
In Roads, C., editor, Sound in Space, Santa Barbara, 2000. CREATE

���������	
��	�
����

��������	����	�
	������	�	�	��	�
�����
������		
����	���	�����
	�
	���	�����	�����
	�����
	������	

� ����!	����"�#�"�$ "��%����%&�

Abstract
The MusicSpace project aims at providing high-level user control on music spatialization, i.e. the position of sound sources
and the position of the listener’ s avatar. This is done by introducing a constraint system in a graphical user interface
representing the sound sources, and connected to a spatializer. The constraint system allows to express various sorts of
properties on configuration of sound sources. When the user moves one source - through the interface or via a control
language - the constraint system is activated and tries to satisfy the constraints that may have been violated. A first Midi
version of the MusicSpace has already been designed and proved very successful. We describe here a second version of
MusicSpace which now handles full-fledged multi-track audio files. We report on the design of the system and preliminary
experiments.

1. Music Spatialization

Music spatialization has long been an intensive object of
study in computer music research. Most of the work so
far has concentrated in building software to simulate
acoustic environments for existing sound signals. These
techniques typically exploit difference of amplitude in
sound channels, delays between sound channels to
account for interaural distances, and sound filtering
techniques such as reverberation to recreate impressions
of distance (e.g. [3]). These spatialization techniques are
mostly used for building virtual reality environments,
such as [1], [4]. However, letting users change
spatialization arbitrarily induces the risk that the original
properties of the configuration of sound sources are no
longer preserved. We propose a system in which user may
change the positions of sound sources, while ensuring
that spatializations are always “correct” in some precisely
defined sense.

2. MusicSpace

MusicSpace is an interface for producing high level
commands to a spatializer [6]. The basic idea in
MusicSpace is to represent graphically sound sources in a
window, as well as an avatar that represents the listener
itself. In this window, the user may either move its avatar
around, or move the instruments icons. The relative
position of sound sources to the listener’s avatar
determine the overall mixing of the music, according to
simple geometrical rules mapping distances to volume
and panoramic controls. The real time mixing of sound
sources is then performed by sending appropriate
commands from MusicSpace, to whatever spatialization
system is connected to it, such as a mixing console, a
Midi Spatializer, or a more sophisticated spatialization
system such as [3].

3. Mixing Consistency

The problem with allowing users to change the
configuration of sound sources, and hence, the mixing, is
that they do not have the knowledge required to produce
coherent, nice-sounding mixings. Indeed, the knowledge
of the sound engineer is difficult to explicit and to
represent. Its basic actions are actions on controls such as
faders and knobs. However, mixing also involves higher
level actions that can be defined as compositions of
atomic actions. For instance, sound engineers may want
to ensure that the overall energy level of the recording
always lies between reasonable boundaries. Conversely,
several sound sources may be logically dependent. For
instance, the rhythm section may consist in the bass track,
the guitar track and the drum track. Another typical
mixing action is to assign boundaries to instruments or
groups of instruments so that they always remain within a
given spatial range. The consequence of these actions is
that sound levels are not set independently of each
another. Typically, when a fader is raised, another one,
(or a group of other faders) will be lowered.
We have proposed to encode this type of knowledge on
sound spatialization as constraints, which are interpreted
in real time by an efficient constraint propagation
algorithm, integrated in MusicSpace. Constraints are
relations that should always be satisfied. Constraints are
stated declaratively by the designer, thereby avoiding him
to program complex algorithms. Constraint propagation
algorithms are particularly relevant for building reactive
systems typically for layout management of graphical
interfaces [2].

3.1 Constraints and Mixing Consistency

We defined a set of constraints appropriate for specifying
“ interesting” relations between sound sources. Most of
the constraints on mixing involve a collection of sound
sources and the listener. We describe here the most useful
ones.

In Roads, C., editor, Sound in Space, Santa Barbara, 2000. CREATE

• Constant Energy Level
This constraint states that the energy level between
several sound sources should be kept constant.
Intuitively, it means that when one source is moved
toward the listener, the other sources should be “pushed
away”, and vice-versa.
• Constant Angular Offset
This constraint is the angular equivalent of the preceding
one. It expresses that the spatial configuration of sound
sources should be preserved, i.e. that the angle between
two objects and the listener should remain constant.
• Constant Distance Ratio
The constraint states that two or more objects should
remain in a constant distance ratio to the listener:
• Radial Limits of Sound Sources
This constraint allows to impose radial limits in the
possible regions of sound sources. These limits are
defined by circles whose center is the listener’ s avatar.
• Grouping constraint
This constraint states that a set of nsound sources should
remain grouped, i.e. that the distances between the
objects should remain constant (independently of the
listener’s avatar position).
Other typical constraints include symbolic constraints,
holding on non geographical variables. For instance, an
“ Incompatibility constraint” imposes that only one source
should be audible at a time: the closest source only is
heard, the others are muted. Another complex constraint
is the “Equalizing constraint” , which states that the
frequency ratio of the overall mixing should remain
within the range of an equalizer. For instance, the global
frequency spectrum of the sound should be flat.

3.2 Constraint algor ithm

The examples of constraints given above show that the
constraints have the following properties:
• the constraints are not linear. For instance, the

constant energy level (between two or more sources)
is not linear.

• The constraints are not all functional. For instance,
geometrical limits of sound sources are typically
inequality constraints.

• The constraints induce cycles. For instance, a simple
configuration with two sources linked by a constant
energy level constraint and a constant angular offset
constraint already yields a cyclic constraint graph.

There is no general algorithm, to our knowledge, which
handles non linear, non functional constraints with cycles.
We designed a propagation algorithm which implements
only a part of our requirements, but with predictable and
reactive behaviour. This algorithm is based on a simple
propagation scheme, and allows to handle functional
constraints, inequality constraints. It handles cycles
simply by checking conflicts. An important property of
the algorithm is that new constraint classes may be added
easily, by defining the set of propagation procedures [5].

3.3 The inter face

The interface for setting constraints is straightforward:
each constraint is represented by a button, and constraints
are set by first selecting the graphical objects to be
constrained, and then clicking on the appropriate
constraint. Constraints themselves are represented by a
small ball linked to the constrained objects by lines.

Figure 3. The MusicSpace inter face for setting constr aints.

Figure 3 displays a typical configuration of sound source
for a Jazz trio. The following constraints have been set:
• The bass and drum sound sources are linked by a

“constant distance ratio” constraint, which ensures
that they remain grouped, distance wise.

• The piano is linked with the rhythm section by a
“balance” constraint. This ensures that the total level
between the piano and the rhythms section is
constant.

• The piano is limited in its movement by a ”distance
max” constraint. This ensures that the piano is always
heard.

• The drum is forced to remain in an angular area by
two “ angle constraints” . This ensures that the drum is
always more or less in the middle of the panoramic
range.

Starting from the initial situation of Figure 3, the user
moves the piano closer to his avatar. The constraint
system is then triggered, and the other sound sources are
moved to satisfy the constraint set.

4. The Audio Version

MusicSpace provides a high level command language for
moving groups of related sound sources, and may be used
to control arbitrary spatialization systems. MusicSpace
was connected successfully to a Midi Spatialization
system for playing midi files, to a midi-controlled audio
mixing console for mixing multi-track recordings, as well
as to Ircam’ s spatialization system [3]. In all these cases
though, MusicSpace was used as a mere control system,
needing a remote controlleable spatialization system.
We recently built a specific Dynamic Link Library (dll)
for PCs which allows MusicSpace to control Microsoft
DirectX 3D sound buffers. This dll of MusicSpace-audio

In Roads, C., editor, Sound in Space, Santa Barbara, 2000. CREATE

basically provides a connection between any Java
application and DirectX, by converting DirectX ‘ s API
C++ types into simple types (such as integers) that can be
handled by Java.
Although DirectX may arguably not be the more accurate
spatialization system around, this extension has a number
of benefits.
First, DirectX provides parameters for describing 3D
sound sources which can be constrained using
MusicSpace. For instance, a DirectX sound source is
endowed with an orientation, a directivity and even a
Doppler parameter. An “orientation” constraint has been
designed and included in the constraint library of
MusicSpace. This constraint states that two sound source
should always “ face” each other: when one source is
moved, the orientation of the two sources move
accordingly.
Second, DirectX allows to handle lots of sound sources in
real time. This is useful for mixing complex symphonic
music, which have often dozens of related sound sources.
Lastly, the presence of DirectX on a number of PC makes
MusicSpace easily useable to a wide audience.

5. Applications of MusicSpace

MusicSpace has applications also outside the field of
spatialization. MusicSpace can be used for any situation
where:
1) Streams of real time data can be controlled by discrete

parameters (e.g. streams of audio sources controlled
by distance, pan, directivity, etc.),

2) Relations between these parameters can be expressed
as constraints or combinations of constraints.

Such situations occur frequently in music composition,
sound synthesis, and real time control. We have sketched
some of them here. Other applications in progress
concerns the automatic animation of sound sources (e.g.
defining sources which revolve automatically around
other sources, or which move through a path itself
defined with constraints).

MusicSpace and related information can be obtained at
http://www.csl.sony.fr/MusicSpace

6. References

[1] Eckel G., “Exploring Musical Space by Means of
Virtual Architecture”, Proceedings of the 8th
International Symposium on Electronic Art, School
of the Art Institute of Chicago, 1997.

[2] Hower W., Graf W. H., “a Bibliographical Survey of
Constraint-Based Approaches to CAD, Graphics,
Layout, Visualization, and related topics” ,
Knowledge-Based Systems, Elsevier, vol. 9, n. 7, pp.
449-464, 1996.

[3] Jot J.-M., Warusfel O., “A Real-Time Spatial Sound
Processor for Music and Virtual Reality
Applications” , Proceedings of ICMC, 1995.

[4] Lea R., Matsuda K., Myashita K., Java for 3D and
VRML worlds, New Riders Publishing, 1996.

[5] Pachet F., Delerue O., “A Temporal Constraint-
Based Music Spatializer” , ACM Multimedia
Conference, Bristol, 1998.

[6] Pachet F., Delerue O., “MusicSpace, a constraint-
based control system for music spatialization”,
ICMC, Beigin (China), 1999.

[7] Pachet F., Delerue O., “Constraint-Based
Spatialization”, First DAFX Workshop, Barcelona,
1998.

