle, unlimited access and control, but this lack of restriction
makes it difficult to use in practice (see e.g. [Danforth & Forman, 1994]).

Regardless of whether languages support metaclasses, fully and safely, it is not clear that metaclasses
are always needed to implement metamodeling, nor is it clear that they are always sufficient. In section
4.2, we will show alternative ways of implementing metamodels, including simulating metaclasses in
languages that do not support them. In this section we address the necessity and sufficiency of
metaclasses.

First, the issue of metaclass necessity. The representation of classes as objets is only useful if:
1. There is some useful behavior of class objects that can be invoked during run-time, either directly, or

through instances of the class objects, and
2. The coding of that behavior benefits from class packaging, i.e. shareability between a bunch of

similar (class) objects, encapsulation, and inheritance.

If class objects are only used as repositories for instance properties that apply to all the objects of that
class then, clearly, the representation of classes as objects is not required.

However, there is more to metaclasses than the representation of class objects: it also implies a «live»
(during run-time, stored or computed) is-a link between objects and their classes, i.e. at least two levels of
instantiation during run-time. If the only use of that link is to to query an object about its class, that link
can be implemented like any association (see e.g. section 3.2). If, on the other hand, that link is useful for
general run-time behavior, then it is important that that link be built-in and inviolable ; this is the case for
Smalltalk where the is-a link is used for run-time typing in general, and message handling in particular.

With regard to sufficiency, metaclasses are clearly not sufficient when it comes to the metamodeling
of execution behavior: the metamodeling of execution behavior requires explicit representation of entities
such as message, parameter, and context, more than it needs the representation of classes as objects—
albeit they constitute together the reflexive apparatus of reflexive languages [Briot,1996].

3.2 Structural metamodeling design patterns

3.2.1 Representing two levels of instantiation
Figure 7 shows the object model of a design pattern we used many times to represent class information
explicitly during run-time. Implementation-wise, instances of ObjectType have two dictionaries, one to
hold descriptions of attributes (accessible by attribute name, or ‘attName’), i.e. instances of class
Property, and one to hold components, i.e. other instances of the class ObjectType, accessible by
component role name (e.g. ‘leftLeg’ and ‘rightLeg’, both of which could be instances of Leg). An actual
object will be represented by an instance of the class Object or one of its subclasses. Each object
(instance of Object) will also have two dictionaries, one to hold attribute values (instances of
PropertyValue, accessible by ‘attName’), and one to hold components (instances of Object or one of its
subclasses, accessible by ‘roleName’). Objects point to the instance of ObjectType that describes them.
The class Object (and its subclasses) will implement a constructor that takes an instance of ObjectType
as an argument, from which to initialize the dictionaries. If the classes of objects in the application have
no distinguishing behavior except for the component and attribute access methods, all the classes can be
represented by a single class, Object.

This pattern has proven useful for cases where we have to deal with several classes with complex data
structures but whose behavior is no, or little, more than structure access: all the access methods can be
coded generically as table access methods. It supports the addition of new attributes to existing classes
during time, and the addition of new classes altogether. One application in which this pattern was used
was a CAD application that manipulated 3-D objects drawn by the user with a drawing editor. The second
application dealt with the processing (analysis and routing) of messages in an avionics message
processing system for a US Airline, where incoming messages have unpredictable structure and contents.

Product

ObjectType Property

definition
restrictions

Property
Value

value

m n

value-of

1

n

attNam
e

value-for

described-by

Object

Component

roleName

Attribute

attName

roleNam
e

m

n

1 or n ?

m

ProductProduct

ObjectTypeObjectType Property

definition
restrictions

Property

definition
restrictions

Property
Value

value

Property
Value

value

m n

value-of

1

n

attNam
e
attNam
e

value-for

described-by

ObjectObject

Component

roleName

Component

roleName

Attribute

attName

Attribute

attName

roleNam
e
roleNam
e

m

n

1 or n ?

m

Figure 7. Simulating metaclasses in a classless language

An interesting extension of this model is the fact that an object can have several descriptions. We

mentioned earlier the problem of multiple instantiation (see section 3.2). In essence, by decoupling

instances from the language built-in links to their « types » (since we use artificial types) we are able to
implement multiple instantiation. Allowing an object to have multiple descriptors simply means that the
constructor will build dictionaries that consist of the unions of the dictionaries originating from the
individual descriptors—with the usual conflicts !

3.2.2 The Zig-Zag pattern : implementing multi-level metaclasses
This pattern comes from experiment with the MétaGen system [Revault&Sahraoui,1995]. MétaGen is a
Smalltalk-based CASE tool that generates tools that transform models in a source description language
(e.g. analysis model) to models in a target description language (e.g. design or implementation model).
MétaGen takes as input a description of a source language, a description of a target language, and set of
rules for transforming source language constructs to target language constructs. It outputs a graphical
editor for the source language, a transformation procedure, and a graphical editor for the target language
[Revault&Sahraoui,1995].

Smalltalk supports only one level of metaclasses. MetaGen requires several levels of instantiation so
cannot be accommodated by Smalltalk. The basic idea of the ZIG-ZAG pattern (Figure 8) is to use a
manual link to represent classes by regular instance-objects, which allow us in turn to go up an additional
instantiation level. The representation of a class object by an instance is represented by an association
“describes’’ whereby class objects point to instance objects through a metaclass instance variable called
“describedBy”, and instance objects point back through an instance variable called “describes”.

Metaclass

Class

Instance

is-a

is-a

Metaclass

Class

Instance

is-a

is-a

Metaclass

Class

Instance

is-a

is-a

describes describes describes

describes describes

Metaclass

Class

Instance

is-a

is-a

Metaclass

Class

Instance

Metaclass

Class

InstanceInstance

is-a

is-a

Metaclass

Class

Instance

Metaclass

Class

InstanceInstance

is-a

is-a

Metaclass

Class

Instance

is-a

is-a

Metaclass

Class

Instance

Metaclass

Class

InstanceInstance

is-a

is-a

describes describes describes

describes describes

Figure 8. The ZIG-ZAG pattern.

3.3 Patterns for behavioral metamodeling
Behavioral metamodeling is mostly based on an explicit representation of message handling. In reflexive
languages such as Smalltalk, message handling is already represented by Smalltalk objects, and the
building blocks of behavioral modeling are there to build more complex message handling procedures
either by adding new constructs or by specializing existing constructs [Briot,1996]. Depending on the
desired flexibility with the computational models, designs can be fairly complex. For the purposes of this
paper, we show a simple pattern allowing the interception and scheduling of method executions. This
pattern is a simplification of the concurrency framework discussed in [Briot&Guerraoui,1997]. Figure 9
shows an object model for this pattern.

Object Service
Request

Parm.
List

Method

Implements

name

handles has

has-
access-to

requests

Object Service
Request

Parm.
List

Method

Implements

name

handles has

has-
access-to

ObjectObject Service
Request
Service
Request

Parm.
List

Parm.
List

MethodMethod

Implements

name

Implements

name

handles has

has-
access-to

requestsrequests

Figure 9. A simple message interception design pattern.

Implementing this pattern in Smalltalk is easy, since methods, parameters, and contexts are all
Smalltalk classes, and message handling is done generically through a “perform:’’ request which asks the
object to perform a service request, as in Figure 9. Further, methods are represented by classes, and the
“implements’’ relationship shown in the model of Figure 9 is actually represented at the class level under
the form of a method dictionary.

To implement this pattern in a language such as C++, some effort has to be spent. First, we would
define classes the way we do normally, with data and member functions, and then add the following:
1. A dictionary of Method objects—call it _methodTable—indexed by name, which know how to call

themselves on the object, and get the right parameter values from an instance of ParameterList,
2. A member function that handles service requests generically, by getting the proper Method object to

do it.
The class ServiceRequest will have two data members, a method name, and an instance of

ParameterList which could be either an actual heterogeneous list, or a record structure with properly
typed fields. The class Object above would support the following method:

void* Object::handleRequest (ServiceRequest* sr, ParameterList* pl)
{

Method* meth = _methodTable->at(sr->getName()) ;
return meth->executeOnWith(this,pl);

}
The idea is that a particular instance of Method knows how to access the parameter list and invoke

the actual method:
void* Method::executeOnWith(Object* op, ParameterList* pl) {

T1 a1 = (T1)(pl->getElement(1));
T2 a2 = (T2) (pl->getElement(2)) ;
...

#ifdef _SMART_IMPLEMENTATION
return op->(*_method)(a1,a2,...) ;

#else
return op->computeValue(a1,a2,...)

#endif
}

In the smart implementation, the class Method has a data member (_method) which is a function
pointer whose type is the signature of the actual method of Object that will be called. In the other
implementation, the name of the actual method is hardcoded, and we have to create or otherwise generate
a subclass of Method for each method of each class (subclass of Object). The savvy C++ programmer
can find a number of enhancements to this general scheme, including automating the generation of some
of the code through the use of macros.

This scheme enables us to do lots of things with messages, starting with tracing, whereby the
additional level of indirection can log the receiver, the parameter list, the caller (if we add an argument to
handleRequest()), and the result. It may also be extended to assign processes to the various requests, and
manage the concurrency of the tasks using the available process management environment.

Interestingly, application distribution infrastructure use similar schemes. For example, Java has a
reflection package which is used within Java RMI, and is the basis for the Beans and EnterpriseJavaBeans
architectures, which allow programs in a client-server architecture to interact with minimal knowledge of
each other’s interfaces. CORBA makes use of such patterns as well. CORBA was meant to address
problems related to running “heterogeneous”, and distributed applications. First, the standard had to
abstract away issues related to the execution environment (location, platform, process management).
Second, it had to abstract away issues related to the specific packaging of functionality, both in terms of
paradigm—hence the paradigm-neutral notions of “module” and “interface”—and in terms of syntax—
hence the interface registry idea, and the dynamic invocation interface.

4. Conclusion
Abstraction and separation of concerns are key strategies for managing the complexity of systems.
Domain engineering is concerned with building a set of software constructs that can accommodate a set of
application within an application domain, with different functional needs, different configurations, and
different operational requirements. Abstraction comes in two flavors, which we might call omission, and

factorisation/parametrization. Abstraction by omission ignores the details that might differentiate
between two instances of the abstraction; by doing so, using the abstraction requires putting that
information back in, each time, i.e. costs engineering effort for each use. Abstraction through
parametrization embodies variations in concrete interchangeable subcomponents. We showed in this
paper a set of techniques, which we collectively call metamodeling, which lead to more reusable
components, and more efficient implementations. We sketched the common theoretical foundations of
these techniques, illustrated by a set of proven design solutions.

Acknowledgements: This work benefited from interactions within the OOPSLA’95 workshop on
metamodeling (see http://www.info.uqam.ca/Labo_Recherche/Larc/metamodeling-wshop.html), and
follow-up discussions with Jim Odell and Jean Bézivin, both privately, and moderated through the
OA&DTF mailing list.

5. References
[Atzeni,1993] P. Atzeni and R. Torlone, ``A Meta Model Approach for the Management of Multiple

Models and the Translation of Schemes, ‘’ Information Systems, vol. 18, n 6, Pergamon Press
Ltd., p. 349-362, 1993.

[Bezivin,1995] J. Bézivin, ``Technologie objet et ingénierie des besoins : une réconciliation nécessaire,’’
L'Objet, vol. 1, n 1, p. 21-26, 1995.

[Blaha et al., 1994] M. Blaha, W. Premerlani, & H. Shen, “Converting OO Models into RDBMS
Schema,” IEEE Software, vol 11(3), May 1994, pp. 28-39

[Briot,1989] J.P. Briot, ``Actalk, a testbed for classifying and designing actor languages in the Smalltalk-
80 environment’’ in proceedings of the European Conference on Object-Oriented Programming
(ECOOP’89), Lecture Notes in Computer Science (LNCS), Springer Verlag, 1989.

[Briot & Cointe,1989] J.P. Briot & P. Cointe, “Programming with Explicit Metaclasses in Smalltalk-80”,
OOPSLA’89, 419-432.

[Briot,1996] J.P. Briot and P. Cointe, “An experiment in Classification and Specialization of
Synchronization Schemes’’ in Proceedings of the 2nd International Symposium on Object
Technologies for Advanced Software (ISOTAS’96), LNCS no 1049, 96, pp. 227-249.

[Cointe,1987] P. Cointe, “The ObjVLisp Kernel: A Reflexive Lisp Architecture to Define a Uniform
Object-Oriented System’’ in Meta-Level Architectures and Réflexion, edited by P. Maes and D.
Nardi, pages 155-176, North-Holland, Amsterdam, 1987.

[Danforth&Forman,1994] S. Danforth and I. R. Forman, “Reflections on Metaclass Programming in
SOM” in proceedings of OOPSLA’94, Portland, pp. 440-452.

[Diaz & Patton, 1994] O. Diaz and N. W. Paton, “Extending ODBMSs Using Metaclasses,” IEEE
Software, vol. 11(3), May 1994, pp. 40-47

[Graubé,1989] N. Graubé, “Metaclass compatibility”, OOPSLA’89, New Orleans, pp. 305-316
[Kuwabara et al.,1995] K. Kuwabara, T. Ishida and N. Osato, “Agentalk : Coordination Protocol

Description for Multiagent Systems” in ICMAS’95, 1995, pp. 455-461.
[Mili et Li, 1993] H. Mili and H. Li, “Data Abstraction in SoftClass, an OO CASE Tool for Software

Reuse” in Proceedings of TOOLS USA ’93, Santa Barbara, CA, Aug. 2-5, 1993, Prentice-Hall,
Ed. Bertrand Meyer, pp. 133-149.

[Mili et al., 1995a] H. Mili, F. Mili, and A. Mili, “Reusing Software : Issues and Research Directions”
IEEE Transactions on Software Engineering, June 1995, pp.

[Mili et al., 1995b] H. Mili, F. Pachet, I. Benyahya, and F. Eddy, “Report on the OOPSLA'95 Workshop
on Metamodeling” Addendum to the OOPSLA'95 proceedings, ACM SIGPLAN notices.

[Missaoui et al.,1998] R. Missaoui, H. Sahraoui, and R. Godin, “Migrating to an Object-Oriented
Database Using Semantic Clustering and Transformation Rules” to appear in Knowledge and
Data Engineering, 1998.

[Revault & Sahraoui, 1995] N. Revault and H. Sahraoui, “A Metamodeling Technique: The MétaGen
System” in Proceedings of TOOLS Europe ’95, Versailles, France, 1995.

[Rivard, 1996] F. Rivard. Smalltalk: a Reflective Language. In REFLECTION'96, pages 21--38, San
Franscico, USA, April 21-23 1996. Ed G. Kiczales, http://www.emn.fr/ deptinfo/rivard/
perso/informatique/reflection96/reflection96.htm

