
1

Interacting with a Musical Learning System: The
Continuator

ABSTRACT
The Continuator system is an attempt to bridge the gap
between two classes of traditionally incompatible musical
systems: 1) interactive musical systems, limited in their
ability to generate stylistically consistent material, and 2)
music composition systems, which are fundamentally not
interactive. The purpose of Continuator is to extend the
technical ability of musicians with stylistically consistent,
automatically learnt musical material. This requires the
ability for the system to build operational representations of
musical styles in real time, and to adapt quickly to external
musical information. The Continuator is based on a Markov
model of musical styles augmented to account for efficient
real time learning of musical styles and to arbitrary external
bias. The paper describes the main technical issues at stake
concerning the integration of an agnostic learning scheme
in an interactive instrument, and reports on real-world
experiments performed with various musicians.

KEYWORDS: Musical interaction, music, improvisation,
collaborative music.
INTRODUCTION
“I don’t play piano, I play pianist” used to say French Pop
singer Claude Nougaro, pointing to his long time
accompanist Maurice Vander. This joke summarizes well
the goal the Continuator project. We seek to design musical
instruments that provide exciting interactions through the
ability to learn automatically arbitrary musical styles, and
adapt these styles to the playing modes of the musician.
The undertaking can be seen as a way to turn musical
instruments from passive objects to active, autonomous
systems, with which one can interact using high-level
controls, much in the same way Claude Nougaro, through
the blink of an eye, can control, or influence his pianist
Maurice Vander.

Musical performance has been the object of numerous
studies using all the software technologies at hand. In our
context, we can divide these approaches in two categories:
interactive systems and intelligent music composition
systems. Interactive music systems propose ways of
transforming in real time musical input into musical output.
Musical interactive systems have been popular both in the
experimental field [15] [17] as well as in commercial
applications, from one-touch chords of arranger systems to
the recent and popular Korg Karma synthesizer [9]. While a
lot of work has been devoted to efficient controllers and
interfaces for musical systems [4], [10], these systems all

share a common drawback: they do not manage time, there
is no memory of the past, and consequently the music
generated is strongly correlated with musical input, but not
or poorly with a consistent and realistic musical style.

On the other hand, music composition systems precisely
aim at representing stylistic information, to generate music
in various styles, from the Illiac suite [8] to the automatic
compositions of [6]. More recently, constraint techniques
have been used to produce stylistically consistent 4-part
Baroque music (see [12] for a survey). In the domain of
popular music, prototypes such as [2], [3], [14] have
demonstrated the technical feasibility of simulating
convincingly jazz styles by computer. In opposition to
interactive music systems, the main drawback of these
approaches is that they do not allow real musical
interaction: they propose fully-fledged automata that may
produce realistic music, but cannot be used as actual
instruments. Moreover, these approaches require explicit,
symbolic information to be fed to the system, such as
human input for supervised learning, underlying harmonic
structure, tempo, song structure, etc.

The system we present here is an attempt to combine both
worlds: design real-time interactive musical instruments
that are able to produce stylistically consistent music. More
precisely, we propose a system in which musical styles are
learned automatically, in an agnostic manner, and therefore
do not require any symbolic information (style, harmonic
grid, tempo). The system is seamlessly integrated in the
playing mode of the musician, as opposed to traditional
fully automatic or question/answer systems, and adapts
quickly and without human intervention to unexpected
changes in rhythm, harmony or style. Finally, the design of
the system allows the sharing of stylistic patterns in real
time and constitutes in this sense a novel form of
collaborative musical instrument.

The remaining of the paper is structured as follows. First
we describe the heart of the system, based on a Markov
model of musical styles, augmented with a hierarchy of
learning functions to adapt to imprecision in musical inputs.
Then we discuss the issues related to turning the learning
facility into an actual musical instrument. Finally we report
on experiments with the system in various real world
musical contexts.

2

INSIDE THE CONTINUATOR
In the standard mode, the system receives musical Midi
input from one musician. The output of the system is itself
sent to a Midi synthesizer and then to a sound reproduction
system. The system acts basically as a sequence
continuator: the note stream of the musician is continuously
segmented into musical phrases. Each phrase is sent
asynchronously to a phrase analyzer, which builds up a
model of recurring patterns. In reaction to the played
phrase, the system immediately generates a continuation,
according to the database of patterns already learnt.

A HIERARCHICAL MARKOV MODEL OF MUSICAL
SEQUENCES
Researchers in AI and information theory have long
addressed the technical issue of learning automatically and
in an agnostic manner a musical style. Shannon introduced
in his 1948 seminal paper the concept of information based
on probability of occurrence of messages. This notion was
quickly used to model musical styles, and these
experiments showed that it was possible to create pieces of
music that would sound like given styles, by simply
computing and exploiting probabilities of note transitions.
More precisely, given a corpus of music material (typically
music scores, or MIDI files), the basic idea is to represent
in some way the local patterns found in the learnt corpus,
by computing transition probabilities between successive
notes. New music sequences are then generated using these
probabilities, and these sequences will contain, by
definition, the patterns identified in the learnt corpus.

One of the most spectacular applications of Markov chains
to music is probably [6], although his musical productions
are not entirely produced automatically. A good survey of
state-of-the-art of Markov based techniques for music can
be found in [16], and a recent development in [1].

These works show clearly two things: 1) Markov chain
models and their extensions are powerful enough to
represent efficiently musical patterns, but 2) their
generative power is limited due to the absence of long-term
information. In another words, these models can fool the
listener on a short scale, but not for complete pieces.

Using Markov models for interaction purposes, and not for
composing complete, fully-fledged musical pieces, allow us
to benefit from 1) while avoiding the drawback of 2). The
responsibility for organizing the piece, deciding its high-
level structure is left to the musician. The system only "fills
in the gaps", and the power of Markov chain can be
exploited fully to this aim.

The Continuator system is yet another species in the world
of musical Markov systems, although with novel features.
In our context, we want to learn and imitate musical styles
in a faithful and efficient manner, and make the resulting
mechanism useable as an actual music instrument. This
raised a number of technical issues, whose solutions were

integrated in the Continuator. These issues are addressed in
the following section.

HIERARCHICAL MARKOV MODELS
The learning module we propose systematically learns all
phrases played by the musician, and builds progressively a
database of patterns detected in the input sequences. We
designed an indexing scheme which represents all the
subsequences found in the corpus, in such a way that the
computation of continuations is complete and as efficient as
possible.

This technique consists in building a prefix tree by a
simple, linear analysis of each input sequence. Each time a
sequence is input to the system, it is stored in memory, and
all subsequences encountered are systematically added to
the tree. For reasons of space, we describe here only the
most generic functions.

For instance, let us suppose the following input sequences:

Sequence #1: {A B C D}

and later:

Sequence 2#: {A B B C}

The system will build a tree containing, for all possible
subsequences of each of these two sequences, the list of all
continuations encountered in this learning corpus, and
weighted by their number of occurrences. The scheme is
called variable-order Markov chain because it contains the
continuations for all subsequences of any length (up to a
given maximum, typically 10). In our example, a
subsequence such as {B} has the following possible
continuations: C (from sequence #1), and B (from sequence
#2).

A subsequence such as {A B} has continuations: C (from
sequence #1) and B (from sequence #2).

A subsequence such as {B B C} has only as possible
continuation D from sequence #1. Note that in this last
case, there is no continuation for the whole subsequence {B
B C}, so we get the continuation for the longest possible
subsequence, here, {B C}. When several continuations are
similar, they are all repeated. For instance, the
continuations of {A} are {B, B} (from sequences #1 and #2
respectively).

In our context, the most important characteristic of the data
structure we propose is that the sequence learned is not the
input sequence itself. Indeed, Midi sequences have many
parameters, all of which are not necessarily interesting to
learn.

For instance, a note has attributes such as pitch, velocity,
duration, start time, and possibly other information
provided by continuous controllers (pitch bend, modulation,

3

etc.). A chord has attributes such as the pitch list, possibly
its root key, etc. The sequence learned is therefore not the
input sequence itself, but a sequence obtained by applying a
reduction function to the original input sequence. The
simplest function is the pitch. A more refined function is
the combination of pitch and duration. [5] and [16]
proposed different reduction functions (called viewpoints)
for representing music in the context of musical analysis.
Our experiments with real time interactive music led us to
develop and implement such a library of reduction
functions, including the ones mentioned in these works, as
well as functions specially designed to take into account
more realistic Jazz and classical styles. One of them is the
PitchRegion, which is a simplification of pitch: instead of
considering explicit pitches, we reduce pitches in regions,
in practice by considering only pitch / region_size.

GENERATION
The generation phase consists then, given an initial input
sequence played by the musician, in computing
successively continuations, step by step using a tiling
process. First a note item is computed for the input
sequence. Then the input sequence augmented by this item
is considered, and the next item is computed, etc. At each
step, a continuation for the subsequence of the maximum
length is found, which results in optimum consistency with
regards to the learnt corpus.

An important improvement on classical Markov-based
generation mechanisms is behavior of our algorithm when
it encounters a phrase for which no continuation is found.

Suppose a model trained to learn the arpeggio in Figure 1:

Figure 1. An arpeggio learnt by the Continuator.

Suppose that the reduction function is as precise as
possible, say pitch, velocity and duration. Suppose now that
the input sequence to continue is the following (Figure 2):

Figure 2. An input sequence which does not
match exactly with a subsequence in learnt
corpus.

It is clear that any Markov model will consider that there is
no continuation for this sequence, because there is no
continuation for the last note of the input sequence (here, E
flat). The models proposed so far would then draw a new
note at random, and actually start a new sequence.

However, it is also clear intuitively, that a better solution, in
such a case, is to shift the viewpoint. In our context, this
corresponds to using a less refined reduction function. Let
us consider for instance pitch regions of three notes instead
of pitches.

The learnt sequence of Figure 2 is then reduced to:

{PR1 PR1 PR2 PR3 PR5}

The input sequence is itself reduced to

{PR1 PR1 PR2}

In this new model, there is a continuation for the input
sequence {PR1 PR1 PR2}, which is PR3.

Because our model keeps track of the original input
sequences (and not only their reductions), we can generate
the note corresponding to PR3 in the learnt corpus, in our
case G. Once the continuation has been found, the process
is started again with the new sequence, using the more
refined reduction function.

More precisely, we introduce a hierarchy of reduction
functions, to be used in cases of failure. This hierarchy can
be defined by the user. A typical hierarchy is:

1 – pitch * duration * velocity

2 – small pitch region * velocity

3 – small pitch regions

4 – large pitch regions

where the numbering indicates the order in which the
functions are to be considered in cases of failure in the
matching process.

The approach we propose allows to take into account
inexact inputs, with a minimum cost. The complexity for
retrieving the continuations for a given input sequence is
indeed very small as it involves only walking through trees,
without any search.

FROM AN AUTOMATON TO A MUSICAL INSTRUMENT
The learning module described in the preceding section is
able to learn and generate music sequences that sound like
the sequences in the learnt corpus. As such, it provides a
powerful musical automaton able to imitate faithfully
styles, but not an interactive musical instrument. This
section describes the main design concepts that can be used
to turn this style generator into an interactive musical
instrument. This is achieved through two related constructs:
1) a step-by step generation of the music sequences
achieved through a real time implementation of the
generator, and most importantly 2) an extension of the

4

Markovian generation process with a fitness function which
takes into account characteristics of the input phrase.

REAL TIME GENERATION
The real time generation is a strictly technical issue but is
an important aspect of the system since it is precisely what
allows to take into account external information quickly,
and ensure that the music generated follows accurately the
input, and remains controllable by the user.

How Fast is Fast?
To give an estimation of our real time constraints, we have
to know how fast a musician can play. We have considered
an example by John McLaughlin, considered as one of the
fastest guitarist in the world, in an example performed for a
demo of a pitch to Midi converter
(http://www.musicindustries.com/axon/archives/john.htm).
An analysis of the fastest parts of the sample yields a mean
duration of 66 milliseconds per note. Of course, this figure
is not definitive, but can be taken as an estimate for a
reasonable maximum speed. Our system should have a
response time short enough so that it is impossible to
perceive a break in the note streams, from the end of the
player’s phrase, to the beginning of the system’s
continuation: A good estimation of the maximum delay
between two fast notes is about 50 milliseconds.

Thread Architecture
The real time aspect of the system is handled as follows.
Incoming notes are detected by the system using the
interruption polling process of MidiShare [11]: each time a
note event is detected, it is added to a list of current note
events. Of course, it is impossible to trigger the
continuation process only when a note event is received. To
detect phrase endings, we introduce a phrase detection
thread which periodically wakes up and computes the time
elapsed between the current time and the time of the last
note played. This time delta is then compared with a
phraseThreshold, which represents the maximum time
delay within notes of a given phrase. If the time delta is less
than the phraseThreshold, the process sleeps for SleepTime
milliseconds. If not, a new phrase is detected and the
continuation system is triggered, which will compute and
schedule a continuation. The phrase detection process is
represented in Figure 3.

time

Phrase detection thread

delta

SleepTime

Input notes

timeOfLastNoteEvent

current time

time

Phrase detection thread

delta

SleepTime

Input notes

timeOfLastNoteEvent

current time

Figure 3. The input phrase detection process.

In other words, each time the phrase detection thread wakes
up at time t, it computes the current time delay delta:

delta := currentTime – timeOfLastNoteEvent

It then compares this delay with the phrase threshold,
decides or not to detect a phrase ending, and schedules
itself to wake up at t +SleepTime:

If (delta >= phraseThreshold) then
detectPhrase();

Sleep (SleepTime)

The real time constraint we have to implement is therefore
that the continuation sequence produced and played by the
system should be played with a maximum of 50
milliseconds after the last note event. The delay between
the occurrence of the last note of a phrase and the detection
of the end of the phrase is bounded by SleepTime.

In practice, we use a value of 20 milliseconds for
SleepTime, and a phraseThreshold of 20 milliseconds. The
amount of time spent to compute a continuation and
schedule it is on average 20 milliseconds, so the total
amount of time spend to play a continuation is in the worse
case of 40 milliseconds, with an average value of 30
milliseconds, which fits in the scope of our real time
constraint.

Step-by-Step Generation Process
The second important aspect of the real time architecture is
that the generation of musical sequences is performed step-
by step, in such a way that any external information can be
used to influence the generation (see next section). The
generation is performed by a specific thread (generation
thread), which generates the sequence by chunks. The size
of the chunks is parameterized, but can be as small as 1
note event. Once the chunk is generated, the thread sleeps
and wakes up for handling the next chunk in time.

time
External Information

Phrase Generation Thread

Generation

Wake up

time
External Information

Phrase Generation Thread

Generation

Wake up

Figure 4. The step-by-step Generation Process
allows to take into account external information
continuously.

5

BIASING MARKOV GENERATION
The main idea to turn our automaton into an interactive
system is to influence the Markovian generation by
characteristics of the input. As we saw above, the very idea
of Markov-based generation is to produce sequences in
such a way that the probabilities of each item of the
sequence are the probabilities of occurrences of the items in
the learnt corpus.

In the context of musical interaction, this property is not
always the right one, because many things can happen
during the generation process. For instance, in tonal music,
the harmony can change: in a Jazz trio for instance, the
pianist will play chords which are not always the same,
throughout the generation process. Because we target a real
world performance context, these chords are not
predictable, and cannot be learnt by the system prior to the
performance. The system should be able somehow to take
this external information into account during the
generation, and twist its generated sequence in the
corresponding direction.

The idea is to introduce a constraint facility in the
generation phase. External information may be sent as
additional input to the system. This information can be
typically the last 8 notes (pitches) played by the pianist for
instance, if we want the system to follow harmony. It can
also be the velocity information of the whole band, if we
want the system to follow the amplitude, or any information
that can be used to influence the generation process. This
external input is used to influence the generation process as
follows: when a set of possible continuation nodes is
computed (see section on generation), instead of choosing a
node according to its Markovian probability, we weight the
nodes according to how they match the external input. For
instance, we can decide to prefer nodes whose pitch is in
the set of external pitches, to favor branches of the tree
having common notes with the piano accompaniment.

In this case, the harmonic information is provided
implicitly, in real time, by one of the musician (possibly the
user himself), without having to explicitly enter the
harmonic grid or any symbolic information in the system.

More precisely, we consider a function Fitness(x, Context)
with value in [0, 1] which represents how well item x fits
with the current context. For instance, a Fitness function
can represent how harmonically close is the continuation
with respect to external information. If we suppose that
piano contains the last 8 notes played by the pianists for
(and input to the system), Fitness can be defined as:

()
pianoin notes nb

piano and p common to notes nb
, =pianopFitness

This fitness scheme is of course independent of the

Markovian probability defined above. We therefore
introduce a new weighting scheme which allows to
parameterize the importance of the external input, via a
parameter S (between 0 and 1):

Prob(x) = S * Markov_Prob(x) + (1 – S) * Fitness(x, Context)

By setting S to extreme values we eventually get two
extreme behaviors:

• S = 1, we get a musical automaton insensitive to
the musical context,

• S = 0, we get a reactive system which generates
the closest musical elements to the external input it
finds in the database.

Of course, interesting values are intermediary: when the
system generates musical material which is both
stylistically consistent, and sensitive to the input.
Experiments in these various modes are described below in
the Experiment Section.

CONTROL AND HIGH-LEVEL STRUCTURE
Playing “interesting” phrases is an important ingredient of
musical improvisation, but it is not the only one. High-level
structure is as important to produce a full-fledged piece: it
is not always desirable to have the system continue
systematically all phrases played. Typically, the musician
can start a piece by playing, e.g. a musical theme, and then
let the system play progressively longer and longer
continuations until the end, when the musician plays back
the theme, without the system continuation.

To allow the user to switch between these different modes
in an intimate and non-intrusive way, we have identified a
set of parameters that are easy to trigger in real time,
without the help of a graphical interface. The most
important parameter is the S parameter defined above,
which controls the “attachment” of the system to the
external input. The other parameters allow the musician to
switch on or off basic functions such as the learning process
or the continuation process.

By default, the systems stops playing when the user does, to
avoid superposition of improvisations. With minimum
training, this mode can be used to produce a unified stream
of notes, thereby producing an impression of seamlessness
between the sequence actually played by the musician and
the one generated by the system.

Additionally a set of parameters can be adjusted from the
screen, such as the number of notes to be generated by the
system (as a multiplicative factor of the number of notes in
the input sequence), and the tempo of the generated
sequence (as a multiplicative factor of the tempo of the
incoming sequence). One important control parameter
allows the musician to force the system to remain in some
regions, deemed interesting or particularly well suited to

6

the moment of the piece. This parameter is usually
associated with a Midi control change such as the breath
control. By pushing the control up, the system will remain
in the region, and instantaneously become a sort of
arpeggiator, creating a periodic rhythm from the local
Markovian region selected. Another trigger of the same
control restores the system back to the usual Markovian
generation process, which results in forcing the system to
explore another musical region.

Figure 5. Multiple copies of the Continuator in
action

The system described above contains many parameters, but
and is in some sense autonomous. There are musical
situations in which it is interesting to use several,
independent versions of the system, each with its own
inputs and outputs. We have designed a scheme which able
to launch different continuators at the same time, possibly
synchronizing them (see Figure 5).

EXPERIMENTATIONS
We have conducted many experiments with the system, in
various modes and configurations to validate our claims.
We report results and lessons learned in the following
sections.

INDISTINGUISHABILITY
It is difficult to describe music by words, and rate its
quality, especially jazz improvisation. However, we can
easily rate how the system differs from the human input.
We have conducted tests to check whether listeners could
tell when the system is playing or not. In most of the cases,
if not all, the music produced is undistinguishable from the
user’s input. This is typically true for quick and fast Jazz
solos. An audio example available at our web site gives an
example of a Jazz tune (“On Green Dolphin Street”, by
Kaper & Washington), where the musician (here, the
author) plays a guitar solo which is continued by the
system, interrupts several time the system to launch another
phrase, and finally concludes the improvisation. The

reader/listener can assess the difficulty in distinguishing
these different phases as the whole improvisation is
seamless. Other examples can be found at our web site, in
which the system generates long and often impressive jazzy
phrases in the styles of guitarists such as Pat Martino, John
McLaughlin, or Alan Holdsworth.

ATTACHMENT
The attachment mechanism we have introduced is
particularly spectacular when used in conjunction with a
fixed metrical structure. In this mode, the system can play
an accompaniment in a given tempo which tries to satisfy
two conflicting constraints: 1) stylistic consistency and 2)
consistency with the external input. Audio Examples will
be presented in which the system plays a chord sequence
(from previously learnt material), and tries in real time to
“follow” harmonically the input by a real musician (the
author again). The chords generated by the system fit
naturally and quickly to harmonic changes. Occasional
unexpected harmonic progressions are also generated, but
which all fit the two constraints of stylistic consistency and
fitness with external input.

Many experiments in the various styles of the Karma music
workstation were also recorded and will be made available
at our web site. In these experiments, we have connected
the Continuator to the Korg Karma workstation, both in
input and output. The Continuator is used as an additional
layer to the Karma effect engine. The Continuator is able to
generate infinite variations from simple recordings of
music, in virtually all the styles proposed by the Karma
(over 700).

SUBJECTIVE IMPRESSIONS: THE AHA EFFECT
Besides the evaluation of the musical quality of the music
produced by the system, we have noticed a strong
subjective impression on the musician playing. We have
conducted a series of experiments and concerts with famous
Jazz musicians, and the reactions of musicians playing with
the system were always extremely positive. The most
striking effect, noticed systematically on all musicians
experimenting with the system, can be best described as a
Aha effect, triggered by the sudden realization that the
system is starting to play exactly in the same style as
oneself, or suddenly pops up patterns played a few minutes
earlier.

The accompanying Video shows a series of such effects on
different musicians, styles and instruments (Bernard Lubat,
Alan Silva, Claude Barthélémy), with sudden and
characteristic bursts of laughter or astonishment. Some of
tem are illustrated in Figures 5 and 6.

7

Figure 5. Jazz musician Alan Silva playing with
Continuator.

Figure 6. Bernard Lubat playing with the
Continuator.

NEW MUSICAL COLLABORATIVE MODES
An interesting consequence of the design of the system is
that it leads to several new playing modes with other
musicians. Traditionally, improvised music has consisted in
quite limited types of interaction, mostly based around
question/answer systems [2] [3]. With the Continuator, new
musical modes can be envisaged:

- Single autarcy. One musician plays with the system
after having fed the system with a database of
improvisations by a famous musician, as Midi files.
We have experimented in particular with a database of
midi choruses from Pat Martino, provided by [7], and a
database of Bernard Lubat’s piano style. An extension
of this mode consists in using several versions of the
same system, with the same inputs, but generating
simultaneously different outputs. Used in the linear
rhythmic mode, this configuration results in a multiple
voice arpeggiator which that produces continuously
variations.

- Multiple autarcy: each musician has its own version of
the system, with its own database. This provides a
traditional setting in which each musician plays with
his/her own style. Additionally, we experimented
concerts in which one musician (Gÿorgy Kurtag) had
several copies of the system linked to different midi
keyboards. The result for the listener is a dramatic
increase in musical density.

- Master/Slave: one musician uses the system in its basic
form, another (e.g. pianist) provides the external data
to influence the generation. This is typically useful for

extending a player’s solo ability while following the
harmonic context provided by another musician.

- Cumulative: all musicians share the same pattern
database. This setting was experimented during a Jazz
festival (Uzeste, France), where two musicians played
with the same (Bernard Lubat) database,

- Sharing: each musician plays with the pattern database
of the other (e.g.; piano with guitar, etc.). This creates
exciting -new possibilities as a musician can
experience playing with unusual patterns.

CONCLUSION
We have described a music generation system which is able
to produce music learnt in a agnostic manner, while
remaining intimately controllable. This is made possible by
introducing several improvements to the basic Markovian
generation, and by implementing the generation as a real
time, step-by-step process. The resulting system is able to
produce musical continuations of any user – including
beginners - according to previously learnt, arbitrary styles.

The experiments and concerts performed with professional
artists show that not only the music generated is of very
high quality (as good as the music learnt by the system),
but, more importantly, that such a learning facility can be
turned into an actual music instrument, easily and
seamlessly integrated in the playing mode of the musician.
Current works focus on the design of an audio version to
expand the possibility of musical input (voice in particular).
This version will use the same kernel described here,
augmented with audio descriptors extracted in real time.
These descriptors are made possible by ongoing work on
musical metadata (in particular in the Cuidado project, see
Pachet, 2002). The resulting system, besides extending the
possibility to audio, will also provide a link between the
domain of musical performance and musical listening.

REFERENCES
1. Assayag, G. Dubnov, S. Delerue, O. Guessing the

Composer's Mind: Applying Universal Prediction to
Musical Style, Proc. ICMC 99, Beijing, China,
I.C.M.A., San-Francisco, 1999.

2. Baggi, D. L. NeurSwing: An Intelligent Workbench for
the Investigation of Swing in Jazz, in Readings in
Computer Generated Music, IEEE Computer Society
Press, 1992.

3. Biles, John A. Interactive GenJam: Integrating Real-
Time Performance with a Genetic Algorithm, Proc.
ICMC 98, Ann Arbor, Michigan, 1998.

4. Jan Borchers, Designing Interactive Musical Systems: a
Pattern Approach, HCI International '99. 8th
International Conference on Human-Computer

8

Interaction, Munich, Germany, from 22-27 August,
1999.

5. Conklin, D. and Witten, Ian H. Multiple Viewpoint
Systems for Music Prediction, JNMR, 24:1, 51-73,
1995.

6. Cope, David. Experiments in Musical Intelligence.
Madison, WI: A-R Editions, 1996.

7. Heuser, Jorg, Pat Martino – His contributions and
influence to the history of modern Jazz guitar. Ph.D
thesis, University of Mainz (Ge), 1994.

8. Hiller, L. and Isaacson, A., Experimental Music, New
York: McGraw-Hill, 1959.

9. Karma music workstation, Basic guide. Korg Inc.
Available at:
http://www.korg.com/downloads/pdf/KARMA_BG.pdf,
2001.

10. New Interfaces for Musical Expression
(NIME'01),
http://www.csl.sony.co.jp/person/poup/research/chi2000
wshp/, 2000.

11. Orlarey, Y. Lequay, H. MidiShare: a Real Time multi-
tasks software module for Midi applications

Proceedings of the International Computer Music
Conference, Computer Music Association, San
Francisco, pp. 234-237, 1989.

12. Pachet, F. Roy, P. "Automatic Harmonization: a
Survey", Constraints Journal, Kluwer, 6:1, 2001.

13. Pachet, F. “Content-Based Management for Electronic
Music Distribution”, Communications of the ACM, to
appear, 2002.

14. Ramalho G., Ganascia J.-G. Simulating Creativity in
Jazz Performance. Proceedings of the National
Conference in Artificial Intelligence, pp. 108-113,
AAAI-94, Seattle, AAAI Press, 1994.

15. Robert Rowe, Interactive Music Systems (1993).

16. J. L. Triviño-Rodriguez; R. Morales-Bueno, Using
Multiattribute Prediction Suffix Graphs to Predict and
Generate Music, Computer Music Journal 25 (3) pp. 62-
79, 2001.

17. William F. Walker A Computer Participant in Musical
Improvisation, Proc. Of CHI 1997. Atlanta, ACM Press,
1997.

