
Accessing large
digital music
catalogues raises a
problem for both
users and content
providers. We
propose a novel
approach to music
selection called
RecitalComposer,
which is based on
computing coherent
sequences of music
titles. This amounts
to solving a
combinatorial
pattern generation
problem by using
constraint
satisfaction
techniques.

M
usic delivery concerns the trans-
portation of music in a digital
format to users. Music delivery
has recently benefited from tech-

nological progress in networking and signal pro-
cessing. In particular, progress in networking
transmission, compression of audio, and protec-
tion of digital data1 allow quick and safe delivery
of music through networks, either the Internet or
digital-audio broadcasting services. Additionally,
digitalization of data makes it possible to transport
information on content, and not just data itself,
as exemplified by the MPEG-7 project.2 These
techniques give users access to huge catalogues of
annotated music.

These technologies address the distribution
problem, but also raise the issue of massive
amounts of data from which users can choose. In
the case of music, a typical database of titles, such
as Amazon.com or CDNow, contains about
500,000 titles. A database containing all existing
tonal music recordings would probably reach 4
million titles. Including ethnic music and less
standard types of music would double or triple
this number.

Goals of music selection
The music selection problem is double sided.

We define it from both the goals of the music lis-
tener and those of the content provider.

The listener’s viewpoint
The problem of choosing items is common in

Western societies, where an ever-increasing num-
ber of available products exist. For entertainment
and especially music, however, the choice problem
is specific, because the underlying goals—person-
al enjoyment and excitement—don’t fall in the
usual categories of rational decision making.
Although modeling a listener’s goals in accessing
music is very complex, we identify two basic ingre-
dients: desire for repetition and desire for surprise.

The desire for repetition is well known in
music theory and experimental psychology.3,4 At
the melodic or rhythmic levels of music, repeti-
tion breeds contentment. For instance, sequences
of repeating notes create listener expectations for
the same note to reoccur. At a higher, more com-
plex, level, tonal music is based on structures that
create strong expectations of events to come (for
example, listeners expect a dominant seventh
chord in tonal music to resolve). At the global
level of music selection, the desire for repetition
leads people to listen to music they already know
and like or that is similar to music with which
they are familiar.

On the other hand, the desire for surprise is a
key to understanding music at all levels of per-
ception. The very theories that emphasize the role
of expectation in music also show that listeners
don’t favor expectations that are always fulfilled—
they enjoy surprises and atypical musical progres-
sions.5 At a broader level, listeners want to
occasionally discover new music, new titles, new
bands, or new styles.

Of course, these two desires are contradictory.
The issue in music selection is to find the right
compromise between providing listeners with
titles they already know and with titles they don’t
know, but will probably like.

The content provider’s viewpoint
From the record companies’ viewpoint, the

goal of music delivery is to better exploit the cat-
alogue. Indeed, record companies have problems
with the exploitation of their catalogue using
standard distribution schemes. For technical rea-
sons, only a small part of the catalogue is actual-
ly active, that is, proposed to users, in the form of
easily available products. More importantly, the

2 1070-986X/00/$10.00 © 2000 IEEE

A Combinatorial
Approach to
Content-Based
Music Selection

François Pachet
Sony Computer Science Laboratory-Paris

Pierre Roy
INRIA

Daniel Cazaly
Sony Music France

Multimedia Computing and Systems

analysis of music sales clearly shows decreases in
the sales of albums, and short-term policies based
on selling lots of copies of a limited number of
items (hits) are no longer efficient. Additionally,
the sales of general-purpose samplers (such as a
best-of-love-songs collection) are no longer prof-
itable, because consumers already have the hits
and don’t want to buy CDs containing only one
or two titles that they like. Instead of proposing a
small number of hits to a large audience, a natur-
al solution is to increase diversity by proposing
more customized albums to music consumers.

We examine the approaches to music selection
according to these three goals: repetition, surprise,
and exploitation of catalogues. We show that cur-
rent approaches only partially achieve these goals.

Approaches in music selection
We divide current approaches in music selec-

tion into two categories: query systems and rec-
ommendation systems. In both cases, these
approaches provide sets of items to the user from
which he or she still must choose.

The database approach
Query systems address database issues for stor-

ing and representing musical data. They provide a
means of accessing musical items using some sort
of semantic information. Users can issue various
types of queries, either very specific (such as the
title of the Beatles song that contains the word
“pepper”) or largely underspecified (such as jazz
titles). In all cases, the database approach, however
sophisticated, only satisfies the goal of repetition,
since it provides users with exactly what they ask
for, therefore no novelty or surprise is achieved.

Collaborative filtering approaches
Collaborative filtering (CF) systems6 address

the goal of surprise by issuing users personalized
recommendations. CF has had some success in
the field of music selection (Amazon.com, Firefly,
Infoglide, and MyLaunch for example) as well as
in other domains such as books and news.

CF is based on the idea of patterns in tastes—that
is, tastes are not distributed uniformly. Content
providers can exploit these patterns by managing a
profile for each user connected to the service. The
profile is typically a set of associations of items to
grade ratings. In the recommendation phase of CF,
the system finds all agents having a similar profile
as the user’s. It then searches for items preferred by
these similar agents but aren’t known to this user
and recommends these items to him or her.

Experimental results show that the recommen-
dations, at least for simple profiles, are of good
quality once the user gives a sufficient amount of
initial ratings.6 However, there are limitations to
this approach, evident by studying quantitative
simulations of CF systems using work on the dis-
semination of cultural tastes.7,8 One limitation is
the inclination to cluster formation, which is
induced by the very dynamics of the system. CF
systems produce interesting recommendations for
simple profiles, but get stuck when the profiles get
bigger: eclectic profiles are disadvantaged. Another
problem, shown experimentally, is that the
dynamics favor the creation of hits, that is, items
liked by a large fraction of the population. If hits
are not intrinsically bad things, they nevertheless
limit the possibility of other items to survive in a
world dominated by weight sums.

CF addresses the goal of surprise in a safe way
by proposing to users items that are similar to
items known by them. However, cluster forma-
tion and uneven distribution of chances for items
(that is, hits) are the main drawbacks of the
approach both from the user viewpoint and the
content provider viewpoint. Users get clusters
from which it’s difficult to escape, and content
providers don’t get systematic exploitation of the
catalogue.

On-the-fly music program generation
Instead of proposing sets of individual titles to

users, we propose building full-fledged music pro-
grams—that is, sequences of music titles—satisfy-
ing particular properties.

Overview
There are two motivations for proposing music

programs rather than unordered collections of
titles. One is that music titles are rarely presented
in isolation. For example, CDs, radio programs, and
concerts are all made up of temporal sequences of
pieces in a certain order. This order is frequently
significant because different orders don’t produce
the same impressions on music listeners. The craft
of music programming is to build coherent
sequences rather than to just select individual titles.

The other motivation is that properties of
sequences play an important role in the perception
of music. For instance, several music titles in a sim-
ilar style convey a particular atmosphere and create
expectations for the next titles. As a consequence,
a listener may not particularly enjoy an individual
title in abstract, but the title may succeed as the
right piece at the right time within a sequence.

3

Jan
uary–M

arch
 2000

Rather than focusing on the similarities of
individual titles, we can exploit properties of
sequences to satisfy the three goals of music selec-
tion. We propose building a database of titles,
with content information for each title. We spec-
ify sequences of music titles (music programs) by
defining the properties or patterns we want the
program to have. These properties are represent-
ed as constraints, in the sense of constraint satis-
faction techniques. Finally, a constraint solver
computes the solutions of the corresponding com-
binatorial pattern-generation problem.

Working example
The problem is to build music programs as

temporal sequences that satisfy the three goals of
music selection: repetition, surprise, and exploita-
tion of catalogues. As an example, we will take a
music program for which we specify the desired
properties. We focus on the format of the database
and the nature of constraints.

Following is a liner-note description of a typi-
cal music program. The properties of the sequence
are grouped in three categories. This example
describes a music program called Driving a Car,
ideally suited for car music:

1. Listener preferences

❚ No slow or very slow tempos

❚ At least 30 percent female-type voice

❚ At least 30 percent purely instrumental pieces

❚ At least 40 percent brass

❚ No more than 20 percent country pop style

❚ One song by Harry Connick, Jr.

2. Constraints on the coherence of the sequence

❚ Styles of titles are close to their neighbors
(successor and predecessor) to ensure some
style continuity in the sequence

❚ Authors are all different

3. Constraints on the exploitation of the
catalogue

❚ Contains 12 different pieces to fit on a typ-
ical CD or Sony MiniDisc format

❚ Contains at least five titles from the label
Epic/Sony Music, a bias to exploit the cata-
logue in a particular region

Database of music titles
The database of music titles contains content

information needed for specifying the constraints.

Format of the database
Each item is described by attributes taking their

value in a predefined taxonomy. The attributes are
technical and content. Technical attributes
include the title, the author, the duration of the
piece, and the recording label (for example, Learn
to Love You, Harry Connick, Jr., 279 seconds,
Epic/Sony Music). Content attributes describe
musical properties of individual titles, for exam-
ple, style (jazz-crooner), type of voice (muffled),
music setup (instrumental), type of instruments
(brass), tempo (slow-fast), and other optional
attributes such as the type of melody (consonant),
or the main theme of the lyrics (love).

Currently, in our project the database is creat-
ed by hand by experts (including coauthor
Cazaly). However, current research focuses on
extracting some of these attributes (such as
tempo9 or rhythm) automatically, when possible,
in the context of the MPEG-7 standardization
process.

Taxonomies of values and similarity relations
An important aspect of our project’s database is

that similarity relations link the values of content
attributes. We use these similarity relations for spec-
ifying constraints on the continuity of the sequence
(the preceding example, Driving a Car, contains a
constraint on the continuity of styles). We use these
taxonomies of attribute values to establish links of
partial similarity between items according to a spe-
cific dimension of musical content.

Some of these relations are simple ordering rela-
tions. For instance tempos take their value in the
ordered list (fast, fast-slow, slow-fast, slow). Other
attributes such as style take their value in full-
fledged taxonomies. The taxonomy of styles is par-
ticularly important because it embodies a global
musical knowledge that the system exploits.

Internet music retailers and others have
designed various classifications of musical styles.
These classifications are mainly designed for a
query-based approach. For instance, the taxono-
my of Amazon.com is a tree-like classification that
embodies a relation of generalization and special-
ization between styles, for example, “blues” is

4

IE
EE

 M
ul

ti
M

ed
ia

more general than
“Memphis blues.” As
such, this type of classi-
fication is well suited
for navigating the cata-
logue to find under-
specified items, but it
does not represent sim-
ilarities between styles,
for instance, having a
common origin, like
soul-blues and jazz-
crooner.

Our taxonomy of styles explicitly represents rela-
tions of similarity between styles as a nondirected
graph in which vertices are styles and edges express
similarity. It currently includes 120 different styles,
covering most of Western music (see Figure 1).

CSP for building music programs
Building music programs that satisfy sets of

constraints is a combinatorial pattern-generation
problem. This problem cannot be solved trivially
using a database access technique. Solving the
sequence-generation problem using convention-
al database techniques would require defining a
database containing all possible sequences, and
this is not possible. For example, the number of
sequences of 20 items, out of a catalogue with
100,000 possible values for each item (about the
size of a catalogue of a major record label) is 10100.

The task is in fact the opposite of pattern
matching because in pattern matching, one looks
for patterns in given sequences. Here, we want to
create sequences with given patterns.

Constraint satisfaction programming (CSP) is
a paradigm for solving difficult combinatorial
problems, particularly in the finite domain. In this
paradigm, problems are represented by variables
having a finite set of possible values, and con-
straints represent properties that the values of
variables should have in solutions. CSP is a pow-
erful paradigm because it lets the user state prob-
lems declaratively by describing a priori the
properties of its solutions and use general-purpose
algorithms to find them.

Most of the CSP resolution algorithms are
based on the same principles, where a backtrack-
ing procedure is interlaced with a domain reduc-
tion phase.

The backtracking procedure. The backtrack-
ing procedure progressively instantiates the vari-
ables with values taken in their domains and goes

backward if an inconsistency is detected that pre-
cludes finding any solution. After each step of the
search, the algorithm performs a domain reduc-
tion phase.

The domain reduction phase. The goal here
is to reduce the overall size of the remaining
unsolved problem by removing values from the
domains of the variables. This leads to developing
a smaller search tree and thus speeds up the reso-
lution. Of course, because we don’t want to dis-
card any solution, we have to remove values that
cannot pertain to any solution. For this, we use
constraint-filtering (also called local-consistency
or constraint-propagation) techniques.

Filtering a constraint means removing, from the
domains of the variables, values that are inconsis-
tent with the current instantiations of the problem,
with respect to that constraint. The filtering oper-
ation depends heavily on the nature of the con-
straint considered.10 The objective of CSP is to
identify general-purpose constraints that we can
use to specify particular classes of problems (known
as global constraints) and design efficient filtering
procedures for them. In effect, the efficiency of this
general-purpose resolution scheme depends on the
efficiency of individual filtering procedures.

CSP for building sequences
We formulated a music program satisfying

constraints of a finite domain CSP where the
sequence is composed of successive items repre-
sented as constrained variables. The domain of
the variables is the (finite) catalogue that is
searched. Constraints establishing properties of
the sequence are expressed in the CSP paradigm
and hold on the variables and their attributes. As
previously discussed, this formulation yields a
hard combinatorial problem. We needed to design
efficient filtering procedures to find solutions in a
reasonable time.

5

Jan
uary–M

arch
 2000

Soul-Jazz

Jazz-Swing

Latino-Jazz

Soul-Crooner

Jazz-Crooner

Soul-Funk

Jazz-Crooner Country-Crooner

Pop-Soul Pop song

Soul-Blues

World reggae

Soul-Funk

Pop rock

Soul-Crooner California pop

Country pop

Figure 1. An excerpt of

our taxonomy of

musical styles. Links

indicate a similarity

relation between styles,

such as between jazz-

crooner and soul-blues.

The community of constraint programming
has studied constraints on sequence. For instance,
the Sequence Constraint of the CHIP11 commer-
cial constraint solver enables the expression of
complex regulation rules. This constraint is used
to control the occurrences of some patterns in a
sequence. Specific filtering techniques handle the
Sequence Constraint efficiently. This constraint is
typically used for complex timetable problems to
specify regulation rules (for example, any employ-
ee has a two-day rest at least twice a month).

Another kind of sequence constraint is the
Global Sequencing Constraint 12 of IlogSolver.13

This constraint is used to specify the number of
successive items having their values in a given set.
It’s a generalization of the Global Cardinality
Constraint14 and is filtered by the same method.

Our problem is different because we need to
constrain not only the value of each item, but also
the value of an item’s attributes (such as style,
tempo, and so on). For instance, we want to have
five jazz music titles and three slow motion titles
in a row. These requirements cannot be expressed
in terms of the Sequence Constraint of CHIP nor
of the Global Sequencing Constraint. They are
stated by a set of individual cardinality constraints.

RecitalComposer
We can express the constraints needed to spec-

ify music programs (listener preferences, program
coherence, and exploitation of the catalogue)
using a small number of global constraints: simi-
larity constraints, difference constraints, and car-
dinality constraints. Our resulting system,
RecitalComposer, is composed of a constraint
solver, a database, and associated taxonomies of
attribute values.

Similarity constraints. These state that within
a given range, the items are successively similar to
each other with respect to the underlying tax-
onomies. For instance, using similarity constraints,
it’s possible to state that the first 10 pieces of a pro-
gram should have similar styles with respect to the
classification of styles shown by Figure 1.

Difference constraints. These are used to ensure
some variety in the sequence by forbidding identi-
cal attribute values for a set of items. For instance,
we might require that a radio broadcast doesn’t fea-
ture songs by the same singer too frequently. This
is achieved by stating difference constraints hold-
ing on the author attribute and involving any suc-
cession of, for example, 10 items in the program.

Technically, this is an extension of the well-
known all-different constraint, for which efficient
filtering procedures already exist.15

Cardinality constraints. These impose numer-
ical restrictions on sets of items. They are the most
difficult from a combinatorial point of view,
because they prescribe nontrivial properties on
the whole sequence. In our context, we identified
two such cardinality constraints: cardinality on
items and cardinality on attributes.

❚ Cardinality on items. These specify bounds on
items for the number of occurrences of certain
values in the sequence. For instance, in a clas-
sics-of-rock CD sampler, one may require
between three and five titles by either the
Beatles or the Rolling Stones. More precisely, a
cardinality constraint on items is defined by an
attribute A, a set Var of variables, a set Val of
values, and a number range [a, b]. It requires
that the number of variables in Var whose
value has its attribute A in Val be in [a, b].

❚ Cardinality on attribute values. These control the
number of different values taken by a given
attribute. This constraint can control the
amount of variety in the sequence. A typical use
for this constraint would require pieces from at
least three different labels in a given program.

Example. We can now express the Driving a
Car example as a CSP on sequences, by instantiat-
ing the global constraints defined above.

❚ No slow or very slow tempos: simple unary
constraints on each variable.

❚ At least 30 percent female-type voice: cardinal-
ity constraint on attribute “voice type.”

❚ At least 30 percent purely instrumental pieces:
cardinality constraint on attribute “music
setup.”

❚ At least 40 percent brass: cardinality constraint
on attribute “instrument.”

❚ No more than 20 percent country pop style:
cardinality constraint on attribute “style.”

❚ One song by Harry Connick, Jr.: cardinality
constraint on attribute “author.”

6

IE
EE

 M
ul

ti
M

ed
ia

❚ Styles of titles are close to their neighbors (suc-
cessor and predecessor): similarity constraint
on attribute “style.”

❚ Authors are all different: difference constraint
on attribute “author.”

❚ Contains 12 different pieces: standard all-
different constraint on variables.

❚ Contains at least five titles from the label
Epic/Sony Music: cardinality constraint on
attribute “label.”

A solution to this problem appears in Table 1.
RecitalComposer computes the solution within a
few seconds using our global constraints and our
constraint solver10 on a sample catalogue con-
taining 300 titles.

7

Jan
uary–M

arch
 2000

Table 1. A solution to the music program sequence.

Title
Index number Author Style Duration In seconds Tempo

Voice type Interpretation type Main instrument Secondary instrument
3 Sunrise Jazz California 250 Slow-fast

Chet Atkins Instrumental Jazz guitar Strings

Instrumental

21 Surrounded California pop 238 Slow-fast

Kreviazuk chant Woman Piano Strings

Powerful

6 Still is Still Moving to Country California 210 Fast

Willie Nelson Man California guitar California guitar

Nasal

9 Not a Moment too Soon Country California 222 Slow-fast

Tim MacGraw Man California guitar Piano

Hoarse

10 Lovin’ All Night Country pop 227 Fast

Rodney Crowell Man California guitar Brass

Normal

11 (The) Hard Way Country pop 262 Slow-fast

Mary Carpenter Woman California guitar Piano

Normal

17 (The) Point of Rescue Country California 265 Fast

Hal Ketchum Man California guitar California guitar

Normal

50 At Seventeen Pop folk 281 Slow-fast

Janis Ian woman Acoustic guitar Brass

Soft

27 Dream On California pop 298 Slow-fast

Bill Labounty Man Keyboard Brass

Broken

106 Another Time Another Place Jazz California 245 Slow-fast

Steely Dan Instrumental Piano Keyboard

Instrumental

112 Learn to Love You Jazz crooner 279 Slow-fast

Harry Connick, Jr. Man Brass Strings

Muffled

137 Heart of My Heart Jazz swing 151 Slow-fast

Les Elgart Instrumental Double brass Brass

Instrumental

Evaluation
We can’t compare RecitalComposer to other

systems, since we don’t know of any other
attempts at generating sequences of multimedia
data. We can evaluate the scale-up to large cata-
logues and the quality of results.

Technical evaluation of the CSP approach
We used the current RecitalComposer proto-

type, written in Java, on a sample database of
about 300 titles. For most problems, solutions
were computed within a few seconds. Because we
don’t have a full database with a larger number of
items, we experimented on randomly generated
databases containing up to 10,000 items. These
experiments showed that resolution time grows
linearly with the size of the database. However,
those results are questionable, since the structure
of a randomly generated database may differ from
the structure of a real catalogue.

Experiments on databases larger by an order of
magnitude are in progress. We claim that such an
increase in size is not as critical an issue as it may
appear. The complexity of the problem depends
more on the density of solutions in the search
space than on the size of the search space itself. In
our case, the density of solutions augments with
the size of the database. Additionally, we may
divide the database into smaller domains of inter-
est, thus leading to a moderate increase in the size
of the search space.

Evaluation of resulting sequences
The solutions found by RecitalComposer satis-

fy two goals of music selection. Listener prefer-
ences (repetition) are satisfied by definition.
Exploitation of the catalogue is systematic, that is,
no clustering or bias is introduced and therefore

the system searches the entire database for solu-
tions. As illustrated in the working example, spe-
cific constraints can be added to force the system
to exploit particular regions of the catalogue.

Assessing the surprise goal is more difficult.
Unknown titles may be inserted in music pro-
grams with a high probability of acceptance by
the listener because of the properties of continu-
ity in the sequence. We conducted experiments to
compare programs produced by RecitalComposer
and programs produced by human experts
(including coauthor Cazaly) on the same sample
database. Results show that in all cases, experts
weren’t able to find correct solutions and had to
remove one or more constraints. Experts consid-
ered the solutions found by the program good, in
particular because it yielded items that they
wouldn’t have considered.

Conclusion
The technique presented here is an enabling

technology to build music delivery services. The
simplest application of RecitalComposer is a sys-
tem targeted at music professionals for building
music programs from a given database. In the
application, the user can specify the constraints
and launch the system on a database. The user has
full control of all the constraints, so it’s aimed at
professionals who want to express all the proper-
ties of the desired programs.

PathBuilder is an application of RecitalComposer
targeting nonprofessionals, in which the user speci-
fies the first and last titles of the program to build.
The system contains hidden constraints that guar-
antee the coherence of the sequence, like continuity
of styles and tempos. PathBuilder can, for instance,
find a smooth path between Celine Dion’s All by
Myself and Michael Jackson’s Beat It. In another appli-
cation the user only specifies the stylistic structure of
the program. Users can create a long program for par-
ties or radio broadcasts that has an overall stylistic
structure known in advance (such as begin with pop
and rock, then slow songs, and so on).

Finally, our approach can produce music pro-
grams in various styles by adding domain- specif-
ic constraints. We designed and implemented a
prototype application dedicated to Baroque
music. We used the application to build recitals of
Baroque harpsichord music. Recitals of Baroque
music (seventeenth century) follow rules identi-
fied by musicologists, while allowing a great deal
of freedom to performers. A typical rule concern-
ing the structure of recitals is the continuity of
tempos between consecutive pieces. More specific

8

IE
EE

 M
ul

ti
M

ed
ia

The simplest application

of RecitalComposer is a

system targeted at music

professionals for building

music programs from a

given database.

rules are also in use, such as rules on the tonality,
since during this period of musical history, recitals
where allowed to modulate—change tonality
from one piece to another—only once. Other con-
straints concern the structure of the recital (such
as the style of the pieces forming the introductory
part and requiring that consecutive pieces in the
recital are of different type).

We envisage other applications for set-top-box
services and digital-audio broadcasting. Our cur-
rent work focuses on the semiautomatic creation
and maintenance of large databases of titles.
Indeed, we can extract some of the attributes auto-
matically from input signals and others, such as
similarity relations between styles, by using col-
laborative filtering techniques. MM

References
1. N. Memon and P. Wong, “Protecting Digital Media

Content,” Comm. of the ACM, Vol. 41, No. 7, July

1998, pp. 34-43.

2. Report ISO/IEC JTC1/SC29/WG11, “Context and

Objectives, International Organization for

Standardization,” Oct. 1998,

http://drogo.cselt.stet.it/mpeg/standards/mpeg-

7/mpeg-7.htm.

3. L. Meyer, Emotions and Meaning in Music, Univ. of

Chicago Press, Chicago, 1956.

4. E. Narmour, The Analysis and Cognition of Melodic

Complexity, Univ. of Chicago Press, Chicago, 1992.

5. D. Smith and R. Melara, “Aesthetic Preference and

Syntactic Prototypicality in Music: ‘Tis the Gift to Be

Simple,” Cognition, Vol. 34, 1990, pp. 279-298.

6. U. Shardanand and P. Maes, “Social Information

Filtering: Algorithms for Automating ‘Word of

Mouth’,” Proc. ACM Conf. Human Factors in Computing

Systems, ACM, New York, 1995, pp. 210-217.

7. L. Cavalli-Sforza and M. Feldman, Cultural

Transmission and Evolution: A Quantitative Approach,

Princeton University Press, Princeton, N.J., 1981.

8. J. Epstein, Growing Artificial Societies: Social Science

from the Bottom Up, MIT Press, Boston, 1996.

9. E. Scheirer, “Tempo and Beat Analysis of Acoustic

Musical Signals,” J. of the Acoustical Society of

America, Vol. 103, No. 1, 1998, pp. 588-601.

10.P. Roy and F. Pachet, “Reifying Constraint Satisfaction

in Smalltalk,” J. of Object-Oriented Programming

(JOOP), Vol. 10, No. 4, July/Aug. 1997, pp. 43-51.

11. M. Dincbas, H. Simonis, and P. Van Hentenryck,

“Solving Large Combinatorial Problems in Logic

Programming” J. of Logic Programming, Vol. 7,

No. 1, 1990.

12. J.-C. Régin and J.-F. Puget, “A Filtering Algorithm for

Global Sequencing Constraints,” Proc. Third Int’l Conf.

on Principles and Practice of Constraint Programming,

Lecture Notes in Computer Science, Vol. 1330,

Springer, Berlin, 1997, pp. 32-46.

13. J.-F. Puget and M. Leconte, “Beyond the Glass Box:

Constraints as Objects,” Proc. Int’l Logic Programming

Symp., MIT Press, Boston, 1995.

14. J.-C. Régin, “Generalized Arc Consistency for Global

Cardinality Constraints,” Proc. Int’l Conf. Artificial In-

telligence, Vol. 1, AAAI Press, Cambridge, Mass., 1996.

15. J.-C. Régin, “A Filtering Algorithm for Constraints of

Difference in CSPs,” Proc. Int’l Conf. on Artificial

Intelligence, AAAI Press, Cambridge, Mass., 1994,

pp. 362-367.

François Pachet, civil engineer, is

an assistant professor at the

University of Paris 6, where he also

received a PhD in computer sci-

ence and artificial intelligence. He

heads the music research team at

the Sony Computer Science Laboratory in Paris, where

he develops techniques, including constraint-based, for

designing and building interactive multimedia systems.

He has researched computer music for 10 years.

Pierre Roy is a postdoctorate

researcher at the Create computer

music research center at UC Santa

Barbara, where he designs query

systems for music catalogues. He

received a PhD from the

University of Paris 6. Roy has designed and implement-

ed several constraint frameworks including the BackTalk

solver, which was used to implement the

RecitalComposer system. He has published several

papers on the integration of constraint satisfaction tech-

niques with objects and has presented tutorials on the

subject at several international conferences.

Daniel Cazaly has worked as a

musical expert for record labels for

30 years, holding positions ranging

from disk jockey to working in the

marketing department of Sony

Music. He is interested in classifi-

cations of musical knowledge and the preservation of

cultural heritage. He currently works in catalogue design,

management, and marketing at Sony Music France.

Readers may contact Pachet at Sony CSL-Paris, 6 Rue

Amyot, 75005 Paris, France; pachet@csl.sony.fr.

9

Jan
uary–M

arch
 2000

