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Introduction 
Rhythm has traditionally been considered a fundamental 
dimension of music. In the context of musical content 
feature extraction, in particular for music catalogues, the 
rhythmic dimension has up to now been curiously under 
studied. In particular, no operational taxonomy of 
musical rhythms is available, not to mention measures of 
similarity between rhythms. One reason is probably 
because that most of the approaches to rhythm modeling 
(e.g. Laine, 1999) are based on a view of rhythm as first 
class, objective data. These approaches are well suited to 
a score-based analysis, but are less useable for 
understanding the organic nature of rhythms. 
 
We propose an evolutionary approach for modelling 
musical rhythm. In this model, rhythm is seen as a 
musical form, emerging from repeated interaction 
between several rhythmic agents. These agents engage 
into a dynamic game which simulates a group of human 
players playing, in real time, percussive instruments 
together, without any prior knowledge or information 
about the music to play, but the goal to produce coherent 
music together. Instead of specifying rhythms as first 
class objects, we shift the focus of attention and propose 
to specify the rhythmic agents, and their individual 
properties. The model allows to define various sorts of 
rhythmic agents, run simulations, and observe rhythms as 
the emerging forms for particular configurations of 
agents. In this paper, we describe the overall framework 
and some preliminary experiments. 

Definition of rhythmic agents 
The agents, once initialised, play together in real time in 
loop, in a synchronised fashion, i.e. with the same tempo, 
and the same cycle length. Each agent plays a different 
rhythm, and is endowed with a perception and an action 
module. A “ rhythm”  here is to be understood as a 
temporal sequence of midi notes, which can be mapped 
to arbitrary sounds (percussive or pitched). 
The perception module takes as input the whole music 
played by all agents, in the form of the global sore of all 
agents in a symbolic form. The perception module 
applies basic parsing functions on this score, in order to 
extract information needed for the generation module, 
such as beat structure, or emphasis on beats. 

The production module has the role of modifying the 
agent’s rhythm, based on the perception module. This 
modification is specified by a set of transformation rules. 
The rules are generic, i.e. are not agent-dependent, and 
are organised in a rule library. Each agent is given a set 
of rules at the beginning of the play. The global rhythm is 
then the result of the ongoing play between these co-
evoluting agents. 
Besides, each agent holds a set of parameters defining its 
state, such as: 
- A midi program change 
- A midi channel and a midi port, to allow a maximum 

flexibility in Midi rendering. 
- A tempo 
- Possible_pitches: A set of pitches the agent 

“ knows” . This set is used e.g. to generate new notes. 
- Initial_rhythm: an initial rhythm, expressed as a 

sequence of midi pitches. This is the initial rhythm 
the agent will use at the beginning of the session. 
The empty sequence is a possible starting sequence. 

- A set of transformation rules (see below). 
 
As a working example, let us consider a very simple 
popular rhythm: rock. Rock can be seen as a rhythm 
made up of two main agents: a drum bass agent and a 
snare agent. In the cannonical version of Rock, each 
agent plays the same rhythm: a periodic sequence of 
notes, with a period T, and each agent is desynchronized 
by T/2. It is the simplest binary rhythm on can think of, 
and is illustrated in Figure 1. 
However, when drummers play – even bad ones - they 
never play exactly this “ ideal”  rhythm: they introduce 
errors (notes not exactly played on the beat), and 
variations, such as doubling the bass drum, or playing the 
snare a bit syncopated. The specification of these 
variations is precisely the subject of this work, and is 
achieved through transformation rules. 
 

 

Figure 1. A simple two agent r hythm: a basic r ock. 
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Transformation rules 
The transformation rules are the core of our model. These 
rules are generic operators which apply on rhythmic 
melodies to produce variations of these melodies. Instead 
of using very specific rhythmic operators as proposed, 
e.g., in (Assayag and al., 1999), we have attempted to 
reduce the number of rules to generic rhythmic operators.  
Rules are basically conditional procedures. More 
precisely, they take the following parameters: 
- a condition, expressed as a predicate holding on the 

parameters of the agent, as well as the global score 
produced by all agents in the preceding iteration, 

- an action, expressed as a modification of the agent’s 
own rhythm. 

These rules are fired at each cycle, once for each agent, 
and in anticipation, i.e. during the cycle. The effect of the 
rules is to create a new version of the agent’s rhythm. 
The agent’s rhythm is effectively updated with this new 
rhythm at the end of a cycle. All the agents perform this 
reasoning task in parallel. 
Our experiments consist in identifying which rules may 
lead to which classes of rhythms. We give here several 
examples of situations and the corresponding rules 
defined for dealing with them. 

Creating rhythms from scratch 
The approach can be used to create rhythm from scratch, 
i.e. with agents having initially empty rhythms. Here are 
two examples. First, let us introduce metric related rules: 
Emphasize_strong_beat 
If (there is a strong beat during which agent does not 
play) Then add a pitch chosen at random among 
possible_pitches, at this strong beat. 
Emphasize_weak_beat 
If (there is a weak beat during which agent does not play) 
Then add a pitch chosen at random among 
possible_pitches, at this strong beat. 
 
A possible representation of a basic rock created from 
scratch can be the following: 
- a bass agent. This agent has one rule: 

Emphasize_strong_beat.  
- a snare agent. This agent has one rule: 

Emphasize_weak_beat.  
 
If agents have initially empty rhythms, and no other 
rules, the execution of the model converges quickly after 
4 cycles (in the case of a 4 measure score) to the basic 
rock of Figure 1, and then remains obviously unchanged 
since no rule is applicable. 
 
Another class of important rhythmic patterns is obtained 
through so-called “syncopations” . A syncopation is 
basically the occurrence of a note “ just before”  a beat. 
This notion can be implemented as a rule as follows: 

 
Syncopation 
If (there is a beat during which an agent plays) Then add 
a pitch chosen at random among possible_pitches, just 
before this beat. “Just before”  in our case may be fixed to 
some small division of a beat. 
 
This rule may be illustrated with one agent having two 
rules: Emphasize_strong_beat, and  syncopation. After 
4 iterations, the following score (Figure 2) is obtained: 
 

 

Figure 2. Cr eation of a syncopated bass dr um. 

Var iation of existing rhythms 
Variation can then be introduced by adding random rules 
to agents. Several kinds of randomness can be defined. 
Here are simple ones: 
 
Add_Random: 
If (true) Then add a pitch chosen at random among 
possible_pitches, at a time chosen at random within the 
cycle length. 
Remove_Random: 
If (rhythm not empty) Then remove a pitch chosen at 
random in rhythm. 
M ove_pitch: 
If (rhythm not empty) Then translate in time a pitch 
chosen at random in rhythm. 
 
If the two agents in the Rock example have now also 
rules add_random and remove_random, the following 
scores are generated after a few iterations: 
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Figure 3. Several evolutions of the basic rock r hythm. 

 
These scores sound more or less “ rocky”  in the sense that 
there is always a bass drum contribution on most of the 
strong beats, and a contribution of snares on weak beats. 

Harmonic agents 
The framework can also be used for producing harmonic 
agents, i.e. agents which evolve mostly vertically instead 
of horizontally. Experiments were done starting with a 
very simple “ chord”  agent, which uses a 4-note chord as 
a starting “ rhythm” , and one simple evolution rule, which 
consists in moving 1 or 2 half step higher or lower one of 
its four notes. Several such agents can then be put in the 
system to create harmonic progressions. 

 

Figure 4. A chord sequence created by two har monic agents. 

 
Although the use of one simple context independent rule 
already produces interesting sequences, one can try to 
create more “constrained”  harmonic progressions. To do 
so we further introduce rules that determine pitch 
changes according to the “next chord”  in the global score. 
For instance, rules for attraction/repulsion can be defined 
as follows: 

Attraction 
If (distance between rhythm and the rhythm of the “next”  
agent in the band is < Threshold ) then choose a pitch in 
rhythm and move it toward the corresponding pitch in the 
next rhythm. 
Repulsion is defined similarly, with > instead of <. 
 
By defining agents with attraction and repulsion rules, 
one can create infinite chord sequences which never 
converge, while still giving the impression of turning 
around some strange attractor. 
 

By extension, any parameter of the chord can be used to 
be constrained with parameters of other chords or 
musical construct. For instance, the density, chord type, 
harmonic function, etc. can be used to create sequences 
having more natural musical structures, such as avoiding 
chords with too many dissonant intervals, avoiding 
paralell fifth, etc. 

More complex structures 
Finally, the whole set of possibilities can be used to 
create richer rhythms: chord agents mixed with rhythm 
agents. Figure 5 shows a set up with two harmonic agents 
and two rhythmic agents (one is set to play drum sounds, 
the other a Kalimba pitched melody). 
For these configurations, it is interesting to introduce 
rules that actually connect chords to melodies. First, a 
simple rule of this kind detects an agglomeration of notes 
at a certain temporal position (with a possible 
approximation given by a threshold) and decides to 
emphasize it by playing a note (possibly a bass drum 
sound) at that time. This rule allows to let chord 
structures emerge from different melodic agents. 
Conversely, a rule allows chord agents to adapt to 
melodic agents by changing one of their pitches to a pitch 
which is the most common in their immediate 
surrounding. 

 
Figure 5 A setup with a mix of rhythmic and har monic 

agents 

Back to Rock 
One can also start from an existing rhythm, e.g. in Midi 
format, and load it in the system. Each voice is then 
associated to an agent with initially no evolution rule. 
Rules can then be added to agents to let the rhythm 
evolve in various ways. Figure 6 shows two popular 
rhythms: a rock rhythm complete with crash and cymbal; 
and a Brazilian Batucada rhythm with 7 percussions. In 
these cases, the goal is to make the rhythm evolve 
without departing too much from the initial structure, and 
by avoiding to define ad hoc rules for this purpose. This 
is done by: 

• Introducing various sorts of noise in agents (e.g. 
with rules add and remove random), 
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• Introducing variations through syncompations. 
Typically in the Batucada, where some 
instruments should never play on the beats, but 
always slightly ahead. 

• Introducing attractors for rhythmic agents to 
strong or weak beats (as shown with the basic 
rock example) 

 

 

 

Figure 6. Two examples of complex popular  r hythms taken 
as star ting points for  rhythmic evolution. 

Implementation 
The model has been implemented under the form of an 
editor for specifying agents, and their various perception 
and action parameters, including the initial rhythm of 
agents (possibly empty), their instruments (using General 
Midi convention), and their rules of behaviour. The real 
time multi tasking of agents is implemented with the 
Thread facilities in Java; the scheduling of notes is 
performed by MidiShare (Orlarey and al. 1997). The 
editor allows to define initial agent’s melodies or chords 
and change them by clicking on the global score in real 
time (as in a standard drum box), as well as changing an 
agent’s rules interactively. 
The actual operators are implemented using the MusES 
music description language (Pachet and al. 1996). This 
language is a Java library including classes to define 
basic ingredients for music construction: melodies, 
chords, notes and intervals. Currently each rule is defined 
directly in Java and therefore requires a compilation 
process.  

Discussion, future work 
Current work include doing more experimentations to 
determine which basic operators are needed to produce a 
variety of different rhythms and variations. 
Based on our experiments, we now look for a 
generalization of operators in two main categories: 1) 
Operators tending to emphasise strong / weak beats, by 
introducing in the rhythm a note on a strong/weak beat, 
2) operators trying to produce syncopations, i.e. notes 
slightly ahead (or after) strong/weak beats. Each of these 
two operators are parameterised by the type of beat to 
apply to (strong or weak), and the nature of the emphasis 
(positive or negative). In the case of a negative emphasis, 
the agent withdraws any note it is possibly playing from 
his melody. These operators should be general enough to 
allow many variations, but adapted to rhythm 
specification, to avoid having to input a lot of parameters. 
The formalization of this model should eventually lead to 
a constructive model of rhythm. 
Finally, we also use the editor to produce actual music or 
soundtracks (documentary) as well as for live 
performance, where one of the agent is replaced by an 
actual humand Midi input. 
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