
In ICMC 2000, Berlin (Germany), ICMA.

Rhythms as emerging structures

François Pachet, pachet@csl.sony.fr

SONY CSL, 6 rue Amyot, 75005 Paris, France

Introduction
Rhythm has traditionally been considered a fundamental
dimension of music. In the context of musical content
feature extraction, in particular for music catalogues, the
rhythmic dimension has up to now been curiously under
studied. In particular, no operational taxonomy of
musical rhythms is available, not to mention measures of
similarity between rhythms. One reason is probably
because that most of the approaches to rhythm modeling
(e.g. Laine, 1999) are based on a view of rhythm as first
class, objective data. These approaches are well suited to
a score-based analysis, but are less useable for
understanding the organic nature of rhythms.

We propose an evolutionary approach for modelling
musical rhythm. In this model, rhythm is seen as a
musical form, emerging from repeated interaction
between several rhythmic agents. These agents engage
into a dynamic game which simulates a group of human
players playing, in real time, percussive instruments
together, without any prior knowledge or information
about the music to play, but the goal to produce coherent
music together. Instead of specifying rhythms as first
class objects, we shift the focus of attention and propose
to specify the rhythmic agents, and their individual
properties. The model allows to define various sorts of
rhythmic agents, run simulations, and observe rhythms as
the emerging forms for particular configurations of
agents. In this paper, we describe the overall framework
and some preliminary experiments.

Definition of rhythmic agents
The agents, once initialised, play together in real time in
loop, in a synchronised fashion, i.e. with the same tempo,
and the same cycle length. Each agent plays a different
rhythm, and is endowed with a perception and an action
module. A “ rhythm” here is to be understood as a
temporal sequence of midi notes, which can be mapped
to arbitrary sounds (percussive or pitched).
The perception module takes as input the whole music
played by all agents, in the form of the global sore of all
agents in a symbolic form. The perception module
applies basic parsing functions on this score, in order to
extract information needed for the generation module,
such as beat structure, or emphasis on beats.

The production module has the role of modifying the
agent’s rhythm, based on the perception module. This
modification is specified by a set of transformation rules.
The rules are generic, i.e. are not agent-dependent, and
are organised in a rule library. Each agent is given a set
of rules at the beginning of the play. The global rhythm is
then the result of the ongoing play between these co-
evoluting agents.
Besides, each agent holds a set of parameters defining its
state, such as:
- A midi program change
- A midi channel and a midi port, to allow a maximum

flexibility in Midi rendering.
- A tempo
- Possible_pitches: A set of pitches the agent

“ knows” . This set is used e.g. to generate new notes.
- Initial_rhythm: an initial rhythm, expressed as a

sequence of midi pitches. This is the initial rhythm
the agent will use at the beginning of the session.
The empty sequence is a possible starting sequence.

- A set of transformation rules (see below).

As a working example, let us consider a very simple
popular rhythm: rock. Rock can be seen as a rhythm
made up of two main agents: a drum bass agent and a
snare agent. In the cannonical version of Rock, each
agent plays the same rhythm: a periodic sequence of
notes, with a period T, and each agent is desynchronized
by T/2. It is the simplest binary rhythm on can think of,
and is illustrated in Figure 1.
However, when drummers play – even bad ones - they
never play exactly this “ ideal” rhythm: they introduce
errors (notes not exactly played on the beat), and
variations, such as doubling the bass drum, or playing the
snare a bit syncopated. The specification of these
variations is precisely the subject of this work, and is
achieved through transformation rules.

Figure 1. A simple two agent r hythm: a basic r ock.

In ICMC 2000, Berlin (Germany), ICMA.

Transformation rules
The transformation rules are the core of our model. These
rules are generic operators which apply on rhythmic
melodies to produce variations of these melodies. Instead
of using very specific rhythmic operators as proposed,
e.g., in (Assayag and al., 1999), we have attempted to
reduce the number of rules to generic rhythmic operators.
Rules are basically conditional procedures. More
precisely, they take the following parameters:
- a condition, expressed as a predicate holding on the

parameters of the agent, as well as the global score
produced by all agents in the preceding iteration,

- an action, expressed as a modification of the agent’s
own rhythm.

These rules are fired at each cycle, once for each agent,
and in anticipation, i.e. during the cycle. The effect of the
rules is to create a new version of the agent’s rhythm.
The agent’s rhythm is effectively updated with this new
rhythm at the end of a cycle. All the agents perform this
reasoning task in parallel.
Our experiments consist in identifying which rules may
lead to which classes of rhythms. We give here several
examples of situations and the corresponding rules
defined for dealing with them.

Creating rhythms from scratch
The approach can be used to create rhythm from scratch,
i.e. with agents having initially empty rhythms. Here are
two examples. First, let us introduce metric related rules:
Emphasize_strong_beat
If (there is a strong beat during which agent does not
play) Then add a pitch chosen at random among
possible_pitches, at this strong beat.
Emphasize_weak_beat
If (there is a weak beat during which agent does not play)
Then add a pitch chosen at random among
possible_pitches, at this strong beat.

A possible representation of a basic rock created from
scratch can be the following:
- a bass agent. This agent has one rule:

Emphasize_strong_beat.
- a snare agent. This agent has one rule:

Emphasize_weak_beat.

If agents have initially empty rhythms, and no other
rules, the execution of the model converges quickly after
4 cycles (in the case of a 4 measure score) to the basic
rock of Figure 1, and then remains obviously unchanged
since no rule is applicable.

Another class of important rhythmic patterns is obtained
through so-called “syncopations” . A syncopation is
basically the occurrence of a note “ just before” a beat.
This notion can be implemented as a rule as follows:

Syncopation
If (there is a beat during which an agent plays) Then add
a pitch chosen at random among possible_pitches, just
before this beat. “Just before” in our case may be fixed to
some small division of a beat.

This rule may be illustrated with one agent having two
rules: Emphasize_strong_beat, and syncopation. After
4 iterations, the following score (Figure 2) is obtained:

Figure 2. Cr eation of a syncopated bass dr um.

Var iation of existing rhythms
Variation can then be introduced by adding random rules
to agents. Several kinds of randomness can be defined.
Here are simple ones:

Add_Random:
If (true) Then add a pitch chosen at random among
possible_pitches, at a time chosen at random within the
cycle length.
Remove_Random:
If (rhythm not empty) Then remove a pitch chosen at
random in rhythm.
M ove_pitch:
If (rhythm not empty) Then translate in time a pitch
chosen at random in rhythm.

If the two agents in the Rock example have now also
rules add_random and remove_random, the following
scores are generated after a few iterations:

In ICMC 2000, Berlin (Germany), ICMA.

Figure 3. Several evolutions of the basic rock r hythm.

These scores sound more or less “ rocky” in the sense that
there is always a bass drum contribution on most of the
strong beats, and a contribution of snares on weak beats.

Harmonic agents
The framework can also be used for producing harmonic
agents, i.e. agents which evolve mostly vertically instead
of horizontally. Experiments were done starting with a
very simple “ chord” agent, which uses a 4-note chord as
a starting “ rhythm” , and one simple evolution rule, which
consists in moving 1 or 2 half step higher or lower one of
its four notes. Several such agents can then be put in the
system to create harmonic progressions.

Figure 4. A chord sequence created by two har monic agents.

Although the use of one simple context independent rule
already produces interesting sequences, one can try to
create more “constrained” harmonic progressions. To do
so we further introduce rules that determine pitch
changes according to the “next chord” in the global score.
For instance, rules for attraction/repulsion can be defined
as follows:

Attraction
If (distance between rhythm and the rhythm of the “next”
agent in the band is < Threshold) then choose a pitch in
rhythm and move it toward the corresponding pitch in the
next rhythm.
Repulsion is defined similarly, with > instead of <.

By defining agents with attraction and repulsion rules,
one can create infinite chord sequences which never
converge, while still giving the impression of turning
around some strange attractor.

By extension, any parameter of the chord can be used to
be constrained with parameters of other chords or
musical construct. For instance, the density, chord type,
harmonic function, etc. can be used to create sequences
having more natural musical structures, such as avoiding
chords with too many dissonant intervals, avoiding
paralell fifth, etc.

More complex structures
Finally, the whole set of possibilities can be used to
create richer rhythms: chord agents mixed with rhythm
agents. Figure 5 shows a set up with two harmonic agents
and two rhythmic agents (one is set to play drum sounds,
the other a Kalimba pitched melody).
For these configurations, it is interesting to introduce
rules that actually connect chords to melodies. First, a
simple rule of this kind detects an agglomeration of notes
at a certain temporal position (with a possible
approximation given by a threshold) and decides to
emphasize it by playing a note (possibly a bass drum
sound) at that time. This rule allows to let chord
structures emerge from different melodic agents.
Conversely, a rule allows chord agents to adapt to
melodic agents by changing one of their pitches to a pitch
which is the most common in their immediate
surrounding.

Figure 5 A setup with a mix of rhythmic and har monic

agents

Back to Rock
One can also start from an existing rhythm, e.g. in Midi
format, and load it in the system. Each voice is then
associated to an agent with initially no evolution rule.
Rules can then be added to agents to let the rhythm
evolve in various ways. Figure 6 shows two popular
rhythms: a rock rhythm complete with crash and cymbal;
and a Brazilian Batucada rhythm with 7 percussions. In
these cases, the goal is to make the rhythm evolve
without departing too much from the initial structure, and
by avoiding to define ad hoc rules for this purpose. This
is done by:

• Introducing various sorts of noise in agents (e.g.
with rules add and remove random),

In ICMC 2000, Berlin (Germany), ICMA.

• Introducing variations through syncompations.
Typically in the Batucada, where some
instruments should never play on the beats, but
always slightly ahead.

• Introducing attractors for rhythmic agents to
strong or weak beats (as shown with the basic
rock example)

Figure 6. Two examples of complex popular r hythms taken
as star ting points for rhythmic evolution.

Implementation
The model has been implemented under the form of an
editor for specifying agents, and their various perception
and action parameters, including the initial rhythm of
agents (possibly empty), their instruments (using General
Midi convention), and their rules of behaviour. The real
time multi tasking of agents is implemented with the
Thread facilities in Java; the scheduling of notes is
performed by MidiShare (Orlarey and al. 1997). The
editor allows to define initial agent’s melodies or chords
and change them by clicking on the global score in real
time (as in a standard drum box), as well as changing an
agent’s rules interactively.
The actual operators are implemented using the MusES
music description language (Pachet and al. 1996). This
language is a Java library including classes to define
basic ingredients for music construction: melodies,
chords, notes and intervals. Currently each rule is defined
directly in Java and therefore requires a compilation
process.

Discussion, future work
Current work include doing more experimentations to
determine which basic operators are needed to produce a
variety of different rhythms and variations.
Based on our experiments, we now look for a
generalization of operators in two main categories: 1)
Operators tending to emphasise strong / weak beats, by
introducing in the rhythm a note on a strong/weak beat,
2) operators trying to produce syncopations, i.e. notes
slightly ahead (or after) strong/weak beats. Each of these
two operators are parameterised by the type of beat to
apply to (strong or weak), and the nature of the emphasis
(positive or negative). In the case of a negative emphasis,
the agent withdraws any note it is possibly playing from
his melody. These operators should be general enough to
allow many variations, but adapted to rhythm
specification, to avoid having to input a lot of parameters.
The formalization of this model should eventually lead to
a constructive model of rhythm.
Finally, we also use the editor to produce actual music or
soundtracks (documentary) as well as for live
performance, where one of the agent is replaced by an
actual humand Midi input.

References
Laine, Pauli (1999) Motor Neuron Based Virtual
Drummer, ICMC, 1999.
Gerard Assayag, Camilo Rueda, Mikael Laurson, Carlos
Agon, and Olivier Delerue, (1999) “Computer Assisted
Composition at IRCAM: From PatchWork to
OpenMusic” , CMJ, December.
Pachet, F. Ramalho , J. Carrive, J. (1996) Representing
temporal musical objects and reasoning in the MusES
system. Journal of New Music Research, Vol. 25, n. 3,
pp. 252-275.

