
The Symbolic vs. Numeric Controversy
in Automatic Analysis of Music

Rémy Mouton François Pachet
Laboratoire Son & Vision,

Université Paris I, 162 rue Saint-Charles,
75016 Paris, France

Email: mouton@clipper.ens.fr

Laforia-IBP, Université Paris 6, Boîte 168,
4, Place Jussieu, 75252 Paris Cedex

France
Email: pachet@laforia.ibp.fr

Abstract

This position paper describes two families of approaches
to automatic analysis of tonal music: approaches based
on purely numerical computations, and approaches based
on symbolic models. Both approaches have been used in
our team with great success, but they address different
levels of difficulties, and aim at analyzing different
corpus of musical material. Indeed, they are difficult to
reconcile and use in a single collaborative environment.
We claim that finding ways to integrate smoothly both
approaches is the only real bottleneck to producing
reliable automatic harmonic analyzers.

1. Introduction
Humdrum [Huron, 1994] is a set of general-purpose
software tools developed at university of Waterloo (Canada),
intended to assist researchers in posing and answering
research questions. Humdrum is one of the most ambitious
attempts so far at providing computational power to
musicians in order to perform complex analysis of musical
pieces. In the Faq file of the Humdrum package, one can
read the following question/answer: "Can Humdrum do
automatic roman-numeral type harmonic analysis ?", answer
is: "Not currently. Programs to do automatic functional
analysis are not sufficiently reliable to be used in music
scholarships". This position paper aims at giving insights on
the real limitations of current research in automatic analysis
of tonal music.

We are interested in building reliable automatic analysis
software systems (as opposed to tool kits). This motivation
is not a challenge made by a team of ambitious computer
scientists. Rather, we think that only automatic analysis of a
large corpus of tonal music may eventually provide us (the
human) with insights on the very nature of tonal music.
Among our goals, we are interested for example in: finding
sets of rules governing the structure and shape of "well-
balanced" melodies, uncover rules governing musical styles
of Bach or Mozart, or rules expliciting the judicious choice
of modulations. Our ultimate goal is to write a modern

treatise on harmonization and orchestration that can be
directly used by students to help them have a solid grasp on
tonal music without having to spend years studying musical
corpus.

Analyzing music automatically is a challenging task for
Artificial Intelligence for many reasons : musical material is
made up of a great variety of information (timbre, pitches,
rhythm, dynamics, harmony) ; unlike image, music is a
linear (temporal) process. An obvious analogy is to
compare it with verbal speech, without the complexity of the
reference to some material signifié . Finally, some parts of
the repertoire, from Bach chorals to Real Book be-bop
tunes, make up well defined subsets, thereby allowing
exhaustive empirical studies.

Research works on automatic musical analysis use
different approaches of the phenomenon corresponding to
different lines of action : the choice of analyzing directly a
sound document, a MIDI file (i.e. the result of a
performance), a score (that contains all information
regardless of interpretation), or an harmonic grid, greatly
influences the choice of a method as well as the choice of
the features of the resulting programs, such as the possibility
or obligation for the user to intervene during the analysis
process or the ease he'll have to correct its results.

This paper first shortly reviews the major researches on
automatic analysis of tonal music at a higher level than the
rough physical signal level. Some of these works try to
extract some higher level information from the chosen input
data (e.g. ciphering harmonies from a score) ; others aim at
detecting regularities in the data (e.g. forming a set of
grammar rules for a corpus, yielding statistical
regularities, ...). It is believed here that these two types of
analysis cooperate and complement each other. A full
synthesis of these works in currently is progress [Pachet,
1995]. The emphasis here will be put on two important
dimensions of

research on analyzing automatons that have never been
successfully combined: 1) numeric tools, based on
measurements performed on the data followed by the use of
thresholds for making decisions, and 2) symbolic tools, that
use abstract concepts and relations together with symbolic
inferences. We will discuss the various pros and cons of
these two kinds of approaches, and the ways to lead them to
cooperation, according to our experience in this field.

2. Major researches in automatic musical
analysis

Computer analysis of tonal music has been tackled by
virtually all available computer formalisms and
methodologies : grammar-based, constraint-based, frame-
based, network based. Historically, there has been a strong
tradition in computer music to try to find grammar-based
models that capture essential aspects of the deep structures
of the music being analyzed. The proposed models owe
much to the work of [Lerdahl and Jackendoff, 1983], who
crystallized a long tradition of efforts to adapt or transpose
linguistic theories, and especially Chomskian theories, to the
musical domain. As Lerdahl and Jackendoff themselves
mention, these models are not intended to provide directly
an implementation model or a set of algorithms. Indeed,
several later efforts have concentrated in trying to
implement the grammar-based models, with more or less
limited success (see e.g. [Deliège, 1994].

However, all the models proposed are not standard
generative models. [Roads, 1988] reviews grammar-based
approaches for analysis and generation purposes, and shows
how different grammar models account for various musical
tasks, emphasizing on the relative difficulties of
implementing these models, particularly models containing
so-called context-dependent rules. Among these
approaches, [Steedman, 1984] provides an elegant grammar
for 12-bar blues. His grammar contains context-free as well
as context-dependent rules. The mere presence of context-
dependent rules makes his model not suitable for
implementation, and therefore can only be useful in a
"contemplative mode". Other approaches for finding
grammars to be used for tonal music include [Sundberg and
Lindbloom, 1993], and [Olshki, 1984]. [Laske, 1993]
argues that grammars should be seen mainly as explications
of musical competence.

Based on this discrepancy between 1) the elegance and
lack of workability of grammar-based models and 2) the
need of building effectively systems for empirical studies,
several attempts have been made to build systems that
perform some kind of harmonic analysis automatically. In a
first category, systems aim at providing tools for computer-
assisted analysis. This is typically the case of [Byrd, 1977],
[Brinkman, 1980] and [Smoliar, 1980]. Because we are
interested only in analyzing large corpus of musical material
automatically, tool kits are not appropriate.

The second category of systems tries to produce complete
analysis of musical material without human intervention.
Real complete analysis is much more difficult than mere
tabulation of data about surface features. [Rothgeb, 1968]
was the first to tackle the "Figured bass" problem, i.e.
provide harmonizations of figured bass lines. As he points

out in [Rothgeb, 1989], the most tangible result of this work
seems to be the definitive proof that classical treatises are
largely insufficient and under-specified : "General solutions
to the unfigured-bass problem were probably inaccessible to
procedures of the type represented by those of Heinichen
and Saint-Lambert". In the purely analytical domain,
[Winograd, 1993] used Augmented Transition Networks (an
extended grammar formalism) to implement analysis of
Bach chorales. [Winold and Bein, 1983] use a standard
artificial intelligence approach to tackle the same problem.
Inspired by these works, [Maxwell, 1992] proposes an
expert system in the form of a set of production rules to
perform harmonic chord function analysis. His system
includes 55 rules organized in three levels of control (or
meta rules). Other approaches have been used for similar
tasks: [Ulrich, 1977] analyses jazz harmonies, with an
"island-growing" approach that has an appealing organic
quality. [Steels, 1979] uses a constraint-based approach to
reason about tonal structures in music, and shows how to
solve the "passing-chord problem" using constraints, by
inserting a chord that is harmonically "near" its predecessor
and successor. Finally, [Meehan, 1980] uses conceptual
dependency graphs to implement the implication/realization
theory of [Narmour, 1977] .

3. Two systems for AHA
We conducted some research on automatic analysis of

tonal music for several years in two directions. First, a
research is in progress that uses statistical and procedural
methods to produce reliable automatic analyzers for large
corpus of tonal music, mainly taken from the classical
repertoire. This work addresses a series of problems such as:
1) a pitch speller that reconstitutes enharmonic spelling
from context, given, e.g. a rough MIDI file, 2) a style
recognizer for complex orchestrations (e.g., detects "Alberti
bass" from a non-annotated score), a pure harmonic analyzer
(detects underlying tonalities in a score), leading to a
harmonic ciphering system, a regularity extractor for tonal
material [Mouton, 1995]. Second, we developed a model
and a system that produces correct harmonic analysis of jazz
chord sequences as found in the Real Book or Fake Book
series. This model uses purely symbolic methods taken
from object-oriented knowledge representation, production
rules, and declarative control architecture [Pachet, 1991].
Both approaches share a common goal: be able to produce
reliable, fully operating systems that produce acceptable
analysis for most of the corpus analyzed. We will now
describe each approach more in detail.

3.1. The NUSO system

The NUSO system aims at providing musicologists with a
set of automatic tools for analyzing tonal music.

It mainly addresses the classical, non-improvised, written
musical corpus.

The first feature NUSO provides is an automatic translator
from MIDI files into an analytic notation. Such a translator
has to find the spelling of enharmonic notes (like G# and
Ab), that share the same key on the keyboard and thus the
same MIDI number. The correct spelling for a note depends
on several considerations, such as: the ambient tonality and
the roles the note plays in the harmony and in the melody. At
this stage of the analysis, NUSO just produces a "first
guess" of the spelling based on an estimation of the ambient
tonality. To estimate the tonality at each point of the piece,
we first use several successive filters that count the
occurrences of each pitch class in the MIDI file. Then the
tonality is estimated by considering the local frequency of
the pitch classes, in view of some basic assumptions on
these frequencies in tonal music. These assumptions are:

 - "the most frequent notes are the tonic and the dominant",
 - "the most frequent chords are the triad of the tonic and the
seventh chord on the dominant",
and so forth.
Finally, each note is given an unique spelling in the most
likely tonality at its location.

Some further analyzing features use or will use the same
kind of filtering methods. Comparing the number of
different pitches, the number of different pitch classes, and
the number of notes struck by each instrument within a lapse
of time gives an idea of the orchestration style (parallel
chords with or without doubling of notes, parallel octaves,
Alberti-style melodic bass accompanying a melody, ...). The
frequencies of the pitch classes obtained by the previous
filters, along with the use of weights depending on the
rhythmic and orchestral position of each note, lead to chord
detection and harmonic ciphering. The weights are
computed in relation with the orchestration style detected,
the style of the piece (baroque, romantic, ...) and some
statistic assumptions :

- "in the case of an accompanied melody, the notes of the
melody are more likely to be ornamental (non-harmonic)
than the notes of the accompaniment" (see figure 2),
- "in the case of rich, complex parallel chords, it is likely
that each stroke can be analyzed as a chord (as opposed to
an Alberti bass where the chords are spread into arpeggios)",
- "in the baroque style, the seventh of the dominant can be
struck at the same time as the chord only if the leading note
is at the bass",

etc.
A threshold gives the possibility of adapting dynamically

the width of the filtering window.

A third step of the analyzing process by NUSO detects the
regularities in different texts extracted from the music by the
musicologist user (helped by suggestions of NUSO). For
instance, providing this regularity detector with the list of
the intervals of a melody - the alterations being ignored in
this context - will show the repetitions in this melody, with
possible changed mode and/or tonality. Again, statistic
assumptions such as:

- "a theme is longer than the pattern of a harmonic march",
- "the pattern of a development is usually extracted from a
theme", etc.,
along with the previously estimated harmonic ciphering,
lead to the recognition of themes, patterns and conclusive
formulas. The different ornamentations of a pattern are
detected by the regularity detector if it is provided with a list
of the "important notes" of the piece, or the intervals
between them. A selection of the "important notes" is
proposed by NUSO according (again) to statistic
assumptions, such as:

- "notes that are part of the chords are more important than
melodic ones",
- "long notes are more important than short ones", etc. (see
figure 1).

Figure 1. Detecting ornementations of a given motif.

Figure 2. Finding the underlying tonality of an accompanied
melody.

3.2. The MusES system

The aim of the MusES system is to build up a model for the
analysis of jazz chord sequences, as found in the standard
corpus of [Real, 1981], or [Fake, 1983; 1991]. Our goal is
similar in spirit to the goal of the NUSO system in that we
want our model to be fully operational, and account for most
of the regularities found in this corpus. The very nature of
the corpus

however, calls for utterly different techniques as is described
here.

The problem of jazz chord sequence analysis consists in
computing, for a given chord sequence (as the one in Figure
5). the underlying tonality of each of its chords. The main
characteristics of this analysis is that it is hierarchical: a tune
may be globally in C major, but some parts of it may be in F
(modulation), and so on. Generally speaking, harmonic
analysis produces a tree with which each chord of the
sequence may be analyzed, at several levels of abstractions.
Figure 6 shows one possible analysis tree for the tune in
Figure 5.

Lastly, the aim of the analysis is usually to provide, for each
chord of the sequence, indications to the musicians for
improvisation. These indications are the underlying
tonalities (at all levels of abstractions), as well as
identifications of well-known "patterns" that make sense for
the improviser, because he will be able to use pre-defined
licks well adapted to these patterns.

The theory behind, revisited

Like classical harmony, tonal jazz harmony is a well studied
domain, as one can see by browsing at the numerous books
written on this subject [Beaudoin, 1990;
Coker, 1964] . However, few books
attempt at providing a model for the analytic process per se.
The situation is actually comparable to the situation in
linguistics : if lots of works have attempted to find
grammars for natural languages, only few operational
models of language understanding have been developed.

Before describing our model for analysis, we propose to
formalize the problem around three major points, as follows:

A) Basic principles
The theory is based on two major principles:

1) A "legality" principle
This principle says that each chord, out of any context, can
be analyzed in a fixed set of possible tonalities. A tonality is
faithfully represented as a scale (a list of notes) and a
degree. For instance, a C major chord may be analyzed as: I
st degree of C major scale, IVth degree of G major, Vth of F
major, VI de E harmonic minor, and so forth. Note that the
computation of this "legal set" is entirely deterministic.

2) A minimization principle
In a context, the choice of the "good" tonality for a chord
will of course depend on its location, and its relation with
adjacent chords. The main idea here is that the best tonality
will be the one that minimizes modulations, i.e. that is
common to the greatest number of adjacent chords. For
instance, the sequence (C / F / E min / A min) has only one
tonality that is common to all chords: C major.

B) Perturbations
This nice and simple theory is complicated by phenomenons
that escapes rigorous formalization, but which are essential
to capture the essence of the process: substitutions and
idioms.

First, some chords may be substituted by others, and the

substitute often violates the legality principle. For instance,
a seventh chord that resolves may be substituted by its
tritone seventh (C7 -> F#7). Second, there are a number of
well-known idiomatic "musical shapes" that bear particular
harmonic meaning in themselves. This is the case of "two-
fives", turnarounds, and other similar shapes. These shapes
are remarkable in that they may be analyzed out of their
context. Thus, the sequence "Cmaj7/A 7/Dmin7/Db7" is in
itself a turnaround in C major, regardless of the fact that C
major does not belong to the legal set of Db7. In other
terms, Db7 in abstracto may not be analyzed in C major,
and can only be within such a musical shape.

C) Recursion
Lastly, the process is recursive. This means that any
recognized shape may itself be considered as atomic for a
higher level of analysis. This recursive nature accounts for
the hierarchical nature of the analysis. For instance,
resolving seventh chords may be considered as preparations,
and therefore integrated to their resolving chord. Typically,
the sequence: "A7 / D7 / G7 / C"
may be entirely analyzed in C major, thanks to a recursive
reasoning (see Figure 3).

A7 / D7 / G7 / C

D7
G7

C
Figure 3. The hierarchical nature of the analysis of a group of
chords.

At the highest level, global macro forms are introduced in a
similar fashion. Thus, a Blues is identified by a succession
of 3 musical shapes, covering 12 bars, and such that the
fourth of the root of the middle one's tonality is equal to the
root of the first and of the last shape. Structures such as
AABA or ABAB may be described similarly.

The analysis reasoning in MusES

Our approach is based on an explicit reconstruction of the
reasoning process. This process is represented by 1) a rich
representation of the concepts used during the reasoning,
and 2) a representation of the reasoning by production rules.

The objects used during the analysis reasoning are basically
the objects making up the universe of discourse, i.e. the
chords and the chord sequence, together with more abstract
objects that represent the various shapes and tonalities
identified during the

reasoning. These abstract objects are represented in a
conceptual hierarchy (see Figure 7).

The reasoning process per se is represented by a series of
rule bases, that basically perform two kinds of tasks:

- a "pattern recognition" task
in which higher level shapes are identified from
configurations of lower level shapes.

- a "forgetting" task
in which irrelevant or redundant shapes are destroyed.

Pattern recognition rules all follow the same pattern:

FOR a1 a2 instances of AnalysableObject
IF some harmonic properties between a1 and a2 are
satisfied
THEN
Create an instance of a particular class (subclass of
Shape) covering the durations of a1 and a2.
Establish the composition link between the newly
created shape and a1 and a2.

For instance, here is the rule (in a Smalltalk-like pseudo
syntax) that recognizes a two-five in major (such as
"Dmin7/G7"):

majorTwoFive
FOR a1 a2 instances of AnalysableObject

IF
c1 isMinor.
(c1 hasA: #flatFifth) not.
c2 isAfter: c1.
c2 isMajor.
c2 hasA: #minorSeventh.
c2 root pitchEqual: c1 root fourth.

THEN
Create a TwoFive, x.

x beginBeat: c1 beginBeat; endBeat: c2 endBeat.
x tonality: (c2 root fourth majorScale);

Establish composition lik between x and c1 and c2 .

Other rules describe shapes such as resolutions (A7 / D),
turnarounds, and substitutions. More abstract rules describe
more complex phenomenons such as "modal borrowing": a
local modulation may be considered as non significant in
certain cases, when it comes in between two shapes
analyzable in the same tonality (Cf. Figure 4).

shape X
in C

shape Z
in C

shape Y
in Ab

Figure 4. Modal borrowing configuration.

Forgetting rules
The second type of rules describe typical situations in which
recognized shapes may be safely forgotten, to speed up the
reasoning process, and avoid combinatorial explosion. Such
rules include rule removeSubsumedShapes, that allows
forgetting a shape safely without loosing information, when

it is subsumed by another shape of the same tonality:

removeSubsumedShapes
FOR c1 c2 instances of ObjectInASequence

IF
c1 subsumes: c2.
c1 ~= c2.
c2 tonality notNil.
c1 tonality notNil.
c1 tonality = c2 tonality.

THEN
chordSequence removeAnalysis: c2

The overall reasoning is therefore represented as a series of
rule bases alternating shape recognition and shape
forgetting. The precise scheduling of tasks in described in
details in [Pachet, 1995b]. At the end of the reasoning, the
complete analysis tree is produced.

The system is now in the evaluation phase, and already
proved capable of analyzing blues chord sequences deemed
difficult by [Steedman, 1984].

4. Why combining ?
Each approach has proved particularly well suited to

specific tasks, and terribly awkward for other. Here are two
typical examples of this discrepancy.

For instance, finding the most probable underlying
tonality of the sequence of notes in Figure 2 is an easy task
for a system that computes statistical weights. Simply
computing the frequency of each notes shows that the most
frequent notes of the sequence are C, E, G. Based on the
assumption that the root, fifth and third are the most
frequently used notes for a given tonality, and based on the
fact that these notes are on strong metric positions, inferring
that the sequence is in C is then trivial.

In the Jazz chord analyzer, the model is based on "shape
recognition" scheme that produces a tree of analysis with
several levels of abstraction. The leaves of the tree are the
chords of the sequences. Intermediary nodes represent well
known harmonic shapes, such as "two-fives", turnarounds,
or substitutions. Higher-level nodes represent more abstract
shapes such as Blues, ABAB, or AABA. The system used
production rules combined with objects to detect shapes on
multiple levels. The system has proved particularly well
adapted to the be-bop tune corpus. For instance, the
sequence of chords: "Cmaj7/Eb7/Abmaj7/Dbmaj7" is easily
recognized as an instance of a turnaround in C major,
possibly with some substitution of seventh chord.

However, it is clear that such a model is utterly incapable
of solving the first problem. Conversely, be-bop tunes are
often so twisted by multiple substitutions and harmonic
tricks that the use of statistics based on the relative
frequency of roots, fifths and thirds does not suffice to
uncover the actual harmonic intentions of the grid.

5. Discussion: thresholds vs. rules
Two important remarks must precede the comparison of

numeric and symbolic methods. The first is, that the only
pure numeric systems are neural networks. In any other
system, if the system performs more than just counting the
occurrences of some totally defined pattern, some rules must
exist to decide what to measure and where to measure it
according to the expected result and according to
information already obtained. For instance, some rule must
say that if you found a cadence, then you should look
backwards in the sequence for a possible preparation for the
cadence [Mouton, 1994].

The second remark is that both kinds of information,
numeric and symbolic, can be useful and interesting to
perform analysis. However, symbolic information is usually
much more valuable, because it is more synthetic. For
instance, saying that the "leading note usually goes up to the
tonic", is more efficiently represented in such terms, than
with statistics and numbers as "in 90% of cases, B is
followed by C". This is not only because rules are less
flexible than real numbers. The difference is deeper as
pointed out by [Lenat, 1992]. Indeed, stating that the leading
note leads up to the tonic is a statement that stands by itself,
and does not induce any commitment on, say, the way
"thirds would descend a fourth to the seventh". On the
contrary, representing such a rule with numbers induce a
total order that is misleading, both for the human user and
for the system. In a way, saying it with figures implies too
many things that are simply not wanted. For instance, if a
system finds out that " in 60% of cases, the second leads up
to the third" and "in 55 % of cases the sixth goes down to
the fifth"; the same system would implicitly assume that
"second leads up to the third" is more probable than "the
sixth goes down to the fifth", and make the corresponding
decisions during the computation, which is simply wrong
and dangerous.

In many cases, however, symbolic rules are mainly
justified by statistics : in the foreword of a good treatise on
harmony, it will generally be written that the rules of the
treatise should always be implicitly preceded by a modifier
such as "in most cases" or "if there is no particular
intention". Therefore the numeric result can be a useful
information, even without thresholding or making any
decision.

The first problem encountered by computer analysis is to
find a trade-off between modeling and implementabiliy. The
systems that give a good model for the phenomenon they
study (a corpus or a human competence) are usually not
easy to implement. On the other hand, the systems that
really perform the task of analyzing music have seldom
satisfactory explanatory power. This can look like an
advantage for the rule-based systems, because each rule of
such a system is a piece of symbolic knowledge that is
supposed to bear some semantics in itself. On the contrary,
it is very difficult to interpret a neural network. In practice,
the problem of interpretation is to be found in both
approaches : a system that uses ad hoc or too many rules is
not more explanatory than a system based on thresholding :
the synthetic information looked for can be hidden behind a

heavy inference engine as easily as behind numerization.
Once solved the problem of implementation comes the

question of the reliability of an analyzing automaton. The
basic rules of a rule system are perfectly reliable, because
they give a yes or no answer about the presence of such or
such figure in the data. However, the whole system can be
very sensitive to rare cases and perturbed by them
[Steedman, 1984]. It can also be unreliable when it contains
incompatible or competing rules. A threshold system is
intrinsically not perfectly reliable, but the distance to the
threshold gives a simple - and reliable - evaluation of the
reliability of the results. The difficulty there is to propagate
and combine such an evaluation along several analyzing
processes. For example, a Midi file may be spelled out with
a resulting probability of p1, with will then be used by a
ciphering process, that adds up a probability of p2. Although
fuzzy logic may provide some answer to this question, the
resulting probability is not clear in terms of the musical
process involved.

The comparison of the two systems is particularly
enlightening on the following points:

1) Ornementations
In the NUSO system, there are an infinite number of
possible ornementations (examples of figure 1 could be
expanded at will), but each ornamentation is relatively close
to the original: filtering methods may exploit the stability of
the variations. In the MusES system, substitutions play the
role of ornamentation. As we saw, substitutions introduce
violent "illegal" tonalities (epitomized by the ubiquitous
tritone substitution). But this instability is compensated by
the fact that these substitutions are not infinite, and can be
easily listed once for all. In this case, an explicit and
symbolic representation of the analytic process is not only
possible, but necessary.

2) Temporal models of the musical world
It is important to note the importance of the representation
of temporal structures underlying each model. In MusES
particularly, the temporal model plays a crucial role. This is
most visible in the problem of linking ends to beginning of
pieces. In jazz chord sequence, there is an implicit
assumption that the end of a sequence turns back to its
beginning. We discovered that it is extremely important to
represent this property of chord sequences explicitly in the
model. It allows to explain some difficult modulations in
sequences such as: (C/C7/F/..../G 7), where the first chord
(here C) should be analyzed as a first degree, followed by a
modulation in F. In fact, the analysis of C as first degree of
C is possible only if the end of the piece (G 7) is connected
to the beginning, thereby strengthening the C major tonality
of C for the first chord. Otherwise, since C is analyzable in
F, the C chord is "incorporated" in the tonality of F !

In the NUSO system, the situation is quite the opposite. Not
only classical pieces do not end by un-resolving sevenths (so
the problem of connecting ends to beginnings is irrelevant),
but moreover, once can safely make the assumption that
endings of tunes actually resolve in the main tonality. This
assumption may be used by the automatic analyzer safely to
infer quickly the overall tonality of a piece, whereas at the
beginning of the analysis, whereas the information of the
overall tonality is only deduced at then end of the reasoning
process in MusES.

3) Bootstrap hypothesis
There are a number of cases where some circularity in the
analytical process are to be found. For instance, in NUSO,
the estimation of the tonality of a piece is used by the
orthographier module itself leading to the ciphering module,
which in turn may be used to infer the tonality. Similarly, the
detection of a melodic repetition can lead to the detection of
a harmonic repetition, itself leading to the detection of a
melodic repetition. Finally, the estimation of the style (e.g.
orchestral) may be used to infer the bass, which in turns
gives indications on the style.

In MusES, these circularities are represented in the form
of conflicts in the rule inference cycle, and therefore
represented by conflict resolution strategies.

6. Conclusion : towards a cooperation
There are classical ways to mix numeric and symbolic

methods in AI. Rules can be numerized by "fuzzyfying" the
logic they are based on, or symbolic information forced out
of a numeric system by giving a name to each threshold. The
comparisons of section 3, along with our own experience,
allow us to give some guidelines.

In a general manner, numerizing some parameter comes
down to giving up any grammatical meaning for that
parameter. The rules within a rule system reach their limit of
refinement when it comes to numbers. So the natural way to
make numeric and symbolic systems cooperate is to let
upper-level symbols rule the organization and use of lower-
level procedural, numeric features. These two layers,
numeric and symbolic, are not always separated in the way
the automaton is implemented, but, in order for the system
to keep some explanatory power, the constructor should take
care of the possibility of examining them separately when
interpreting the system once it is run. This, indeed, reflects
the way a neurologist can look at a brain : either as a set of
cells that exchange numeric data, or as a set of zones that
interact to perform logical, symbolic operations.

In practice, if rules can stay together in a jumble, we
found difficulties to make numeric processes communicate
between different levels in an analysis. A numeric process
does not easily take into account information obtained
previously, and does not perform "feedback" deductions
easily. In the case of harmonic analysis, for instance, an
estimation of the tonality of a given passage can lead to a
change in the ciphering of the underlying chords, but this
change of ciphering can in turn lead to a different analysis of
the tonality. We found it difficult in NUSO to let each step
of the analyzing process be able to take into account some
information computed by a further level of the analysis,

because each level computes a specific kind of information,
that eventually uses a specific notation, that is meaningful
for an eventually different scale of time or a different
grouping of the events (chords, melodies, ...). In fact,
numeric methods force to segment the task, because they are
always low-level, even if they apply to the results of some
previous high-level computation or if they count the
applications of the rules of some other system. So the
explanation given by a set of numeric processes is to be
looked for in the way these processes constrain the
segmentation of the task, and in the resulting significant
categories, more than in the way the task is performed. Such
a segmentation by numeric layers can also avoid a rule
system to be too bushy to give any explanation.

A general direction that may provide hints as to when to
use which approach is to remark that the symbolic approach
is well adapted to musical problems for which there exists
some discourse on the abstract shapes to be conceived
during the reasoning. In the jazz chord sequence problem,
such shapes are two-fives, harmonic series, and tune
structures. When no such discourse exists - which is the
case for the analysis of arbitrary sequences of notes - then
only statistical methods together with strong assumptions on
the frequencies of notes can be used. Therefore, the present
situation looks like a dilemma: for "shapeless" material,
numerical methods are quite appropriate, but then there is a
feedback or recursion problem. When the domain allows a
reasonable reification of analysis objects - such as for jazz
chord sequences - the recursion problem may be avoided,
but the approaches requires a totally explicit model, i.e.
there can be dangerous "holes" in the rule systems that are
not easily filled.

7. References
Brinkman, A.R., Johann Sebastian Bach's Orgelbüchlein.

Music Theory Spectrum. 2 pp. 46-73. 1980.
Byrd, D., An Integrated Computer Music Software System.

Computer Music Journal 1 pp. 55+60. 1977.
Deliège, Session on "Lerdahl & Jackendoff : 10 years on, in

International Conference on Music Perception and
Cognition (ICMPC). Liège (Belgium), 1994.

Fake, The World's Greatest Fake book. ed. C. Sher. 1983,
San Franscisco: Sher Music Co.

Fake, The New Real Book. ed. C. Sher. Vol. 2. 1991,
Petaluma: Sher Music Co.

Laske, O., In search of a Generative Grammar for Music, in
Machine models of Music, S.M. Schwanauer and D.A.
Levitt, Editor. 1993, MIT Press: p. 215-240.

D. Lenat, R.V. Guha. Building large knowledge-Based
Systems. Representation and Inference in the Cyc project.
Addison-Wesley, 1990.

Lerdahl, F. and R. Jackendoff, A Generative Theory of Tonal
Music. 1983, Cambridge: MIT Press.

Maxwell, H.J., An Expert System for Harmonizing Analysis
of Tonal Music, in Understanding Music with AI:
Perspectives on Music Cognition, K.Ebcioglu, O.Laske
and M. Balaban, Editors. 1992, AAAI Press: p. 335-353.

Meehan, J., An Artificial Intelligence Approach to Tonal
Music Theory. Computer Music Journal 4 (2), pp. 61-65.
1980.

Mouton, R. Automating the Music Scholar Thinking
Process. Ph.D. Thesis, University of Paris I. To be
published.

Narmour, E., Beyond Schenkerism. 1977, University of
Chicago Press.

Olshki, O., Musical Grammars and Computer Analysis. In
Grammars and Music, M. Baroni & al ed. 1984, Florence,
Italy.

Pachet, F. A meta-level architecture for analysing jazz chord
sequences. Proceedings of International Conference on
Computer Music, pp. 266-269, Montréal. 1991.

Pachet, F. Musical Analysis: a Synthesis. Laforia-IBP
technical report, to appear. 1995.

Pachet, F. Analysis of jazz chord sequences: the MusES
approach. Laforia-IBP technical report, to appear. 1995b.

Real, The Real Book. 1981, The Real Book Press.

Roads, C., Grammars as Representations for Music, in
Foundations of Computer Music, C. Roads and J. Strawn,
Editor. 1988, MIT Press: p. 403-442.

Rothgeb, J., Harmonizing the Unfigured Bass: a
Computational Study, Ph.D. thesis, Indiana University,
1968.

Rothgeb, J., Simulating Musical Skills by Digital Computer,
in The Music Machine, C. Roads, Editor. 1989, MIT
Press: p. 657-661.

Smoliar, S.W., A Computer Aid for Schenkerian Analysis.
Computer Music Journal 4 (2), pp. 41-59. 1980.

Steedman, M.J., A Generative Grammar for Jazz Chord
Sequences. Music Perception. 2 (1), pp. 52-77. 1984.

Steels, L., Reasoning modeled as a Society of
Communicating Experts, MIT AI Lab., n. AI-TR-542,
1979.

Sundberg, J. and B. Lindbloom, Generative Theories in
Language and Music Descriptions, in Machines Models of
Music (reprint), S.M. Schwanauer. and D.A. Levitt,
Editor. 1993, MIT Press: p. 263-286.

Winograd, T., Linguistic and Computer Analysis of Tonal
Harmony, in Machines Models of Music (reprint), S.M.
Schwanauer and D.A. Levitt, Editor. 1993, MIT Press: p.
113-153.

Winold, A. and J. Bein, BANALYSE: An Artificial
Intelligence System for Harmonic Analysis of Bach
Chorales, Indiana University, Unpublished manuscript,
1983.

Figure 5. A typical jazz chord sequence to be analysed by MusES.

1-48 BluesShape in F MajorScale
45-4 ResolvanteEndToBeginning in F MajorScale

45-48 ChordSubstitution in F MajorScale
45-48 TwoFive in F MajorScale

[G #min 7]
[C 7]

[F #maj7]
5-20 ChordSubstitution in Bb MajorScale

5-20 Resolvante in Bb MajorScale
5-16 ChordSubstitution in Bb MajorScale

5-16 TwoFive in Bb MajorScale
5-14 ChordSubstitution in C HarmonicMinor

5-14 Resolvante in C HarmonicMinor
5-12 ChordSubstitution in C MajorScale

5-12 TwoFive in C MajorScale
5-10 ChordSubstitution in D HarmonicMinor

5-10 Resolvante in D HarmonicMinor
5-8 ChordSubstitution in D HarmonicMinor

5-8 TwoFive in D HarmonicMinor
[E #halfDim7]
[A 7]

[D #min 7]
[G 7]

[C #min 7]
[F 7]

[Bb #maj7]
17-48 ExtendedShape in F MajorScale

17-46 ExtendedShape in F MajorScale
17-44 ExtendedShape in F MajorScale

[Bb #maj7]
21-44 ExtendedShape in F MajorScale

21-42 ChordSubstitution in F MajorScale
21-42 Resolvante in F MajorScale

21-40 ChordSubstitution in C MajorScale
21-40 Resolvante in C MajorScale

21-32 ChordSubstitution in Db MajorScale
21-32 Resolvante in Db MajorScale

21-28 ChordSubstitution in D MajorScale
21-28 Resolvante in D MajorScale

21-24 ChordSubstitution in Ab MajorScale
21-24 TwoFive in Ab MajorScale

[Bb #min 7]
[Eb 7]

25-28 ChordSubstitution in G MajorScale
25-28 TwoFive in G MajorScale

[A #min 7]
[D 7]

29-32 ChordSubstitution in Gb MajorScale
29-32 TwoFive in Gb MajorScale

[Ab #min 7]
[Db 7]

33-40 ChordSubstitution in F MajorScale
33-40 TwoFive in F MajorScale

[G #min 7]
[C 7]

[F #maj7]
[D #min 7]

[G #min 7]
[C 7]

Figure 6. The complete analysis of the chord sequence of Figure 5.

TemporalObject
ObjectInASequence ('chordSequence' 'conceived')

AnalysableObject ('analysisList')
ChordInASequence ('chord' 'before' 'after')
Shape ('subShapes')

ChordSubstitution ('chord')
MusicalShape ('tonality')

AmorphousShape ()
ComposedShape ()

ExtendedShape ()
ExtendedIntersectedShape ()
GlobalShape ()

BiTonalShape ()
MonoTonalShape ()
QuadriTonalShape ()
TriTonalShape ()

EmpruntModal ()
KnownShape ()

BluesShape ()
BluesySubstitution ()
Resolvante ()
TurnAround ()
TwoFive ()
TwoFiveOne ()

TransitionChordSequence ('beforeTonality' 'afterTonality')

Figure 7. The various classes representing abstract analysis objects (attributes are between parenthesis).

