
Dynamic Audio Mixing, Pachet, F and Delerue, O. Hanappe, P. ICMC 2000, Berlin.

Dynamic Audio Mixing

François Pachet (1), pachet@csl.sony.fr
Olivier Delerue (1), delerue@csl.sony.fr
Peter Hanappe (2), peter@hanappe.com

(1) SONY CSL, 6 rue Amyot, 75005 Paris, France
(2) 115, rue du Chemin Vert, 75011 Paris, France

Introduction
3D sound is a powerful technology which allows to give
a realistic impression of localization of sound sources.
This technology is now mature enough to produce a fine-
grained spatialization on a set of audio sound sources in
real time. However, the are serious limitations in the way
this technology is used in current practice. Firstly,
composers and sound engineers have great difficulty in
mastering this technology to produce 3D sound pieces,
because the corresponding controls are too low-level and
intricated. As a cobnsequence, the potential of this
technology is not fully exploited. In particular, listeners
are still considered as passive receivers, and do not have
any control on the spatialization of the pieces they listen
to.

In this paper, we introduce the notion of dynamic mixing,
which addresses these two problems: 1) provide
composers and sound engineers with a powerful
paradigm to compose easily musical pieces in space and
time, while 2) allow listeners some degree of control on
the spatialization of the music they listen to.

Previous work on this project (see [3]) introduced a novel
means for controlling the spatialization of sound sources
based on the constraint paradigm. The system that was
presented targeted a midi output or midi based
communication with mixing devices. Recent
developments of the project lead to a full audio version
that overcomes the restrictions imposed by midi based
music. We discuss in the later part of this paper the
technical issues concerning the implementation of the
audio extension.

Dynamic Mixing ?
We believe that the listening experience can be highly
improved by postponing the mixing process at the latest
possible time in the music listening chain, that is during
listening. Instead of delivering the music in the
traditional ready-to-use mixed form, designed for an
imposed reproduction set-up (stereo, Dolby DTS,…), the
key idea of dynamic mixing is to deliver independent

musical tracks that are mixed or spatialized together at
listening time, and according to the diffusion set-up.
To do so, we attach to the audio tracks a set of
instructions describing how the musical tracks should be
mixed and what are the important relations to be
maintained between the sound sources. Thus, beyond its
adaptability to the diffusion system, on-the-fly mixing
brings also more freedom to listeners: since several such
mixing descriptions can be provided for a single music
piece, the listener can choose between several renderings
of the piece to emphasize specific musical dimensions, or
to fit with its particular taste.

Musical Rendering
Having access to the individual tracks of a given music
title allows to create several arrangements of the same set
of sound source. The first possibility is of course to
recreate the original mixing of the standard distributed
CD version. It is also possible to define alternative
configurations of sound sources, as illustrated below.

Figure 1: An "a capella" rendering of a musical piece

Figure 1 shows an “a capella” rendering example of a
music title. To achieve the a capella style, all the
instruments yielding some harmonic content are muted.
The various voice tracks (lead singer, backing vocals) are

Dynamic Audio Mixing, Pachet, F and Delerue, O. Hanappe, P. ICMC 2000, Berlin.

kept and located close to the listener. To avoid a dry mix,
we also include some drums and bass, but locate them a
bit further from the listener.
Several other renderings can be created using this same
set of sound sources, such as an “unplugged” version or
animated mix, as described below.

Figure 2: A techno version with animated constraints

Figure 2 displays a “techno” rendering of the same music
title : emphasis is put on the synthetic and rhythmic
instruments that are located to the front in the auditory
scene. To maintain consistency in the result, we kept the
voices tracks as well as the acoustic instruments, but
locate them in the back so they do not draw all the
listener’s attention.
Animated constraints were used for this rendering, to
bring variety to the resulting mix. The strings, sound
effects and techno tracks are related together by a
rotating constraint so that emphasis is put periodically on
each of them as they come closer to the listener. Drums
and bass tracks are also related with a rotating constraint
but some angle limit constraints force their movement to
oscillate alternatively between left and right sides.

High level handles
To enhance the usability of the system, we further
introduce the notion of user “handle”, which encapsulates
a group of sound sources and their related constraints into
a single interface object. These handles are implemented
by so-called “one way constraints”, a lightweight
extension of the basic constraint solver. Thanks to
handles, the user may easily change the overall mixing
dynamically. Several handles may coexist in a given
configuration, providing the user a set of coherent
alternatives to the traditionally imposed unique mixing.

In the example shown on Figure 3, the sound sources are
not shown any more: the user has only access to a set of
proposed handles that were created specially for the

music title. In this case, a handle lets the user adjust the
acoustic part of the sound sources, another the synthetic
instruments, as well as one for the drums and for the
voices. The “plug” handle represents a balance control
between the acoustic and the synthetic parts: bringing the
“plug” handle closer to the listener will enhance the
synthetic part and give less importance to acoustic
instruments, and vice versa. Finally, a “volume” handle
allows to change the position of all sound sources
simultaneously in a proportional manner.

Figure 3: A Dynamic Configuration of the piece; "Listen”
mode

The example show in Figure 3 makes an extensive use of
the constraint system to build the connections between
the sound sources (such as represented on Figure 1) and
the handles. Figure 4 displays the interface of our system
when it is in “program” mode. In this mode all the
elements for the spatialization are represented: handles,
sound sources, constraints and one way constraints.

Figure 4: The dynamic configuration; "Program” mode

Dynamic Audio Mixing, Pachet, F and Delerue, O. Hanappe, P. ICMC 2000, Berlin.

Technical Issues
Most of the properties of the MusicSpace system
concerning its interface and the constraint solver have
been discussed in [3] and [4] . We discuss here only the
technical issues concerning the audio version.

The system presented here has two main modules: 1) a
control system, which generates high level spatialization
commands, and 2) a spatialization module, which
performs the real time spatialization and mixing of audio
sources. The control system is implemented using the
Midishare operating system [2] and a Java-based
constraint solver and interface. The spatialization module
is an interface to the underlying operating system
(Microsoft DirectX [1]) and the sound card. This module
takes in charge the real time streaming of audio files as
well as the conversion of data types between java
(interface) and C++ (spatialization module). We describe
here a connection from the control system to the
spatialization system. This connection is realized by
implementing a low level scheduler which manages the
various buffers of the sound card (see Figure 5).

Figure 5: System Architecture

Our system runs on a personal computer platform
running Windows 98. Experiments were driven on a
multimedia personal computer, equipped with a Creative
Sound Blaster Live sound card and outputting to a
quadraphonic speaker system: up to 20 individual
monophonic sound files can be successfully spatialized in
real-time.

Synchronization
Dynamix mixing yields a synchronization issue between
the two tasks that write and read from/to the 3D-sound
buffer. The reading task is handled by the spatialization

system (i.e. DirectX) and our application needs to fill ‘in-
time’ this buffer with the necessary samples.

Figure 6: Synchronizing the writing and reading tasks

To achieve a correct synchronization between the audio
streaming task (reading the sound files) and the audio
output, the standard technique consists in using
notification events on the position of the reading head in
the buffer (see Figure 7). In this implementation, the
reading task notifies the writing task when the reading
position has gone over a certain point.

Figure 7 : the streaming model

The sound buffer is thus split in two halves and when a
notification event is received, the writing task clears and
replaces samples for the half of the buffer that is not
currently being read.

However, to access these notification events, the buffers
have to be handled by the operating system. As a result
they cannot benefit from the hardware acceleration
features and for instance use the quadraphonic output of
the sound card.

The solution we choose consists in creating “static” 3D
audio secondary buffers in DirectX. These buffers are
physically located in the sound card memory and thus
can take advantage of its 3D acceleration features. Since
in this case the notification events are not available any
more, we replaced them by a “waitable timer” that wakes
up the writing task every second. The writing task then
polls the reading task to get its current position and

2 seconds sound buffer

current reading position

Notification messages occur when the
reading position is at the beginning of the
buffer or at its half

Sound Buffer

DATA
(Sound file)

Writing task

Reading task
output

MusicSpace Application

Graphical
Interface

Constraint
Solver

Windows Operating System

Low level
scheduler

Microsoft DirectX Midishare

Sound Card

Dynamic Audio Mixing, Pachet, F and Delerue, O. Hanappe, P. ICMC 2000, Berlin.

updates the samples already read. Since this timer was
introduced in the Windows version 98 and NT4, the
system cannot be used under Windows 95.

Figure 8: the "timer" model

Each buffer requires 2 seconds of memory within the
sound card: this represents less than 200 k for a 16 bits
mono sample recorded at a 44100 Hz sample frequency.
Actual sound cards internal memory can contain up to 32
megabytes so the number of tracks the system can
process in real time is not limited by memory issues.

Access Timing
One important issue in our audio version of the project
concerns data access timing, i.e. to the audio files to be
spatialized. The current performance of hard disks allow
to read a large number of audio tracks independently.
However, these tracks require a lot of disc space: a
typical music example lasts three and a half minutes and
is composed of about 10 independent mono tracks: the
required space for such a title is more than 200
megabytes.

External supports such as CD-Rom are not as flexible as
hard-disks: reading independently a large number of
tracks from a CD-Rom is currently not possible. The
solution we propose consists in interlacing the different
audio tracks in a single file (see Figure 9): the reading
head does not have to jump continuously from one
position to another to deliver the samples for each track,
and the samples are read continuously. The WAV format
supports multi-track interlaced files.

However, this solution brings also a number of important
limitations. First, each track has to be read: muting a
track will not release any CPU resource. Second, the
synchronization between each track has to be fixed once
for all: it is not possible any more to offset one track
according to another for instance. Eventually, each track
has to be read at the same speed or sample rate. This is a
limitation since it prevents from using the DirectX
Doppler effect for instance, which is implemented by

shifting slightly the reading speed of a sound file
according to the speed and direction of the source with
respect to the listener.

Figure 9: interlacing three tracks

If these limitations apply in specific and experimental
applications, they do not block our goals: the number of
tracks for a music title can be fixed in advance and there
are no reason why the offset between the tracks should be
modified.

Conclusion
We have introduced the concept of dynamic mixing, and
an implementation system – MusicSpace. Dynamic
mixing fits naturally with the trend in new music
standardization processes such as Mpeg4 and Mpeg7:
dynamic mixing constraints are natural metadata.
Additionally, the idea of reconstructing on-the-fly the
musical piece conforms to the notion of scene description
of Mpeg 4. Current work focuses on the design of a fully
Mpeg7 compatible system.

References
[1] DirectX : online information
http://msdn.microsoft.com/directx/ (home site of the API,
download and documentation) and
http://www.directx.com/ for programming issues

[2] Dominique Fober, Stéphane Letz, Yann Orlarey,
« Midishare joins the Open Source Softwares », in
Proceedings of the 1999 International Computer Music
Conference.

[3] François Pachet, Olivier Delerue, « MusicSpace: a
Constraint-Based Control System for Music
spatialization », in Proceedings of the 1999 International
Computer Music Conference.

[4] François Pachet, Olivier Delerue, « A Temporal
Constraint-Based Music Spatializer », in Proceedings of
the 1998 ACM Multimedia Conference, Bristol 1998.

X1 X2 X3 …

Y1 Y2 Y3 …

Z1 Z2 Z3 …

X1 Y1 Z1 X2 Y2 Z2 X3 Y3 Z3 …

Original tracks

Resulting interlaced file

At wake up time, the
writing task polls the
position of the reading
head and replaces half
of the sound buffer
with new samples

One second later, the
writing task wakes up
again and replaces the
other half of the buffer
with new samples.

new samples

current reading position

sound buffer

