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ABSTRACT 
The Continuator system is an attempt to bridge the gap 
between two classes of traditionally incompatible musical 
systems: 1) interactive musical systems, limited in their 
ability to generate stylistically consistent material, and 2) 
music composition systems, which are fundamentally not 
interactive. The purpose of Continuator is to extend the 
technical ability of musicians with stylistically consistent, 
automatically learnt musical material. This requires the 
ability for the system to build operational representations of 
musical styles in real time, and to adapt quickly to external 
musical information. The Continuator is based on a Markov 
model of musical styles augmented to account for efficient 
real time learning of musical styles and to arbitrary external 
bias. The paper describes the main technical issues at stake 
concerning the integration of an agnostic learning scheme 
in an interactive instrument, and reports on real-world 
experiments performed with various musicians.  

KEYWORDS: Musical interaction, music, improvisation, 
collaborative music. 
INTRODUCTION 
“I don’t play piano, I play pianist” used to say French Pop 
singer Claude Nougaro, pointing to his long time 
accompanist Maurice Vander. This joke summarizes well 
the goal the Continuator project. We seek to design musical 
instruments that provide exciting interactions through the 
ability to learn automatically arbitrary musical styles, and 
adapt these styles to the playing modes of the musician. 
The undertaking can be seen as a way to turn musical 
instruments from passive objects to active, autonomous 
systems, with which one can interact using high-level 
controls, much in the same way Claude Nougaro, through 
the blink of an eye, can control, or influence his pianist 
Maurice Vander. 

Musical performance has been the object of numerous 
studies using all the software technologies at hand. In our 
context, we can divide these approaches in two categories: 
interactive systems and intelligent music composition 
systems. Interactive music systems propose ways of 
transforming in real time musical input into musical output. 
Musical interactive systems have been popular both in the 
experimental field [15] [17] as well as in commercial 
applications, from one-touch chords of arranger systems to 
the recent and popular Korg Karma synthesizer [9]. While a 
lot of work has been devoted to efficient controllers and 
interfaces for musical systems [4], [10], these systems all 

share a common drawback: they do not manage time, there 
is no memory of the past, and consequently the music 
generated is strongly correlated with musical input, but not 
or poorly with a consistent and realistic musical style. 

On the other hand, music composition systems precisely 
aim at representing stylistic information, to generate music 
in various styles, from the Illiac suite [8] to the automatic 
compositions of [6]. More recently, constraint techniques 
have been used to produce stylistically consistent 4-part 
Baroque music (see [12] for a survey). In the domain of 
popular music, prototypes such as [2], [3], [14] have 
demonstrated the technical feasibility of simulating 
convincingly jazz styles by computer. In opposition to 
interactive music systems, the main drawback of these 
approaches is that they do not allow real musical 
interaction: they propose fully-fledged automata that may 
produce realistic music, but cannot be used as actual 
instruments. Moreover, these approaches require explicit, 
symbolic information to be fed to the system, such as 
human input for supervised learning, underlying harmonic 
structure, tempo, song structure, etc. 

The system we present here is an attempt to combine both 
worlds: design real-time interactive musical instruments 
that are able to produce stylistically consistent music.  More 
precisely, we propose a system in which musical styles are 
learned automatically, in an agnostic manner, and therefore 
do not require any symbolic information (style, harmonic 
grid, tempo). The system is seamlessly integrated in the 
playing mode of the musician, as opposed to traditional 
fully automatic or question/answer systems, and adapts 
quickly and without human intervention to unexpected 
changes in rhythm, harmony or style. Finally, the design of 
the system allows the sharing of stylistic patterns in real 
time and constitutes in this sense a novel form of 
collaborative musical instrument. 

The remaining of the paper is structured as follows. First 
we describe the heart of the system, based on a Markov 
model of musical styles, augmented with a hierarchy of 
learning functions to adapt to imprecision in musical inputs. 
Then we discuss the issues related to turning the learning 
facility into an actual musical instrument. Finally we report 
on experiments with the system in various real world 
musical contexts. 
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INSIDE THE CONTINUATOR 
In the standard mode, the system receives musical Midi 
input from one musician. The output of the system is itself 
sent to a Midi synthesizer and then to a sound reproduction 
system. The system acts basically as a sequence 
continuator: the note stream of the musician is continuously 
segmented into musical phrases. Each phrase is sent 
asynchronously to a phrase analyzer, which builds up a 
model of recurring patterns. In reaction to the played 
phrase, the system immediately generates a continuation, 
according to the database of patterns already learnt. 

A HIERARCHICAL MARKOV MODEL OF MUSICAL 
SEQUENCES 
Researchers in AI and information theory have long 
addressed the technical issue of learning automatically and 
in an agnostic manner a musical style. Shannon introduced 
in his 1948 seminal paper the concept of information based 
on probability of occurrence of messages. This notion was 
quickly used to model musical styles, and these 
experiments showed that it was possible to create pieces of 
music that would sound like given styles, by simply 
computing and exploiting probabilities of note transitions. 
More precisely, given a corpus of music material (typically 
music scores, or MIDI files), the basic idea is to represent 
in some way the local patterns found in the learnt corpus, 
by computing transition probabilities between successive 
notes. New music sequences are then generated using these 
probabilities, and these sequences will contain, by 
definition, the patterns identified in the learnt corpus. 

One of the most spectacular applications of Markov chains 
to music is probably [6], although his musical productions 
are not entirely produced automatically. A good survey of 
state-of-the-art of Markov based techniques for music can 
be found in [16], and a recent development in [1]. 

These works show clearly two things: 1) Markov chain 
models and their extensions are powerful enough to 
represent efficiently musical patterns, but 2) their 
generative power is limited due to the absence of long-term 
information. In another words, these models can fool the 
listener on a short scale, but not for complete pieces. 

Using Markov models for interaction purposes, and not for 
composing complete, fully-fledged musical pieces, allow us 
to benefit from 1) while avoiding the drawback of 2). The 
responsibility for organizing the piece, deciding its high-
level structure is left to the musician. The system only "fills 
in the gaps", and the power of Markov chain can be 
exploited fully to this aim.  

The Continuator system is yet another species in the world 
of musical Markov systems, although with novel features. 
In our context, we want to learn and imitate musical styles 
in a faithful and efficient manner, and make the resulting 
mechanism useable as an actual music instrument. This 
raised a number of technical issues, whose solutions were 

integrated in the Continuator. These issues are addressed in 
the following section. 

HIERARCHICAL MARKOV MODELS 
The learning module we propose systematically learns all 
phrases played by the musician, and builds progressively a 
database of patterns detected in the input sequences. We 
designed an indexing scheme which represents all the 
subsequences found in the corpus, in such a way that the 
computation of continuations is complete and as efficient as 
possible.  

This technique consists in building a prefix tree by a 
simple, linear analysis of each input sequence. Each time a 
sequence is input to the system, it is stored in memory, and 
all subsequences encountered are systematically added to 
the tree. For reasons of space, we describe here only the 
most generic functions.  

For instance, let us suppose the following input sequences: 

Sequence #1: {A B C D} 

and later: 

Sequence 2#: {A B B C} 

The system will build a tree containing, for all possible 
subsequences of each of these two sequences, the list of all 
continuations encountered in this learning corpus, and 
weighted by their number of occurrences. The scheme is 
called variable-order Markov chain because it contains the 
continuations for all subsequences of any length (up to a 
given maximum, typically 10). In our example, a 
subsequence such as {B} has the following possible 
continuations: C (from sequence #1), and B (from sequence 
#2). 

A subsequence such as {A B} has continuations: C (from 
sequence #1) and B (from sequence #2). 

A subsequence such as {B B C} has only as possible 
continuation D from sequence #1. Note that in this last 
case, there is no continuation for the whole subsequence {B 
B C}, so we get the continuation for the longest possible 
subsequence, here, {B C}. When several continuations are 
similar, they are all repeated. For instance, the 
continuations of {A} are {B, B} (from sequences #1 and #2 
respectively). 

In our context, the most important characteristic of the data 
structure we propose is that the sequence learned is not the 
input sequence itself. Indeed, Midi sequences have many 
parameters, all of which are not necessarily interesting to 
learn. 

For instance, a note has attributes such as pitch, velocity, 
duration, start time, and possibly other information 
provided by continuous controllers (pitch bend, modulation, 
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etc.). A chord has attributes such as the pitch list, possibly 
its root key, etc.  The sequence learned is therefore not the 
input sequence itself, but a sequence obtained by applying a 
reduction function to the original input sequence. The 
simplest function is the pitch. A more refined function is 
the combination of pitch and duration. [5] and [16] 
proposed different reduction functions (called viewpoints) 
for representing music in the context of musical analysis. 
Our experiments with real time interactive music led us to 
develop and implement such a library of reduction 
functions, including the ones mentioned in these works, as 
well as functions specially designed to take into account 
more realistic Jazz and classical styles. One of them is the 
PitchRegion, which is a simplification of pitch: instead of 
considering explicit pitches, we reduce pitches in regions, 
in practice by considering only pitch / region_size. 

GENERATION 
The generation phase consists then, given an initial input 
sequence played by the musician, in computing 
successively continuations, step by step using a tiling 
process. First a note item is computed for the input 
sequence. Then the input sequence augmented by this item 
is considered, and the next item is computed, etc. At each 
step, a continuation for the subsequence of the maximum 
length is found, which results in optimum consistency with 
regards to the learnt corpus. 

An important improvement on classical Markov-based 
generation mechanisms is behavior of our algorithm when 
it encounters a phrase for which no continuation is found. 

Suppose a model trained to learn the arpeggio in Figure 1: 

 

Figure 1. An arpeggio learnt by the Continuator. 

Suppose that the reduction function is as precise as 
possible, say pitch, velocity and duration. Suppose now that 
the input sequence to continue is the following (Figure 2): 

 

Figure 2. An input sequence which does not 
match exactly with a subsequence in learnt 
corpus. 

It is clear that any Markov model will consider that there is 
no continuation for this sequence, because there is no 
continuation for the last note of the input sequence (here, E 
flat). The models proposed so far would then draw a new 
note at random, and actually start a new sequence. 

However, it is also clear intuitively, that a better solution, in 
such a case, is to shift the viewpoint. In our context, this 
corresponds to using a less refined reduction function. Let 
us consider for instance pitch regions of three notes instead 
of pitches. 

The learnt sequence of Figure 2 is then reduced to: 

{PR1 PR1 PR2 PR3 PR5} 

The input sequence is itself reduced to  

{PR1 PR1 PR2} 

In this new model, there is a continuation for the input 
sequence {PR1 PR1 PR2}, which is PR3. 

Because our model keeps track of the original input 
sequences (and not only their reductions), we can generate 
the note corresponding to PR3 in the learnt corpus, in our 
case G. Once the continuation has been found, the process 
is started again with the new sequence, using the more 
refined reduction function. 

More precisely, we introduce a hierarchy of reduction 
functions, to be used in cases of failure. This hierarchy can 
be defined by the user. A typical hierarchy is: 

1 – pitch * duration * velocity 

2 – small pitch region * velocity 

3 – small pitch regions 

4 – large pitch regions 

where the numbering indicates the order in which the 
functions are to be considered in cases of failure in the 
matching process. 

The approach we propose allows to take into account 
inexact inputs, with a minimum cost. The complexity for 
retrieving the continuations for a given input sequence is 
indeed very small as it involves only walking through trees, 
without any search. 

FROM AN AUTOMATON TO A MUSICAL INSTRUMENT 
The learning module described in the preceding section is 
able to learn and generate music sequences that sound like 
the sequences in the learnt corpus. As such, it provides a 
powerful musical automaton able to imitate faithfully 
styles, but not an interactive musical instrument. This 
section describes the main design concepts that can be used 
to turn this style generator into an interactive musical 
instrument. This is achieved through two related constructs: 
1) a step-by step generation of the music sequences 
achieved through a real time implementation of the 
generator, and most importantly 2) an extension of the 
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Markovian generation process with a fitness function which 
takes into account characteristics of the input phrase. 

REAL TIME GENERATION 
The real time generation is a strictly technical issue but is 
an important aspect of the system since it is precisely what 
allows to take into account external information quickly, 
and ensure that the music generated follows accurately the 
input, and remains controllable by the user. 

How Fast is Fast? 
To give an estimation of our real time constraints, we have 
to know how fast a musician can play. We have considered 
an example by John McLaughlin, considered as one of the 
fastest guitarist in the world, in an example performed for a 
demo of a pitch to Midi converter 
(http://www.musicindustries.com/axon/archives/john.htm). 
An analysis of the fastest parts of the sample yields a mean 
duration of 66 milliseconds per note. Of course, this figure 
is not definitive, but can be taken as an estimate for a 
reasonable maximum speed. Our system should have a 
response time short enough so that it is impossible to 
perceive a break in the note streams, from the end of the 
player’s phrase, to the beginning of the system’s 
continuation: A good estimation of the maximum delay 
between two fast notes is about 50 milliseconds. 

Thread Architecture 
The real time aspect of the system is handled as follows. 
Incoming notes are detected by the system using the 
interruption polling process of MidiShare [11]: each time a 
note event is detected, it is added to a list of current note 
events. Of course, it is impossible to trigger the 
continuation process only when a note event is received. To 
detect phrase endings, we introduce a phrase detection 
thread which periodically wakes up and computes the time 
elapsed between the current time and the time of the last 
note played. This time delta is then compared with a 
phraseThreshold, which represents the maximum time 
delay within notes of a given phrase. If the time delta is less 
than the phraseThreshold, the process sleeps for SleepTime 
milliseconds. If not, a new phrase is detected and the 
continuation system is triggered, which will compute and 
schedule a continuation. The phrase detection process is 
represented in Figure 3. 

time

Phrase detection thread

delta

SleepTime

Input notes

timeOfLastNoteEvent

current time

time

Phrase detection thread

delta

SleepTime

Input notes

timeOfLastNoteEvent

current time

 

Figure 3. The input phrase detection process. 

In other words, each time the phrase detection thread wakes 
up at time t, it computes the current time delay delta: 

delta := currentTime – timeOfLastNoteEvent 

It then compares this delay with the phrase threshold, 
decides or not to detect a phrase ending, and schedules 
itself to wake up at t +SleepTime: 

If  (delta >= phraseThreshold) then 
detectPhrase(); 

Sleep (SleepTime)  

The real time constraint we have to implement is therefore 
that the continuation sequence produced and played by the 
system should be played with a maximum of 50 
milliseconds after the last note event. The delay between 
the occurrence of the last note of a phrase and the detection 
of the end of the phrase is bounded by SleepTime. 

In practice, we use a value of 20 milliseconds for 
SleepTime, and a phraseThreshold of 20 milliseconds. The 
amount of time spent to compute a continuation and 
schedule it is on average 20 milliseconds, so the total 
amount of time spend to play a continuation is in the worse 
case of 40 milliseconds, with an average value of 30 
milliseconds, which fits in the scope of our real time 
constraint. 

Step-by-Step Generation Process 
The second important aspect of the real time architecture is 
that the generation of musical sequences is performed step-
by step, in such a way that any external information can be 
used to influence the generation (see next section). The 
generation is performed by a specific thread (generation 
thread), which generates the sequence by chunks. The size 
of the chunks is parameterized, but can be as small as 1 
note event. Once the chunk is generated, the thread sleeps 
and wakes up for handling the next chunk in time. 

 

time
External Information

Phrase Generation Thread

Generation

Wake up

time
External Information

Phrase Generation Thread

Generation

Wake up

 

Figure 4. The step-by-step Generation Process 
allows to take into account external information 
continuously. 
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BIASING MARKOV GENERATION 
The main idea to turn our automaton into an interactive 
system is to influence the Markovian generation by 
characteristics of the input.  As we saw above, the very idea 
of Markov-based generation is to produce sequences in 
such a way that the probabilities of each item of the 
sequence are the probabilities of occurrences of the items in 
the learnt corpus.  

In the context of musical interaction, this property is not 
always the right one, because many things can happen 
during the generation process. For instance, in tonal music, 
the harmony can change: in a Jazz trio for instance, the 
pianist will play chords which are not always the same, 
throughout the generation process. Because we target a real 
world performance context, these chords are not 
predictable, and cannot be learnt by the system prior to the 
performance. The system should be able somehow to take 
this external information into account during the 
generation, and twist its generated sequence in the 
corresponding direction. 

The idea is to introduce a constraint facility in the 
generation phase. External information may be sent as 
additional input to the system. This information can be 
typically the last 8 notes (pitches) played by the pianist for 
instance, if we want the system to follow harmony. It can 
also be the velocity information of the whole band, if we 
want the system to follow the amplitude, or any information 
that can be used to influence the generation process. This 
external input is used to influence the generation process as 
follows: when a set of possible continuation nodes is 
computed (see section on generation), instead of choosing a 
node according to its Markovian probability, we weight the 
nodes according to how they match the external input. For 
instance, we can decide to prefer nodes whose pitch is in 
the set of external pitches, to favor branches of the tree 
having common notes with the piano accompaniment. 

In this case, the harmonic information is provided 
implicitly, in real time, by one of the musician (possibly the 
user himself), without having to explicitly enter the 
harmonic grid or any symbolic information in the system. 

More precisely, we consider a function Fitness(x, Context) 
with value in [0, 1] which represents how well item x fits 
with the current context. For instance, a Fitness function 
can represent how harmonically close is the continuation 
with respect to external information. If we suppose that 
piano contains the last 8 notes played by the pianists for 
(and input to the system), Fitness can be defined as: 

( )
pianoin  notes nb

piano and p common to notes nb
, =pianopFitness

This fitness scheme is of course independent of the 

Markovian probability defined above. We therefore 
introduce a new weighting scheme which allows to 
parameterize the importance of the external input, via a 
parameter S (between 0 and 1): 

Prob(x) = S * Markov_Prob(x) + (1 – S) * Fitness(x, Context) 

By setting S to extreme values we eventually get two 
extreme behaviors: 

• S = 1, we get a musical automaton insensitive to 
the musical context, 

• S = 0, we get a reactive system which generates 
the closest musical elements to the external input it 
finds in the database. 

Of course, interesting values are intermediary: when the 
system generates musical material which is both 
stylistically consistent, and sensitive to the input. 
Experiments in these various modes are described below in 
the Experiment Section. 

CONTROL AND HIGH-LEVEL STRUCTURE 
Playing “interesting” phrases is an important ingredient of 
musical improvisation, but it is not the only one. High-level 
structure is as important to produce a full-fledged piece: it 
is not always desirable to have the system continue 
systematically all phrases played. Typically, the musician 
can start a piece by playing, e.g. a musical theme, and then 
let the system play progressively longer and longer 
continuations until the end, when the musician plays back 
the theme, without the system continuation. 

To allow the user to switch between these different modes 
in an intimate and non-intrusive way, we have identified a 
set of parameters that are easy to trigger in real time, 
without the help of a graphical interface. The most 
important parameter is the S parameter defined above, 
which controls the “attachment” of the system to the 
external input. The other parameters allow the musician to 
switch on or off basic functions such as the learning process 
or the continuation process.  

By default, the systems stops playing when the user does, to 
avoid superposition of improvisations. With minimum 
training, this mode can be used to produce a unified stream 
of notes, thereby producing an impression of seamlessness 
between the sequence actually played by the musician and 
the one generated by the system. 

Additionally a set of parameters can be adjusted from the 
screen, such as the number of notes to be generated by the 
system (as a multiplicative factor of the number of notes in 
the input sequence), and the tempo of the generated 
sequence (as a multiplicative factor of the tempo of the 
incoming sequence). One important control parameter 
allows the musician to force the system to remain in some 
regions, deemed interesting or particularly well suited to 
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the moment of the piece. This parameter is usually 
associated with a Midi control change such as the breath 
control. By pushing the control up, the system will remain 
in the region, and instantaneously become a sort of 
arpeggiator, creating a periodic rhythm from the local 
Markovian region selected. Another trigger of the same 
control restores the system back to the usual Markovian 
generation process, which results in forcing the system to 
explore another musical region. 

 

Figure 5. Multiple copies of the Continuator in 
action 

The system described above contains many parameters, but 
and is in some sense autonomous. There are musical 
situations in which it is interesting to use several, 
independent versions of the system, each with its own 
inputs and outputs. We have designed a scheme which able 
to launch different continuators at the same time, possibly 
synchronizing them (see Figure 5). 

EXPERIMENTATIONS 
We have conducted many experiments with the system, in 
various modes and configurations to validate our claims. 
We report results and lessons learned in the following 
sections. 

INDISTINGUISHABILITY 
It is difficult to describe music by words, and rate its 
quality, especially jazz improvisation. However, we can 
easily rate how the system differs from the human input. 
We have conducted tests to check whether listeners could 
tell when the system is playing or not.  In most of the cases, 
if not all, the music produced is undistinguishable from the 
user’s input. This is typically true for quick and fast Jazz 
solos. An audio example available at our web site gives an 
example of a Jazz tune (“On Green Dolphin Street”, by 
Kaper & Washington), where the musician (here, the 
author) plays a guitar solo which is continued by the 
system, interrupts several time the system to launch another 
phrase, and finally concludes the improvisation. The 

reader/listener can assess the difficulty in distinguishing 
these different phases as the whole improvisation is 
seamless. Other examples can be found at our web site, in 
which the system generates long and often impressive jazzy 
phrases in the styles of guitarists such as Pat Martino, John 
McLaughlin, or Alan Holdsworth. 

ATTACHMENT 
The attachment mechanism we have introduced is 
particularly spectacular when used in conjunction with a 
fixed metrical structure. In this mode, the system can play 
an accompaniment in a given tempo which tries to satisfy 
two conflicting constraints: 1) stylistic consistency and 2) 
consistency with the external input. Audio Examples will 
be presented in which the system plays a chord sequence 
(from previously learnt material), and tries in real time to 
“follow” harmonically the input by a real musician (the 
author again). The chords generated by the system fit 
naturally and quickly to harmonic changes. Occasional 
unexpected harmonic progressions are also generated, but 
which all fit the two constraints of stylistic consistency and 
fitness with external input. 

Many experiments in the various styles of the Karma music 
workstation were also recorded and will be made available 
at our web site. In these experiments, we have connected 
the Continuator to the Korg Karma workstation, both in 
input and output. The Continuator is used as an additional 
layer to the Karma effect engine. The Continuator is able to 
generate infinite variations from simple recordings of 
music, in virtually all the styles proposed by the Karma 
(over 700). 

SUBJECTIVE IMPRESSIONS: THE AHA EFFECT 
Besides the evaluation of the musical quality of the music 
produced by the system, we have noticed a strong 
subjective impression on the musician playing. We have 
conducted a series of experiments and concerts with famous 
Jazz musicians, and the reactions of musicians playing with 
the system were always extremely positive. The most 
striking effect, noticed systematically on all musicians 
experimenting with the system, can be best described as a 
Aha effect, triggered by the sudden realization that the 
system is starting to play exactly in the same style as 
oneself, or suddenly pops up patterns played a few minutes 
earlier. 

The accompanying Video shows a series of such effects on 
different musicians, styles and instruments (Bernard Lubat, 
Alan Silva, Claude Barthélémy), with sudden and 
characteristic bursts of laughter or astonishment. Some of 
tem are illustrated in Figures 5 and 6. 
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Figure 5. Jazz musician Alan Silva playing with 
Continuator. 

  

Figure 6. Bernard Lubat playing with the 
Continuator. 

 

NEW MUSICAL COLLABORATIVE MODES 
An interesting consequence of the design of the system is 
that it leads to several new playing modes with other 
musicians. Traditionally, improvised music has consisted in 
quite limited types of interaction, mostly based around 
question/answer systems [2] [3]. With the Continuator, new 
musical modes can be envisaged: 

- Single autarcy. One musician plays with the system 
after having fed the system with a database of 
improvisations by a famous musician, as Midi files. 
We have experimented in particular with a database of 
midi choruses from Pat Martino, provided by [7], and a 
database of Bernard Lubat’s piano style. An extension 
of this mode consists in using several versions of the 
same system, with the same inputs, but generating 
simultaneously different outputs. Used in the linear 
rhythmic mode, this configuration results in a multiple 
voice arpeggiator which that produces continuously 
variations. 

- Multiple autarcy: each musician has its own version of 
the system, with its own database. This provides a 
traditional setting in which each musician plays with 
his/her own style. Additionally, we experimented 
concerts in which one musician (Gÿorgy Kurtag) had 
several copies of the system linked to different midi 
keyboards. The result for the listener is a dramatic 
increase in musical density. 

- Master/Slave: one musician uses the system in its basic 
form, another (e.g. pianist) provides the external data 
to influence the generation. This is typically useful for 

extending a player’s solo ability while following the 
harmonic context provided by another musician. 

- Cumulative: all musicians share the same pattern 
database. This setting was experimented during a Jazz 
festival (Uzeste, France), where two musicians played 
with the same (Bernard Lubat) database, 

- Sharing: each musician plays with the pattern database 
of the other (e.g.; piano with guitar, etc.). This creates 
exciting -new possibilities as a musician can 
experience playing with unusual patterns. 

 

CONCLUSION 
We have described a music generation system which is able 
to produce music learnt in a agnostic manner, while 
remaining intimately controllable. This is made possible by 
introducing several improvements to the basic Markovian 
generation, and by implementing the generation as a real 
time, step-by-step process. The resulting system is able to 
produce musical continuations of any user – including 
beginners - according to previously learnt, arbitrary styles.  

The experiments and concerts performed with professional 
artists show that not only the music generated is of very 
high quality (as good as the music learnt by the system), 
but, more importantly, that such a learning facility can be 
turned into an actual music instrument, easily and 
seamlessly integrated in the playing mode of the musician. 
Current works focus on the design of an audio version to 
expand the possibility of musical input (voice in particular). 
This version will use the same kernel described here, 
augmented with audio descriptors extracted in real time. 
These descriptors are made possible by ongoing work on 
musical metadata (in particular in the Cuidado project, see 
Pachet, 2002). The resulting system, besides extending the 
possibility to audio, will also provide a link between the 
domain of musical performance and musical listening. 
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