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Abstract

This position paper describes two families of approaches
to automatic analysis of tonal music: approaches based
on purely numerical computations, and approaches based
on symbolic models. Both approaches have been used in
our team with great success, but they address different
levels  of  difficulties,  and  aim  at  analyzing  different
corpus of musical material. Indeed, they are difficult to
reconcile and use in a single collaborative environment.
We claim that finding ways to integrate smoothly both
approaches  is  the  only  real  bottleneck  to  producing
reliable automatic harmonic analyzers.

1. Introduction
Humdrum  [Huron,  1994]  is  a  set  of  general-purpose
software tools developed at university of Waterloo (Canada),
intended  to  assist  researchers  in  posing  and  answering
research questions. Humdrum is one of the most ambitious
attempts  so  far  at  providing  computational  power  to
musicians in order to perform complex analysis of musical
pieces.  In the Faq file of the Humdrum package, one can
read  the  following  question/answer:  "Can  Humdrum  do
automatic roman-numeral type harmonic analysis ?", answer
is:  "Not  currently.  Programs  to  do  automatic  functional
analysis  are  not  sufficiently  reliable  to  be  used  in  music
scholarships". This position paper aims at giving insights on
the real limitations of current research in automatic analysis
of tonal music.

We are interested in building reliable automatic analysis
software systems (as opposed to tool kits). This motivation
is not a challenge made by a team of ambitious computer
scientists. Rather, we think that only automatic analysis of a
large corpus of tonal music may eventually provide us (the
human)  with  insights  on  the  very  nature  of  tonal  music.
Among our goals, we are interested for example in: finding
sets  of  rules  governing  the  structure  and  shape  of  "well-
balanced" melodies, uncover rules governing musical styles
of Bach or Mozart, or rules expliciting the judicious choice
of  modulations.   Our  ultimate  goal  is  to  write  a  modern

treatise  on  harmonization  and  orchestration  that  can  be
directly used by students to help them have a solid grasp on
tonal music without having to spend years studying musical
corpus.

Analyzing music automatically is a challenging task for
Artificial Intelligence for many reasons : musical material is
made up of a great variety of information (timbre, pitches,
rhythm,  dynamics,  harmony)  ;  unlike  image,  music  is  a
linear  (temporal)  process.   An  obvious  analogy  is  to
compare it with verbal speech, without the complexity of the
reference to some material  signifié .  Finally, some parts of
the  repertoire,  from  Bach  chorals  to  Real  Book  be-bop
tunes,  make  up  well  defined  subsets,  thereby  allowing
exhaustive empirical studies.

Research  works  on  automatic  musical  analysis  use
different  approaches of  the  phenomenon corresponding to
different lines of action : the choice of analyzing directly a
sound  document,  a  MIDI  file  (i.e.  the  result  of  a
performance),  a  score  (that  contains  all  information
regardless  of  interpretation),  or  an  harmonic  grid,  greatly
influences the choice of a  method as well as the choice of
the features of the resulting programs, such as the possibility
or  obligation for  the user  to intervene during the analysis
process or the ease he'll have to correct its results.

This paper first shortly reviews the major researches on
automatic analysis of tonal music at a higher level than the
rough  physical  signal  level.  Some  of  these  works  try  to
extract some higher level information from the chosen input
data (e.g. ciphering harmonies from a score) ; others aim at
detecting  regularities in  the  data  (e.g.  forming  a  set  of
grammar  rules  for  a  corpus,  yielding  statistical
regularities, ...). It  is believed here that these two types of
analysis  cooperate  and  complement  each  other.  A  full
synthesis  of  these  works  in  currently  is  progress  [Pachet,
1995].   The  emphasis  here  will  be  put  on  two important
dimensions of 



research  on  analyzing  automatons  that  have  never  been
successfully  combined:  1)  numeric tools,  based  on
measurements performed on the data followed by the use of
thresholds for making decisions, and 2) symbolic tools, that
use abstract concepts and relations together with symbolic
inferences.  We will  discuss  the  various  pros  and  cons  of
these two kinds of approaches, and the ways to lead them to
cooperation, according to our experience in this field.

2. Major  researches  in  automatic  musical
analysis

Computer  analysis  of  tonal  music  has  been  tackled  by
virtually  all  available  computer  formalisms  and
methodologies  :  grammar-based,  constraint-based,  frame-
based, network based.  Historically, there has been a strong
tradition in  computer  music to  try to find grammar-based
models that capture essential aspects of the deep structures
of  the  music  being analyzed.   The proposed  models  owe
much to the work of [Lerdahl and Jackendoff, 1983], who
crystallized a long tradition of efforts to adapt or transpose
linguistic theories, and especially Chomskian theories, to the
musical  domain.   As  Lerdahl  and  Jackendoff  themselves
mention, these models are not intended to provide directly
an implementation model or a  set  of algorithms.  Indeed,
several  later  efforts  have  concentrated  in  trying  to
implement  the  grammar-based  models,  with  more  or  less
limited success (see e.g. [Deliège, 1994].

However,  all  the  models  proposed  are  not  standard
generative  models.  [Roads,  1988]  reviews  grammar-based
approaches for analysis and generation purposes, and shows
how different grammar models account for various musical
tasks,  emphasizing  on  the  relative  difficulties  of
implementing these models, particularly models containing
so-called  context-dependent  rules.   Among  these
approaches, [Steedman, 1984] provides an elegant grammar
for 12-bar blues. His grammar contains context-free as well
as context-dependent rules. The mere presence of context-
dependent  rules  makes  his  model  not  suitable  for
implementation,  and  therefore  can  only  be  useful  in  a
"contemplative  mode".  Other  approaches  for  finding
grammars to be used for tonal music include [Sundberg and
Lindbloom,  1993],  and  [Olshki,  1984].   [Laske,  1993]
argues that grammars should be seen mainly as explications
of musical competence.

Based on this discrepancy between 1) the elegance and
lack  of  workability  of  grammar-based  models  and  2)  the
need of building effectively systems for empirical studies,
several  attempts  have  been  made  to  build  systems  that
perform some kind of harmonic analysis automatically.  In a
first category, systems aim at providing tools for computer-
assisted analysis.  This is typically the case of [Byrd, 1977],
[Brinkman,  1980]  and  [Smoliar,  1980].   Because  we  are
interested only in analyzing large corpus of musical material
automatically, tool kits are not appropriate.

The second category of systems tries to produce complete
analysis  of  musical  material  without  human  intervention.
Real  complete  analysis  is  much more  difficult  than  mere
tabulation of data about surface features.  [Rothgeb,  1968]
was  the  first  to  tackle  the  "Figured  bass"  problem,  i.e.
provide harmonizations of figured bass lines.  As he points

out in [Rothgeb, 1989], the most tangible result of this work
seems to be the definitive proof that classical treatises are
largely insufficient and under-specified : "General solutions
to the unfigured-bass problem were probably inaccessible to
procedures  of  the type represented by those of  Heinichen
and  Saint-Lambert".   In  the  purely  analytical  domain,
[Winograd, 1993] used Augmented Transition Networks (an
extended  grammar  formalism)  to  implement  analysis  of
Bach  chorales.  [Winold  and  Bein,  1983]  use  a  standard
artificial intelligence approach to tackle the same problem.
Inspired  by  these  works,  [Maxwell,  1992]  proposes  an
expert  system in the form of a  set  of  production rules  to
perform  harmonic  chord  function  analysis.   His  system
includes  55  rules  organized  in  three  levels  of  control  (or
meta rules).  Other approaches have been used for similar
tasks:  [Ulrich,  1977]  analyses  jazz  harmonies,  with  an
"island-growing"  approach  that  has  an  appealing  organic
quality.  [Steels, 1979] uses a constraint-based approach to
reason about tonal  structures in music,  and shows how to
solve  the  "passing-chord  problem"  using  constraints,  by
inserting a chord that is harmonically "near" its predecessor
and  successor.   Finally,  [Meehan,  1980]  uses  conceptual
dependency graphs to implement the implication/realization
theory of [Narmour, 1977] .

3. Two systems for AHA
We  conducted  some  research  on  automatic  analysis  of

tonal  music  for  several  years  in  two  directions.  First,  a
research is in progress that  uses  statistical  and procedural
methods to  produce reliable automatic analyzers  for  large
corpus  of  tonal  music,  mainly  taken  from  the  classical
repertoire. This work addresses a series of problems such as:
1)  a  pitch  speller  that  reconstitutes  enharmonic  spelling
from  context,  given,  e.g.  a  rough  MIDI  file,  2)  a  style
recognizer for complex orchestrations (e.g., detects "Alberti
bass" from a non-annotated score), a pure harmonic analyzer
(detects  underlying  tonalities  in  a  score),  leading  to  a
harmonic ciphering system, a  regularity extractor for tonal
material [Mouton, 1995].   Second, we developed a model
and a system that produces correct harmonic analysis of jazz
chord sequences as found in the Real Book or Fake Book
series.   This  model  uses  purely  symbolic  methods  taken
from object-oriented knowledge representation, production
rules,  and  declarative  control  architecture  [Pachet,  1991].
Both approaches share a common goal: be able to produce
reliable,  fully  operating  systems  that  produce  acceptable
analysis  for  most  of  the  corpus  analyzed.   We will  now
describe each approach more in detail.

3.1. The NUSO system

The NUSO system aims at providing musicologists with a
set of automatic tools for analyzing tonal music. 



It mainly addresses the classical,  non-improvised, written
musical corpus.

The first feature NUSO provides is an automatic translator
from MIDI files into an analytic notation. Such a translator
has to find the spelling of enharmonic notes (like G# and
Ab), that share the same key on the keyboard and thus the
same MIDI number. The correct spelling for a note depends
on several considerations, such as: the ambient tonality and
the roles the note plays in the harmony and in the melody. At
this  stage  of  the  analysis,  NUSO  just  produces  a  "first
guess" of the spelling based on an estimation of the ambient
tonality. To estimate the tonality at each point of the piece,
we  first  use  several  successive  filters that  count  the
occurrences of each pitch class in the MIDI file.  Then the
tonality is estimated by considering the local frequency of
the  pitch  classes,  in  view of  some  basic  assumptions  on
these frequencies in tonal music. These assumptions are:

 - "the most frequent notes are the tonic and the dominant",
 - "the most frequent chords are the triad of the tonic and the
seventh chord on the dominant",
and so forth.
Finally, each note is given an unique spelling in the most
likely tonality at its location.

Some further analyzing features use or will use the same
kind  of  filtering  methods.  Comparing  the  number  of
different pitches, the number of different pitch classes, and
the number of notes struck by each instrument within a lapse
of  time  gives  an  idea  of  the  orchestration  style  (parallel
chords with or without doubling of notes, parallel octaves,
Alberti-style melodic bass accompanying a melody, ...). The
frequencies  of  the  pitch  classes  obtained  by  the  previous
filters,  along  with  the  use  of  weights  depending  on  the
rhythmic and orchestral position of each note, lead to chord
detection  and  harmonic  ciphering.  The  weights  are
computed in relation with the orchestration style detected,
the  style  of  the  piece  (baroque,  romantic,  ...)  and  some
statistic assumptions :

- "in the case of an accompanied melody, the notes of the
melody are  more  likely  to  be  ornamental  (non-harmonic)
than the notes of the accompaniment" (see figure 2),
- "in the case of rich, complex parallel chords, it is likely
that each stroke can be analyzed as a chord (as opposed to
an Alberti bass where the chords are spread into arpeggios)",
- "in the baroque style, the seventh of the dominant can be
struck at the same time as the chord only if the leading note
is at the bass",

etc.
A threshold gives the possibility of adapting dynamically

the width of the filtering window.

A third step of the analyzing process by NUSO detects the
regularities in different texts extracted from the music by the
musicologist  user  (helped  by  suggestions  of  NUSO).  For
instance, providing this regularity detector with the list  of
the intervals of a melody - the alterations being ignored in
this context - will show the repetitions in this melody, with
possible  changed  mode  and/or  tonality.  Again,  statistic
assumptions such as:

- "a theme is longer than the pattern of a harmonic march",
- "the pattern of a development is usually extracted from a
theme", etc.,
along  with  the  previously  estimated  harmonic  ciphering,
lead to the recognition of themes, patterns and conclusive
formulas.  The  different  ornamentations  of  a  pattern  are
detected by the regularity detector if it is provided with a list
of  the  "important  notes"  of  the  piece,  or  the  intervals
between  them.  A  selection  of  the  "important  notes"  is
proposed  by  NUSO  according  (again)  to  statistic
assumptions, such as:

- "notes that are part of the chords are more important than
melodic ones",
- "long notes are more important than short ones", etc. (see
figure 1).

Figure 1. Detecting ornementations of a given motif.

Figure  2.  Finding  the  underlying  tonality  of  an  accompanied
melody. 

3.2. The MusES system

The aim of the MusES system is to build up a model for the
analysis of jazz chord sequences, as found in the standard
corpus of [Real, 1981], or [Fake, 1983; 1991].  Our goal is
similar in spirit to the goal of the NUSO system in that we
want our model to be fully operational, and account for most
of the regularities found in this corpus. The very nature of
the corpus 



however, calls for utterly different techniques as is described
here. 

The  problem of  jazz  chord  sequence  analysis  consists  in
computing, for a given chord sequence (as the one in Figure
5). the underlying tonality of each of its chords. The main
characteristics of this analysis is that it is hierarchical: a tune
may be globally in C major, but some parts of it may be in F
(modulation),  and  so  on.   Generally  speaking,  harmonic
analysis  produces  a  tree  with  which  each  chord  of  the
sequence may be analyzed, at several levels of abstractions.
Figure 6 shows one possible analysis tree for  the tune in
Figure 5.

Lastly, the aim of the analysis is usually to provide, for each
chord  of  the  sequence,  indications  to  the  musicians  for
improvisation.  These  indications  are  the  underlying
tonalities  (at  all  levels  of  abstractions),  as  well  as
identifications of well-known "patterns" that make sense for
the improviser, because he will be able to use pre-defined
licks well adapted to these patterns.

The theory behind, revisited

Like classical harmony, tonal jazz harmony is a well studied
domain, as one can see by browsing at the numerous books
written  on  this  subject  [Beaudoin,  1990;
Coker,  1964] .  However,  few  books
attempt at providing a model for the analytic process per se.
The  situation  is  actually  comparable  to  the  situation  in
linguistics  :  if  lots  of  works  have  attempted  to  find
grammars  for  natural  languages,  only  few  operational
models of language understanding have been developed.

Before  describing  our  model  for  analysis,  we  propose  to
formalize the problem around three major points, as follows:

A) Basic principles
The theory is based on two major principles: 

1) A "legality" principle
This principle says that each chord, out of any context, can
be analyzed in a fixed set of possible tonalities. A tonality is
faithfully  represented  as  a  scale  (a  list  of  notes)  and  a
degree. For instance, a C major chord may be analyzed as: I
st degree of C major scale, IVth degree of G major, Vth of F
major, VI de E harmonic minor, and so forth.  Note that the
computation of this "legal set" is entirely deterministic. 

2) A minimization principle
In a context, the choice of the "good" tonality for a chord
will of course depend on its location, and its relation with
adjacent chords. The main idea here is that the best tonality
will  be  the  one  that  minimizes  modulations,  i.e.  that  is
common  to  the  greatest  number  of  adjacent  chords.  For
instance, the sequence (C / F / E min / A min) has only one
tonality that is common to all chords: C major.

B) Perturbations
This nice and simple theory is complicated by phenomenons
that escapes rigorous formalization, but which are essential
to  capture  the  essence  of  the  process:  substitutions  and
idioms.

First,  some chords  may be substituted  by  others,  and  the

substitute often violates the legality principle. For instance,
a  seventh  chord  that  resolves  may  be  substituted  by  its
tritone seventh (C7 -> F#7).  Second, there are a number of
well-known idiomatic "musical shapes" that bear particular
harmonic meaning in themselves. This is the case of "two-
fives", turnarounds, and other similar shapes.  These shapes
are remarkable in  that  they may be  analyzed out  of  their
context.  Thus, the sequence "Cmaj7/A 7/Dmin7/Db7" is in
itself a turnaround in C major, regardless of the fact that C
major  does  not  belong  to  the  legal  set  of  Db7.  In  other
terms, Db7  in abstracto may not be analyzed in C major,
and can only be within such a musical shape.

C) Recursion
Lastly,  the  process  is  recursive.  This  means  that  any
recognized shape may itself be considered as atomic for a
higher level of analysis. This recursive nature accounts for
the  hierarchical  nature  of  the  analysis.   For  instance,
resolving seventh chords may be considered as preparations,
and therefore integrated to their resolving chord. Typically,
the sequence: "A7 / D7 / G7 / C"
may be entirely analyzed in C major, thanks to a recursive
reasoning (see Figure 3).

A7   /   D7  /   G7   /   C

D7
G7

C
Figure  3.  The hierarchical nature of the analysis of a group of
chords.

At the highest level, global macro forms are introduced in a
similar fashion. Thus, a Blues is identified by a succession
of  3 musical  shapes,  covering  12  bars,  and  such  that  the
fourth of the root of the middle one's tonality is equal to the
root of the first and of the last shape.  Structures such as
AABA or ABAB may be described similarly.

The analysis reasoning in MusES

Our approach is based on an explicit reconstruction of the
reasoning process. This process is represented by 1) a rich
representation  of  the  concepts  used  during  the  reasoning,
and 2) a representation of the reasoning by production rules.

The objects used during the analysis reasoning are basically
the  objects  making  up  the  universe  of  discourse,  i.e.  the
chords and the chord sequence, together with more abstract
objects  that  represent  the  various  shapes  and  tonalities
identified during the 



reasoning.  These  abstract  objects  are  represented  in  a
conceptual hierarchy (see Figure 7).

The reasoning process per se is represented by a series of
rule bases, that basically perform two kinds of tasks:

- a "pattern recognition" task
in  which  higher  level  shapes  are  identified  from
configurations of lower level shapes.

- a "forgetting" task
in which irrelevant or redundant shapes are destroyed.

Pattern recognition rules all follow the same pattern:

FOR a1 a2 instances of  AnalysableObject
IF  some  harmonic  properties  between  a1  and  a2 are
satisfied
THEN
Create an  instance  of  a  particular  class  (subclass  of
Shape) covering the durations of a1 and a2.
Establish the  composition  link  between  the  newly
created shape and a1 and a2.

For  instance,  here  is  the  rule  (in  a  Smalltalk-like  pseudo
syntax)  that  recognizes  a  two-five  in  major  (such  as
"Dmin7/G7"):

majorTwoFive
FOR a1 a2 instances of  AnalysableObject

IF
c1 isMinor.
(c1 hasA: #flatFifth) not.
c2 isAfter: c1.
c2 isMajor.
c2 hasA: #minorSeventh.
c2 root pitchEqual: c1 root fourth.

THEN
Create a TwoFive, x.

x beginBeat: c1 beginBeat; endBeat: c2 endBeat.
x tonality: (c2 root fourth majorScale);

Establish composition lik between x and c1 and c2 .

Other  rules  describe shapes such as  resolutions (A7 /  D),
turnarounds, and substitutions.  More abstract rules describe
more complex phenomenons such as "modal borrowing": a
local  modulation may be considered as  non significant  in
certain  cases,  when  it  comes  in  between  two  shapes
analyzable in the same tonality (Cf. Figure 4).

shape X
in C

shape Z
in C

shape Y
in Ab

Figure 4. Modal borrowing configuration.

Forgetting rules
The second type of rules describe typical situations in which
recognized shapes may be safely forgotten, to speed up the
reasoning process, and avoid combinatorial explosion.  Such
rules include rule removeSubsumedShapes, that allows
forgetting a shape safely without loosing information, when

it is subsumed by another shape of the same tonality:

removeSubsumedShapes
FOR c1 c2 instances of ObjectInASequence 

IF 
c1 subsumes: c2.
c1 ~= c2.
c2 tonality notNil.
c1 tonality notNil.
c1 tonality  = c2 tonality.

THEN
chordSequence removeAnalysis: c2

The overall reasoning is therefore represented as a series of
rule  bases  alternating  shape  recognition  and  shape
forgetting. The precise scheduling of tasks in described in
details in [Pachet, 1995b]. At the end of the reasoning, the
complete analysis tree is produced.

The  system  is  now in  the  evaluation  phase,  and  already
proved capable of analyzing blues chord sequences deemed
difficult by [Steedman, 1984].

4. Why combining ?
Each  approach  has  proved  particularly  well  suited  to

specific tasks, and terribly awkward for other. Here are two
typical examples of this discrepancy.

For  instance,  finding  the  most  probable  underlying
tonality of the sequence of notes in Figure 2 is an easy task
for  a  system  that  computes  statistical  weights.  Simply
computing the frequency of each notes shows that the most
frequent notes of the sequence are C, E, G.  Based on the
assumption  that  the  root,  fifth  and  third  are  the  most
frequently used notes for a given tonality, and based on the
fact that these notes are on strong metric positions, inferring
that the sequence is in C is then trivial.

In the Jazz chord analyzer, the model is based on "shape
recognition" scheme that  produces a  tree of  analysis  with
several levels of abstraction. The leaves of the tree are the
chords of the sequences. Intermediary nodes represent well
known harmonic shapes, such as "two-fives", turnarounds,
or substitutions. Higher-level nodes represent more abstract
shapes such as Blues, ABAB, or AABA. The system used
production rules combined with objects to detect shapes on
multiple  levels.   The  system has  proved particularly  well
adapted  to  the  be-bop  tune  corpus.  For  instance,  the
sequence of chords: "Cmaj7/Eb7/Abmaj7/Dbmaj7" is easily
recognized  as  an  instance  of  a  turnaround  in  C  major,
possibly with some substitution of seventh chord.

However, it is clear that such a model is utterly incapable
of solving the first problem.  Conversely, be-bop tunes are
often  so  twisted  by  multiple  substitutions  and  harmonic
tricks  that  the  use  of  statistics  based  on  the  relative
frequency  of  roots,  fifths  and  thirds  does  not  suffice  to
uncover the actual harmonic intentions of the grid.



5. Discussion: thresholds vs. rules
Two important remarks must precede the comparison of

numeric and symbolic methods. The first  is,  that  the only
pure numeric  systems  are  neural  networks.  In  any  other
system, if the system performs more than just counting the
occurrences of some totally defined pattern, some rules must
exist  to  decide  what to  measure and  where to  measure  it
according  to  the  expected  result  and  according  to
information already obtained.  For instance, some rule must
say  that  if  you  found  a  cadence,  then  you  should  look
backwards in the sequence for a possible preparation for the
cadence [Mouton, 1994].

The  second  remark  is  that  both  kinds  of  information,
numeric  and  symbolic,  can  be  useful  and  interesting  to
perform analysis. However, symbolic information is usually
much  more  valuable,  because  it  is  more  synthetic.  For
instance, saying that the "leading note usually goes up to the
tonic",  is  more efficiently represented in such terms, than
with  statistics  and  numbers  as  "in  90%  of  cases,  B  is
followed  by  C".   This  is  not  only  because  rules  are  less
flexible  than  real  numbers.   The  difference  is  deeper  as
pointed out by [Lenat, 1992]. Indeed, stating that the leading
note leads up to the tonic is a statement that stands by itself,
and  does  not  induce  any  commitment  on,  say,  the  way
"thirds  would  descend  a  fourth  to  the  seventh".   On  the
contrary,  representing  such  a  rule  with  numbers  induce  a
total order that is misleading, both for the human user and
for the system.  In a way, saying it with figures implies too
many things that are simply not wanted. For instance, if a
system finds out that " in 60% of cases, the second leads up
to the third" and "in 55 % of cases the sixth goes down to
the  fifth";  the  same  system would  implicitly  assume that
"second leads up to the third" is more probable than "the
sixth goes down to the fifth", and make the corresponding
decisions during the  computation,  which is  simply wrong
and dangerous.

In  many  cases,  however,  symbolic  rules  are  mainly
justified by statistics : in the foreword of a good treatise on
harmony, it  will  generally be written that  the rules  of the
treatise should always be implicitly preceded by a modifier
such  as  "in  most  cases"  or  "if  there  is  no  particular
intention".   Therefore  the  numeric  result  can  be  a  useful
information,  even  without  thresholding  or  making  any
decision.

The first problem encountered by computer analysis is to
find a trade-off between modeling and implementabiliy. The
systems that give a good model for the phenomenon they
study (a  corpus  or  a  human  competence)  are  usually  not
easy  to  implement.  On  the  other  hand,  the  systems  that
really  perform  the  task  of  analyzing  music  have  seldom
satisfactory  explanatory  power.  This  can  look  like  an
advantage for the rule-based systems, because each rule of
such  a  system is  a  piece  of  symbolic  knowledge  that  is
supposed to bear some semantics in itself.  On the contrary,
it is very difficult to interpret a neural network.  In practice,
the  problem  of  interpretation  is  to  be  found  in  both
approaches : a system that uses ad hoc or too many rules is
not more explanatory than a system based on thresholding :
the synthetic information looked for can be hidden behind a

heavy inference engine as easily as behind numerization.
Once solved  the  problem of  implementation  comes  the

question of the  reliability of an analyzing automaton. The
basic rules of a rule system are perfectly reliable, because
they give a yes or no answer about the presence of such or
such figure in the data. However, the whole system can be
very  sensitive  to  rare  cases and  perturbed  by  them
[Steedman, 1984]. It can also be unreliable when it contains
incompatible  or  competing  rules.  A threshold  system  is
intrinsically  not  perfectly  reliable,  but  the  distance  to  the
threshold gives a simple - and reliable - evaluation of the
reliability of the results. The difficulty there is to propagate
and  combine  such  an  evaluation  along  several  analyzing
processes. For example, a Midi file may be spelled out with
a resulting probability of p1, with will then be used by a
ciphering process, that adds up a probability of p2. Although
fuzzy logic may provide some answer to this question, the
resulting  probability is  not  clear  in  terms of the musical
process involved.

The  comparison  of  the  two  systems  is  particularly
enlightening on the following points:

1) Ornementations
In  the  NUSO  system,  there  are  an  infinite  number  of
possible  ornementations  (examples  of  figure  1  could  be
expanded at will), but each ornamentation is relatively close
to the original: filtering methods may exploit the stability of
the variations. In the MusES system, substitutions play the
role  of  ornamentation.  As we saw,  substitutions introduce
violent  "illegal"  tonalities  (epitomized  by  the  ubiquitous
tritone substitution). But this instability is compensated by
the fact that these substitutions are not infinite, and can be
easily  listed  once  for  all.  In  this  case,  an  explicit  and
symbolic representation of the analytic process is not only
possible, but necessary.

2) Temporal models of the musical world
It is important to note the importance of the representation
of  temporal  structures  underlying  each  model.  In  MusES
particularly, the temporal model plays a crucial role. This is
most visible in the problem of linking ends to beginning of
pieces.  In  jazz  chord  sequence,  there  is  an  implicit
assumption  that  the  end  of  a  sequence  turns  back  to  its
beginning. We discovered that it is extremely important to
represent this property of chord sequences explicitly in the
model.  It  allows to  explain some difficult  modulations in
sequences such as:  (C/C7/F/..../G 7), where the first chord
(here C) should be analyzed as a first degree, followed by a
modulation in F. In fact, the analysis of C as first degree of
C is possible only if the end of the piece (G 7) is connected
to the beginning, thereby strengthening the C major tonality
of C for the first chord. Otherwise, since C is analyzable in
F, the C chord is "incorporated" in the tonality of F !



In the NUSO system, the situation is quite the opposite. Not
only classical pieces do not end by un-resolving sevenths (so
the problem of connecting ends to beginnings is irrelevant),
but  moreover,  once  can  safely  make  the  assumption  that
endings of tunes actually resolve in the main tonality. This
assumption may be used by the automatic analyzer safely to
infer quickly the overall tonality of a piece, whereas at the
beginning of  the analysis,  whereas  the information of  the
overall tonality is only deduced at then end of the reasoning
process in MusES.

3) Bootstrap hypothesis
There are a number of cases where some circularity in the
analytical process are to be found. For instance, in NUSO,
the  estimation  of  the  tonality  of  a  piece  is  used  by  the
orthographier module itself leading to the ciphering module,
which in turn may be used to infer the tonality. Similarly, the
detection of a melodic repetition can lead to the detection of
a  harmonic  repetition,  itself  leading to  the  detection of  a
melodic repetition.  Finally, the estimation of the style (e.g.
orchestral)  may be  used  to  infer  the  bass,  which in  turns
gives indications on the style.

In MusES, these circularities are represented in the form
of  conflicts  in  the  rule  inference  cycle,  and  therefore
represented by conflict resolution strategies.

6. Conclusion : towards a cooperation
There  are  classical  ways  to  mix  numeric  and  symbolic

methods in AI. Rules can be numerized by "fuzzyfying" the
logic they are based on, or symbolic information forced out
of a numeric system by giving a name to each threshold. The
comparisons of section 3, along with our own experience,
allow us to give some guidelines.

In a general manner, numerizing some parameter comes
down  to  giving  up  any  grammatical  meaning for  that
parameter. The rules within a rule system reach their limit of
refinement when it comes to numbers. So the natural way to
make  numeric  and  symbolic  systems  cooperate  is  to  let
upper-level symbols rule the organization and use of lower-
level  procedural,  numeric  features.  These  two  layers,
numeric and symbolic, are not always separated in the way
the automaton is implemented, but, in order for the system
to keep some explanatory power, the constructor should take
care of the possibility of examining them separately when
interpreting the system once it is run. This, indeed, reflects
the way a neurologist can look at a brain : either as a set of
cells that exchange numeric data, or as a set of zones that
interact to perform logical, symbolic operations.

In  practice,  if  rules  can  stay  together  in  a  jumble,  we
found difficulties to make numeric processes communicate
between different levels in an analysis. A numeric process
does  not  easily  take  into  account  information  obtained
previously,  and  does  not  perform  "feedback"  deductions
easily.  In  the  case  of  harmonic  analysis,  for  instance,  an
estimation of the tonality of a given passage can lead to a
change in the ciphering of the underlying chords, but this
change of ciphering can in turn lead to a different analysis of
the tonality. We found it difficult in NUSO to let each step
of the analyzing process be able to take into account some
information  computed  by  a  further  level  of  the  analysis,

because each level computes a specific kind of information,
that eventually uses a specific notation, that is meaningful
for  an  eventually  different  scale  of  time  or  a  different
grouping  of  the  events  (chords,  melodies,  ...).   In  fact,
numeric methods force to segment the task, because they are
always low-level, even if they apply to the results of some
previous  high-level  computation  or  if  they  count  the
applications  of  the  rules  of  some  other  system.  So  the
explanation given by a  set  of  numeric  processes  is  to  be
looked  for  in  the  way  these  processes  constrain  the
segmentation  of  the  task,  and  in  the  resulting  significant
categories, more than in the way the task is performed. Such
a  segmentation  by  numeric  layers  can  also  avoid  a  rule
system to be too bushy to give any explanation.

A general direction that may provide hints as to when to
use which approach is to remark that the symbolic approach
is well adapted to musical problems for which there exists
some  discourse  on  the  abstract  shapes  to  be  conceived
during the reasoning.  In the jazz chord sequence problem,
such  shapes  are  two-fives,  harmonic  series,  and  tune
structures.   When no such discourse exists -  which is the
case for the analysis of arbitrary sequences of notes - then
only statistical methods together with strong assumptions on
the frequencies of notes can be used. Therefore, the present
situation  looks  like  a  dilemma:  for  "shapeless"  material,
numerical methods are quite appropriate, but then there is a
feedback or recursion problem.  When the domain allows a
reasonable reification of analysis objects - such as for jazz
chord sequences - the recursion problem may be avoided,
but  the  approaches  requires  a  totally  explicit  model,  i.e.
there can be dangerous "holes" in the rule systems that are
not easily filled.
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Figure 5. A typical jazz chord sequence to be analysed by MusES.

1-48 BluesShape in F MajorScale
45-4 ResolvanteEndToBeginning in F MajorScale

45-48 ChordSubstitution in F MajorScale
45-48 TwoFive in F MajorScale

[G #min 7 ]
[C 7 ]

[F #maj7 ]
5-20 ChordSubstitution in Bb MajorScale

5-20 Resolvante in Bb MajorScale
5-16 ChordSubstitution in Bb MajorScale

5-16 TwoFive in Bb MajorScale
5-14 ChordSubstitution in C HarmonicMinor



5-14 Resolvante in C HarmonicMinor
5-12 ChordSubstitution in C MajorScale

5-12 TwoFive in C MajorScale
5-10 ChordSubstitution in D HarmonicMinor

5-10 Resolvante in D HarmonicMinor
5-8 ChordSubstitution in D HarmonicMinor

5-8 TwoFive in D HarmonicMinor
[E #halfDim7 ]
[A 7 ]

[D #min 7 ]
[G 7 ]

[C #min 7 ]
[F 7 ]

[Bb #maj7 ]
17-48 ExtendedShape in F MajorScale

17-46 ExtendedShape in F MajorScale
17-44 ExtendedShape in F MajorScale

[Bb #maj7 ]
21-44 ExtendedShape in F MajorScale

21-42 ChordSubstitution in F MajorScale
21-42 Resolvante in F MajorScale

21-40 ChordSubstitution in C MajorScale
21-40 Resolvante in C MajorScale

21-32 ChordSubstitution in Db MajorScale
21-32 Resolvante in Db MajorScale

21-28 ChordSubstitution in D MajorScale
21-28 Resolvante in D MajorScale

21-24 ChordSubstitution in Ab MajorScale
21-24 TwoFive in Ab MajorScale

[Bb #min 7 ]
[Eb 7 ]

25-28 ChordSubstitution in G MajorScale
25-28 TwoFive in G MajorScale

[A #min 7 ]
[D 7 ]

29-32 ChordSubstitution in Gb MajorScale
29-32 TwoFive in Gb MajorScale

[Ab #min 7 ]
[Db 7 ]

33-40 ChordSubstitution in F MajorScale
33-40 TwoFive in F MajorScale

[G #min 7 ]
[C 7 ]

[F #maj7 ]
[D #min 7 ]

[G #min 7 ]
[C 7 ]

Figure 6.  The complete analysis of the chord sequence of Figure 5.

TemporalObject
ObjectInASequence ('chordSequence' 'conceived')

AnalysableObject ('analysisList')
ChordInASequence ('chord' 'before' 'after')
Shape ('subShapes')

ChordSubstitution ('chord')
MusicalShape ('tonality')

AmorphousShape ()
ComposedShape ()

ExtendedShape ()
ExtendedIntersectedShape ()
GlobalShape ()

BiTonalShape ()
MonoTonalShape ()
QuadriTonalShape ()
TriTonalShape ()

EmpruntModal ()
KnownShape ()

BluesShape ()
BluesySubstitution ()
Resolvante ()
TurnAround ()
TwoFive ()
TwoFiveOne ()

TransitionChordSequence ('beforeTonality' 'afterTonality')



Figure 7. The various classes representing abstract analysis objects (attributes are between parenthesis).


