
Abstract

Musical genre is probably the most popular music descrip-
tor. In the context of large musical databases and Electronic
Music Distribution, genre is therefore a crucial metadata for
the description of music content. However, genre is intrinsi-
cally ill-defined and attempts at defining genre precisely have
a strong tendency to end up in circular, ungrounded projec-
tions of fantasies. Is genre an intrinsic attribute of music
titles, as, say, tempo? Or is genre a extrinsic description 
of the whole piece? In this article, we discuss the various
approaches in representing musical genre, and propose to
classify these approaches in three main categories: manual,
prescriptive and emergent approaches. We discuss the pros
and cons of each approach, and illustrate our study with
results of the Cuidado IST project.

1. Introduction

The new context of Electronic Music Distribution and sys-
tematic exploitation of large musical databases creates a need
to produce symbolic descriptions of music titles. Musical
genre is probably the most obvious descriptor which comes
to mind, and it is probably the most widely used form of
music description. However, genre is intrinsically ill-defined
and attempts at defining precisely genre have a strong 
tendency to end up in circular, ungrounded projections of
fantasies. Genre is intrinsically related to classification:
ascribing a genre to an item is indeed a useful way of 
describing what this items shares with other items – of the
same genre – and also what makes this item different from
items – of other genres. The genesis of genre is therefore 
to be found in our natural and irrepressible tendency to 
classify.

This is not good news. Genre suffers from an intrinsic
ambiguity, deeply rooted in our dualist view of the world.
First, genre may be used as an intentional concept. In this

view, genre is an interpretation of a title, produced and pos-
sibly shared by a given community, much in the same way
we ascribe and interpret meanings to words in our languages.
Genre is here a linguistic category, useful for instance to talk
about music titles: Yesterday by the Beatles is a “Brit-Pop”
title, because it is by the Beatles, and we all share cultural
knowledge about this group, the 60s, etc.

Alternatively, genre may be used as an extensional
concept. In this view, genre are sets of music titles. Here,
genre is closely related to analysis: genre is a dimension of
a music title, much like tempo, timbre or the language of 
the lyrics. Yesterday by the Beatles is a mellow Pop Song,
because it has a cheesy medium tempo melody, string backup
and it is sung with a melancholic voice.

In idealistic, mathematical worlds, intentional and exten-
sional definitions coincide. In the real world they do not, so
no unique position can be taken regarding genre. The aim of
this article is to review the various approaches to represent
musical genre explicitly, and to discuss the pros and cons of
each approach. More precisely, we propose to classify these
approaches in three main categories. Manual efforts consist
on representing human expert knowledge about music titles.
Approaches aiming at extracting genre automatically are
themselves divided into two different categories, depending
on what is considered as objective and what is not. On the
one hand, prescriptive approaches attempt to model existing
genre classifications as they are found. These models are
based on combinations of low-level features of the signal. On
the other hand, emergent approaches aim at building genre
taxonomies grounded in objective similarity measures.

The survey is structured as follows. In the first section of
this review, we compare and discuss existing classifications
of musical genre. In particular, we describe the process of
manually classifying music titles in the framework of the
European project Cuidado (Pachet, 2001). We then review
the automatic approaches. The following section is devoted
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to prescriptive approaches, based on supervised classifica-
tion techniques on a space of low-level timbral features,
given arbitrary taxonomies. The final section is devoted to
approaches in which the classification emerges given arbi-
trary similarity measures. We describe in particular a data-
mining technique to extract similarity which appears to be
well-suited to genre clustering.

2. Genre taxonomies and manual classification

2.1 Analysis of existing genre classifications

Musical Genre is widely used to classify and describe titles,
both by the music industry and the consumers. There are
therefore many different genre taxonomies available. The
authors have done a thorough study of the existing genre tax-
onomies used in different official music resources, including:

– Record Company catalogues: Universal, Sony Music,
EMI, BMG

– Record shops and megastores: Virgin Megastore, Tower
Records, Fnac . . .

– Music charts: Billboard, Top 50, Cashbox . . .
– Musical web sites and online record shops: Amazon, All

Music, SonicNet, Mzz, Listen, Netbeat . . .
– Specialized press and books
– Specialized web radios

The complete analysis can be found in Pachet and Cazaly
(2000). Here, we summarize the main conclusions.

Taxonomies for albums or for titles?

Most taxonomies in use today are album-oriented: the music
industry, so far, sells albums, and not individual titles. This
constraint obviously has an impact on the structure of the 
taxonomy, since albums often contain titles of many differ-
ent genres. Moreover, one cannot simply expand album-ori-
ented taxonomies to describe music titles. Album-oriented
taxonomies are utterly inappropriate for describing titles,
except for large categories (Classical versus Rock for
instance). They simply do not describe the same objects.

No consensus

Pachet and Cazaly (2000) compares 3 Internet genre 
taxonomies: allmusic.com (531 genres), amazon.com (719
genres) and mp3.com (430 genres). Results show that there
is no consensus in the name used in these classifications: only
70 words are common to the three taxonomies. More impor-
tantly, there is no shared structure: among these common
words, even largely used terms like “Rock” or “Pop” do not
have common definitions, i.e., they do not denote the same
set of songs. Finally, the location of these taxons (i.e., nodes)
in the hierarchy differs from one taxonomy to the other.
Semantic interoperability of “natural” genre taxonomies is
clearly a dream.

Semantic inconsistency within taxonomies

Within given taxonomies, it has been shown that taxons do
not bear constant, fixed semantics. For instance, a taxonomy
such as the one used by Amazon contains taxons denoting
period (“60s pop”), topics (“love song”), country (“Japanese
music”), language (“French Variety”), dance types (“Waltz”),
artist Type (“Crooner”) . . . Classifications often oscillate
between these different interpretations (e.g., Jazz/Blues/
Delta/Pre-War).

This semantic confusion leads to many redundancies in
the taxonomy, and it is obviously a poor description scheme
for automatic systems. It is important to notice that this con-
fusion, however, has apparently no impact on the efficiency
of the taxonomy for human users. It is indeed easy to navi-
gate in these taxonomies, and switching semantics at each
taxonomic level is natural for most users.

What do labels mean?

A great deal of information is implicitly contained in taxon
labels. For instance, the music style “World Italian” may
contain all Italian artists as well as artists that sing in Italian,
not necessarily sharing any stylistic similarity (from Opera
singer Pavarotti to a metal band from Milan).

This study illustrates that music genre is an ill-defined
notion, that is not founded on any intrinsic property of the
music, but rather depends on cultural extrinsic habits (e.g.,
to a French music lover, singer Charles Aznavour could be
classified as “Variety,” but in record shops in the UK, it is
filed under “World Music”).

2.2 Manual genre classification

However arbitrary, genre classifications are deeply needed.
Virtually all EMD projects devote a substantial part of their
time in the design of genre taxonomies. For instance, Weare
in Dannenberg et al. (2001) describes the manual effort in
building a genre taxonomy for Microsoft’s MSN Music
Search Engine.

These efforts often take gigantic proportions. Weare states
that the manual labeling of a “few hundred-thousand songs”
for Microsoft MSN required musicologists to be brought 
as full-time employees and took about 30 man-years. The
details of the taxonomy and the design methodology are,
however, not available.

In the CUIDADO project, we have initially taken this
route and built a rather detailed taxonomy of genre for music
titles, described in Pachet and Cazaly (2000). In order to limit
the aforementioned lexical and semantic inconsistencies, we
chose to consider genre as an independent descriptor, com-
pared to the other descriptors in our metadatabase. The other
descriptors contained the most frequent criteria used in music
classifications (“country,” “instrumentation,” “artist type,”
etc.). Combining genre with these other attributes allowed us
to limit the explosion of musical genres: instead of defining



Representing musical genre 85

“French-Rock,” “English-Rock, “Spanish-Rock,” we would
only define the genre “Rock” and use the “country” attribute.

Additionally our genre taxonomy included similarity rela-
tions, either based on:

– inheritance: “Rock/Alternatif/Folk” ´ “Rock/Alternatif/
Ska”

– string-matching: “Rock/Latino” ´ “World/Latino”
– expert knowledge: explicit links across stylistic regions,

e.g., “Rhythm&Blues/Tamla Motown” ´ “Soul/Disco/
Philadelphia” because they have the same orchestration
(brass and strings).

However, we eventually decided to give up this effort for
the following reasons:

– The bottom taxons were very difficult to describe objec-
tively. Only the taxonomy designers would be able to dis-
tinguish between slightly different taxons. For instance,
the taxons labeled Rock-California would differ from
Rock-FM only by the fact that Rock-California titles
would contain predominant “acoustic guitar” sounds.
Although there are strong arguments to enforce this dis-
tinction, it is also clear that these arguments are not easily
shareable.

– The taxonomy was very sensitive to music evolution.
Music evolution has notable and well-known effects in
genre taxonomies. New genres appear frequently (e.g.,
Trip-Hop, Acid-Jazz, Post-Rock), and these genres are
often very difficult to insert in an existing taxonomy,
notably because of multiple inheritance issues (“Jazz-
Reggae”). Furthermore, music evolution induces phenom-
enons of genre compression (different genres are merged)
and expansion (genres split into subgenres). Precise tax-
onomies of this kind are not only difficult to build, but also
impossible to maintain.

Our experiment is by no means a proof of impossibility,
but we have chosen to reduce our ambitions, and focused 
on developing a much simpler genre taxonomy, aiming at
describing artists rather than titles. This choice can be seen
as a trade-off between precision (The Beatles have mostly
done music with a vocal part, but some of their songs are
instrumental, for instance Revolution 9) and scalability (there
are far fewer artists than songs).

This genre-of-artist attribute is stored in an 12000 artist
database, together with other features such as Name (“The
Beatles”), Interpretation (“Vocal,” “Instrumental”), Lan-
guage (“English”), Type (“band,” “man”), . . .

In any case, manual input is clearly not sufficient to
describe precisely millions of titles. Manual input is there-
fore mostly useful as a bootstrap to test research ideas, or as
a comparison base to evaluate automatic algorithms.

In the next two sections, we identify and review two
approaches to Automatic Musical Genre Classification. The
first approach is prescriptive, as it tries to classify songs in
an arbitrary taxonomy, given a priori. The second approach

adopts a reversed point-of-view, in which the classification
emerges from the songs.

3. The prescriptive approach to automatic
musical genre classification

There have been numerous attempts at extracting genre infor-
mation automatically from the audio signal, using signal 
processing techniques and machine learning schemes. We
review here 8 recent contributions (Tzanetakis & Cook,
2000a; Tzanetakis et al., 2001; Talapur et al., 2000; Pye,
2000; Soltau, 1998; Lambrou & Sandler, 1998; Deshpande
et al., 2001; Ermolinskiy et al., 2001) and compare the algo-
rithms used. All of these works make the same assumption
that a genre taxonomy is given and should be superimposed
on the database of songs (as seen before, such a taxonomy is
in fact arbitrary). They all proceed in two steps:

– Frame-based Feature extraction: the music signal is cut
into frames, and a feature vector of low-level descriptors
of timbre, rhythm, etc. is computed for each frame.

– Machine Learning/Classification: a classification algo-
rithm is then applied on the set of feature vectors to label
each frame with its most probable class: its “genre.” The
class models used in this phase are trained beforehand, in
a supervised way.

3.1 Feature extraction

The features used in the first step of automatic, prescriptive
genre classification systems can be classified in 3 sets: timbre
related, rhythm related and pitch related.

Timbre related

Most of the feature used in genre classification systems
describe the spectral distribution of the signal, i.e., a global
“timbre.” Here “global” means that it encompasses all the
sources and instruments in the music, but does not mean that
only one timbre value is computed for the whole song to be
classified: timbre features are extracted from every frame.

– FFT coefficients (used in Tzanetakis and Cook, 2000a;
Talapur et al., 2000; Deshpande et al., 2001):
For each frame, the feature vector is simply the vector of
the 128, 256, etc. FFT coefficients.

– Cepstrum and Mel Cepstrum Coefficients (MFCC) (used
in Tzanetakis and Cook (2000a); Pye (2000); Soltau
(1998); Deshpande et al. (2001)):
The cepstrum is the inverse Fourier transform of the 
log-spectrum log(S).

We call mel-cepstrum the cepstrum computed after a non-
linear frequency warping onto a perceptual frequency
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scale, the Mel-frequency scale (Rabiner & Juang, 1993).
The cn are called Mel frequency cepstrum coefficients
(MFCC). Cepstrum coefficients provide a low-dimen-
sional, smoothed version of the log spectrum, and thus are
a good and compact representation of the spectral shape.
They are widely used as feature for speech recognition,
and have also proved useful in musical instrument recog-
nition (Eronen & Klapuri, 2000).

– Linear Prediction (LP) (used in Tzanetakis and Cook
(2000a)): This echoes a classic model for sound produc-
tion, in which the observed data results from a source
signal passing through a linear filter:

Figure 2 compares the processing involved in the MPEG
compression (upper path) and the MFCC computation
(bottom path). On the one hand, in MPEG-1 layer 3 com-
pression (known as MP3), the signal is first converted to
spectral components via an analysis filterbank (each filter
reproduces one of the cochlea’s critical bands), and further
subdivided in frequency content by applying a 6-point or
18-point modified DCT block transform. Then, each spec-
tral component is quantized and coded with the goal of
keeping the quantization noise below the masking thresh-
old, estimated via a psycho-acoustic model. More details
can be found in (ISO/IEC). On the other hand, MFCC com-
putation requires the same first two steps: Filtering on a
Mel-Frequency scale, and taking a DCT to decorrelate the
coefficients. Thus, it seems advantageous not to decom-
press MPEG into .wav before computing the MFCC,
because this amounts to partly re-doing the same process
backwards. Instead, it is easy to bypass the frequency analy-
sis by just inverting the bit-allocation algorithm.

– Spectral Centroid (Tzanetakis et al., 2001; Lambrou &
Sandler, 1998):
The Spectral Centroid is the barycentre point of the spec-
tral distribution within a frame.

where S is the magnitude spectrum of a frame. This feature
gives an indication of the spectral shape, and is classically
used in monophonic instrument recognition (see for
instance Martin, 1998).

– Spectral Flux (Tzanetakis et al., 2001):
This feature measures frame-to-frame spectral difference,
i.e., the change in the spectral shape. This is also a classic
feature used in monophonic instrument recognition.

where l is the frame number and S the complete magni-
tude spectrum of a frame.

– Zero Crossing Rate (Tzanetakis et al., 2001; Lambrou &
Sandler, 1998):
ZCR is the number of time-domain zero crossings within
a frame. It is a measure of the noise behavior of the signal,
and a correlate of the pitch.

– Spectral Roll-Off (Tzanetakis et al., 2001):
The Roll-Off point is the frequency below which some
percentage (e.g., 85%) of the power of the spectrum
resides. This decreases with percussive sounds and attach
transients.

– Low order statistics (Tzanetakis & Cook, 2000a; Lambrou
& Sandler, 1998; Talapur et al., 2000; Tzanetakis et al.,
2001):
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Fig. 1. The source-filter model of sound production.

Although it has been designed to model speech produc-
tion, it is also partially valid for musical instruments: in
this case, the source signal is a periodic impulse that
includes the pitch information, and the filter V(z) embod-
ies the effect of the resonating body of the instrument;
namely, its timbre.
With Linear Prediction we estimate the coefficients of the
filter V(z), assuming it is all-pole of order p.

where ai are the filter coefficients. They control the posi-
tion of the poles of the transfer function V(z), i.e., the posi-
tion of the peaks on the power spectral density of the
signal. Therefore, like MFCC, LP is a way to encode the
spectral envelope of the signal.

– MPEG filterbank components (Tzanetakis & Cook, 2000a;
Pye, 2000):
To compute the previous features, one usually uses raw
audio, such as .wav files. However, the huge majority of
music files available for analysis are compressed using 
the MPEG audio compression standard, thus they have to
be first decompressed into wav files. One interesting pos-
sibility for speeding computation is to calculate the fea-
tures directly from the mpg data. This idea has been
proposed by Tzanetakis and Cook (2000b), and notably
implemented by Pye (2000).
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Fig. 2. Comparison of the MPEG compression and the MFCC 
calculation.
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Many authors also compute the low order statistics of the
previous features, over larger analysis windows: mean (1st
order), variance (2nd), skewness (3rd) and kurtosis (4th).
Note that mathematically, one can rebuild the spectral dis-
tribution from the infinite series of its moments, hence the
two representations are theoretically equivalent.

– Delta-coefficients (Tzanetakis & Cook, 2000a; Talapur et
al., 2000):
In an attempt to take account of the dynamics of the data,
it is common practice to append delta coefficients to the
feature set, i.e., differenced coefficients that measure 
the change of coefficients between consecutive frames.

Time and rhythm related

Some authors suggest that a genre classifier should not just
rely on “global timbre” descriptors, but also take rhythm into
account. Tzanetakis et al. (2001) uses a “beat histogram”
built from the autocorrelation function of the signal: by
looking at the weight of the different periodicities in the
signal (and the ratios between these weights), one has an idea
of the “strongness” and complexity of the beat in the music.
This is an interesting feature to discriminate “straight-ahead”
rock music from rhythmically complex world music, or clas-
sical music where the beat is not so accentuated.

Lambrou and Sandler (1998) computes “second order 
statistics” (angular second moment, correlation, entropy),
which – we assume – similarly account for time structure in
the data (although he does not motivate nor explain their use).

Soltau (1998) uses a very specific set of features, com-
puted from the signal by a neural network in an unsupervised
way. In a nutshell, it learns a set of abstract musical events
from the tune (like elementary “notes,” although Soltau’s
events are abstract, obtained from the hidden layer of a neural
network, and represent patterns in the time-frequency repre-
sentation which may lack any musical meaning or symbolic
translation). The input vector for the classifier is a vector of
statistical measures on these abstract events: co-occurrence
of event i and j, etc. Thus, the system extracts information
about the temporal structure of the songs. This coding may
not be interpreted by human beings, but it is hopefully
helpful for a machine learning algorithm to distinguish
between genres.

Pitch related

To our knowledge, there has been only one explicit attempt
at building a genre classifier for audio signals based on 
pitch features. Ermolinskiy et al. (2001) use pitch histograms
feature vectors (either computed from audio signals or
directly derived from MIDI data). The histograms can be
folded into one single octave, which yields a representation
comparable to Wakefield’s chromogram (Wakefield, 1999)
describing the harmonic content of the music, or can be left
unfolded, which is useful for determining the pitch range of
the piece. In Ermolinskiy et al. (2001) the histograms are

compared and some patterns are found which reveal genre-
specific information: rock songs typically have a small
number of well-pronounced histogram peaks, because “they
seldom exhibit a high degree of harmonic variation.” On the
other hand, jazz songs have more dense histograms, as “most
notes between C0 and C5 are played at least once.”

However, we have to mention here the many works con-
cerning the related problem of “performance style recogni-
tion,” i.e., recognizing if a jazz solo is rather like Charlie
Parker’s or John Coltrane’s, or if this piece of piano music is
played in a lyrical, pointillist, etc. style (Dannenberg et al.,
1997; Chai & Vercoe, 2001). All this works typically deal
with symbolic MIDI data, where the pitch information is
given.

3.2 Classification

Supervised learning

All the Machine-Learning algorithms used in the prescrip-
tive approach are supervised: In a first stage -training-,
models of a few musical genres are built with some manu-
ally labeled data (i.e., a certain number of music files given
with their genre). In a second stage -recognition-, these
models are used to classify unlabelled data.

Simple taxonomies, with inconsistencies

The taxonomy of musical genre used in this supervised
approach (i.e., the number of models that are built in the
training stage) is always very simple and incomplete, so the
resulting approach looks more like a proof of concept than a
complete useful labelling system. There are usually very few
classes:

– 3 in Tzanetakis and Cook (2000a); Lambrou and Sandler
(1998) and Deshpande et al. (2001): “Classical, Modern,
& Jazz,” and “Rock, Piano & Jazz.”

– 4 in Talupur et al. (2000) and Soltau (1998): “Classical,
Jazz, Rock & Country,” and “Classical, Rock, Pop &
Techno.”

– 5 in Ermolinskiy et al. (2001): “Electronic, Classical, Jazz,
Irish Folk, & Rock.”

– 6 in Tzanetakis et al. (2001) and Pye (2000): “Classical,
Country, Disco, HipHop, Jazz & Rock” and “Blues, Easy
Listening, Classical, Opera, Dance(Techno) & Indie
Rock.”

Some authors also use a “garbage music” general category
to identify music outside the classification, although the
results and consequences of this are not discussed.

Note that even with this simplified and incomplete frame-
work, there are many ambiguities and inconsistencies in the
chosen taxonomies:

– In “Rock, Piano, Jazz,” where should a solo by Bill Evans
be classified?

– What is the difference between “Classical” and “Opera”?
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– Why classify “Indie Rock” and not “Rock” in the first
place?

– What exactly is “Modern” compared to “Jazz”?

This illustrates what was already shown in section 2.1. for
the general case of more exhaustive classifications: music
genre taxonomies are highly inconsistent and dependent on
users. One can question the soundness of building-in such
ill-defined classes in an automatic system in the first place.

Static modeling against time-modeling

To our knowledge, only one system aims at an explicit time-
modeling of music genre: Soltau (1998) compares a HMM
with cepstral coefficients as input, and his above-stated
explicit time features with a static NN classifier. All the other
systems compute features on a frame-by-frame basis, and
classify each frame separately. The classification scores are
then summed over all frames, so that a global score for the
whole song can be produced. No relationship between frames
of the same song is taken into account in the classifier. This
is surprising, especially because time-modeling (notably
HMMs) has proved to be a successful framework for the
related problem of “style recognition,” mentioned above (see
notably recent work by Pachet, 2002).

(static) Machine learning algorithms

There are three types of Machine Learning Algorithms used
to classify the songs (or rather each of the feature vectors, as
stated above):

– Gaussian and Gaussian Mixture Models, used in 
Tzanetakis and Cook (2000a); Tzanetakis et al. (2001);
Pye (2000):
This is used to estimate explicitly the probability density
of each genre class over the feature space. The probabil-
ity density is expressed as the weighted sum of simpler
Gaussian densities, called components or states of the
mixture. An equivalent definition is hierarchical sampling:
to sample from the density, first draw a state at random
(using a distribution over states) and then sample from 
that component. Most of the time, the estimation of the
Gaussian parameters (mean and covariance) is done by
Expectation-Maximization (EM) (Bishop, 1995).

– Linear or non-linear classifier, used in Talupur et al.
(2000); Soltau (1998):
This is often implemented by a feed-forward neural
network, which learns a mapping between the high dimen-
sional space of the feature vectors onto the different
classes. The data may be first subjected to a nonlinear
transformation before feeding it to a linear classifier. The
new features are like basis functions in basis function
regression, and the classifier is essentially thresholding the
basis function regression (see for instance Bishop (1995)).

– Vector Quantization, used in Talupur et al. (2000); Pye
(2000); Deshpande et al. (2001):

Training a vector Quantizer is a way to find a good set of
reference vectors (a code book), which can quantify the
whole feature set with little distortion. Talupur et al. (2000)
use a Kohonen Self-Organizing Map that both learns 
codevectors, and classifies the test data (with a nearest
neighbor algorithm). Pye (2000) uses a tree-based vector
quantizer, where a tree forms histogram templates for each
genre, which are matched to the histograms of the test
data.

Classification results and evaluation

An exhaustive comparison of these approaches is unfortu-
nately impossible to perform since the authors choose 
different target taxonomies, different training sets, and,
implicitly, different definition of “genre.” However, we 
summarize here the most interesting results and remarks
about these works.

– 48% of successful classification in Ermolinskiy et al.
(2001) using 100 songs for each class in the training phase.
This result has to be taken with care since the system uses
only pitch information.

– Tzanetakis et al. (2001) achieves a rather disappointing
57%, but also reports 75% in Tzanetakis and Cook (2000a)
using 50 songs per class.

– 90% in Lambrou and Sandler (1998) and 75% in 
Deshpande et al. (2001) on a very small training and 
test set, which may not be representative.

– Pye (2000) reports 90% on a total set of 175 songs.
– Soltau (1998) reports 80% with HMM, 86% with NN, with

a database of 360 songs.

Some authors study genre specific errors (in Talupur et al.
(2000): Classical = 95% success, Jazz = 85%, Rock = 80%,
Country = 70%), and confusion matrices between genre (in
Soltau (1998): 27.3% of “pop” is mistaken for “rock”). A
common remark is that “classical music” and “techno” is
easy to classify, while “rock,” “country” and “pop” are not.
A possible explanation for this is that the global frequency
distribution of classical music is very different from techno
(notably, the latter has strong bass frequencies), whereas
many pop and rock songs use the same instrumentation. This
suggests that timbre is not necessarily a good criterion to 
re-build an arbitrary genre taxonomy. This argument will be
developed in section 3.3.

Perceptual study

Soltau (1998) has an interesting argument on the similarity
of pop and rock genre: he has led a Turing Test on a group
of 37 subjects, exposed to the same samples used for the
machine learning test set: human confusions in the experi-
ment are similar to confusions of the automatic system (com-
plete results of this study are in Soltau’s Diplomearbeit, only
available in German). Note that similar conclusions are
drawn by Pachet and Cazaly (2000): genre taxonomies are
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highly non-consistent, and there is no general consensus on
genre, especially for this pop/rock distinction.

Different genres have different and non-overlapping
classification criteria

Talupur et al. (2000) lead an interesting “sensitivity analy-
sis”: which part of their 128-long input vectors (reminder:
FFT coeff) contribute max in prediction? Notably, for Jazz,
the learning is much better when a subset of the 64 elements
is used (from 85% success to 91% when using only the
second half of the input vectors). They conclude that the most
important part of the spectrum for genre classification is the
second quarter (although not specifying the frequency range
more precisely), and then “hardest to learn” is the last quarter
(high frequencies). More important is that this suggests that
a unique set of features describing timbre is not optimal to
classify different genres: jazz is very well classified when
looking only at high frequencies, while techno needs looking
only at bass frequencies (and gets very confused with rock,
say, if high frequencies are included in the feature set).

3.3 Comments and suggestions

In a nutshell, most systems rely on the extraction of low-level
descriptors of “global” timbre, and frame-by-frame classifi-
cation of these features into a built-in taxonomy of genre (the
taxonomy is built-in in the sense that a model first has to be
trained for each genre we want to classify). This approach
leads to 3 main problems.

Genre dependent features

As suggested in (Talupur et al., 2000) a unique set of 
features is not optimal to classify different genres: different
genres have different classification criteria. For instance,
“HipHop” would use bass frequency, drum track or voice
timbre, while “Classical” would use medium frequencies
(violin timbre, etc.). Moreover, the criteria are non-
overlapping, since maybe “HipHop” and “Rock” are similar
when looking at a certain frequency range, which is detri-
mental to a good classification.

This is a problem since:

– Feature selection is still a hard issue to be done 
automatically.

– Defining the best feature set is obviously data dependent:
adding new titles in the database or new genre classes to
the classifier will modify the optimal feature set, and
moreover there is no guarantee that a given training set of
sound samples is representative enough of the whole space
in order to select the right feature set.

Taxonomic problems

Apart from the inconsistency inherent to any genre taxon-
omy, taxonomic issues include:

– Need for hierarchical classification: Weare in Dannenberg
et al. (2001) suggests that an ideal system should only
allow “graceful errors”: “if the [genre] is wrong, it is not
so bad if an ‘East Coast Rap’ song is classified as ‘South-
ern Rap’ song, but if that song is mistakenly classified as
‘Baroque’ [then] the error is quite painful.” In other
words, misclassification should occur between sub-genres
of the same category (“Rap”). This suggests an incremen-
tal hierarchical classification (first classify into genres,
then into subgenres, etc.), which cannot be done easily
with low-level features. This would be easier with high-
level features used in a kind of event-scenario: “is there
guitar?”, “is the drum-track using a lot of high-hat?” . . .
But this is only wishful thinking, as the automatic extrac-
tion of such high-level features in polyphonic recordings
is still not state-of-art.

– Growth: Tzanetakis et al. (2001) state the need to expand
the genre hierarchy used in automatic systems both in
width (new genres) and depth (new sub-genres). This also
is problematic with the usual approach: for each new class
(genre or sub-genre) that is added into the taxonomy, we
have to create a new model with a new training stage (and
maybe a new adapted feature set in the scope of automatic
feature selection, which would require re-training all
models of all genres. . . .). An ideal system would be more
evolutive, thus allowing the user to define her own genres,
and to add newly emerging musical genres (e.g., the newly
advertised genre of “electronic pop”). Also a problem is
the size and precision of the ideal taxonomy: Currently,
there exist over a thousand musical genre categories in the
MSN Music Search Engine (Dannenberg et al., 2001). If
current results already have difficulties to classify “Rock”
and “Pop”, we hardly see how it can succeed in discrimi-
nating finer subgenres of the same categories (“Indie
Rock”, “Surf Rock” . . .).

Genre is being classified with intrinsic attributes

The systematic use of low-level features comes from a
general faith in what’s called “musical surface.” A widely
quoted study by Perrot and Gjerdigen (1999) (quoted in 
Tzanetakis et al. (2001) and Scheirer (2000)) shows that hu-
man can accurately predict whether they like a musical piece
or not based on only 250 milliseconds of audio (while scan-
ning the radio, for instance). This would suggest that humans
can judge genre by using only an immediately accessible
“surface” (a kind of timbre + texture + instrumentation +
. . . ?) and without constructing any higher level theoretical
description (such as “is there guitar?”, “is the tempo fast or
slow?” . . .). Moreover, automatic approaches from the signal
assume that genre can be extracted from intrinsic attributes
of the audio signal, which seems contradictory with the fact
that in many cases genre is an extrinsic, emerging property.

Indeed, given an arbitrary genre taxonomy, there are very
many counter-examples that one can find where pieces of two
different genres have very similar “timbre”:
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– a Schumann sonata (“Classical”) and a Bill Evans piece
(“Jazz”)

– a Prokoviev Symphony (“Classical”) and an orchestral
rendering of Gershwin’s Porgy and Bess (“Jazz”), . . .

Similarly, there are many examples of pieces of the same
genre that have very different timbre:
– two songs by The Beatles : “Helter Skelter” (heavy 

overloaded guitars), and “Lucy in the Sky” (strange 
harpsichord-like)

– two jazz pieces: “A Love Supreme” by John Coltrane, and
“My Funny Valentine” sung by Chet Baker, . . .

We have led a quantitative study of the correlation between
timbre similarity and genre, using the 20000 music titles
Cuidado database. As described in section 2.2., each title 
in the database has been manually labeled in the Cuidado
genre taxonomy. Timbral similarity between titles is esti-
mated using MFCC and Gaussian Mixture Models, as
described in Aucouturier (2002). This technique, used 
for classification by Pye (2000), was adopted because it
yields the best classification results among all the algorithms
reviewed earlier (3.2.5.). For each title in the database, we
compute its “timbral distance” to all the other titles, and
compare these distances to the genre of the titles (only 
the root level of the Cuidado genre taxonomy is used, i.e., 
18 genre families: Ambiance, Blues, Classical, Country, 
Electronica, Folk, Hard, Hip Hop, Jazz, New Age, Pop,
Reggae, Rhythm&Blues, Rock, Rock&Roll, Soul, Variety,
World).

Results can be seen in Table 1 and Table 2. Both tables
show that for a given taxonomy, there is a very poor corre-
lation between genre and timbre. In an Information Retrieval
point of view, the precision of a query on genre based on

timbral distance is very low (15%). In Table 2, “Overlap on
Same Genre” is the ratio

where Ndiff is the total number of songs with a different genre
as the query’s, and Ndiff<same is the number of songs in Ndiff

whose timbral distance to the query is smaller than the mean
distance to songs of the same genre. Similarly, “Overlap on
Different Genre” describes the proportion of songs which
have the same genre as the query, but whose distance to the
query is larger than the mean distance to songs of the 
different genre. Both values are high, which suggests that
prescriptive classification schemes based on timbre are
intrinsically limited, and cannot scale in both in the number
of music titles, and in the number of genre classes.

4. Emerging genre classifications from
similarity relations

The second approach to automatic genre classification is
exactly opposite to the prescriptive approach just reviewed.
Instead of assuming that a genre taxonomy is given a priori,
it tries to emerge a classification from the database, by clus-
tering songs according to a given measure of similarity.
While the prescriptive approach adopts the framework of
supervised learning, this second point-of-view is unsuper-
vised. Another important difference is that in the first
approach, genre classifications are considered as natural and
objective (we have seen problems about this in section 2.1.),
whereas in this approach it is similarity relations which are
considered as objective.

4.1 Measures of similarity

– Intrinsic attributes from the signal: The same features that
were described in section 3.1. can be used to assess simi-
larity between individual titles. This was notably done by
the authors in the study described in section 3.3. Similar
distance functions are used for instance in the “Muscle
Fish” technology (Wold & Blum, 1996), or by Foote
(1997). However, these works about audio similarity are
on the edge of genre classification, and have never 
been applied to genre in an explicit manner. Therefore,
they are not to be reviewed here. Besides, we have already
made arguments that intrinsic signal attributes are not
always correlated with what is usually described as 
genre.

– Cultural similarity from text documents: In the rest of this
review, we describe a music similarity measure based on
data-mining techniques that appear to be well suited 
to genre clustering. These techniques are able to extract
similarities that are not possible to extract from the 
audio signal.

N

N
diff same

diff

<

Table 1. Average number of closest songs with the same genre as
the query.

Number of Timbre Neighbors Average number of songs
in the same genre

Closest 1 0.43
Closest 5 1.43
Closest 10 2.56
Closest 20 4.61
Closest 100 18.09

Table 2. Measures of the overlap between different genres.

Average distance between titles 27.15
Average distance between titles of the same genre 26.91
Average distance between titles of different genres 27.17
Overlap on same genre 57.1%
Overlap on different genre 27.1%
Precision 14.1%
Recall 61.2%
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4.2 Collaborative filtering

Collaborative Filtering (CF) (Shardanand & Maes, 1995) is
based on the idea that there are patterns in tastes: tastes are
not distributed uniformly. These patterns can be exploited
very simply by managing a profile for each user connected
to the service. The profile is typically a set of associations of
items to grades. In the recommendation phase, the system
looks for all the agents having a similar profile than the
user’s. It then looks for items liked by these similar agents
which are not known by the user, and finally recommends
these items to him/her.

Experimental results show that the recommendations, at
least for simple profiles, are of good quality, once a sufficient
amount of initial ratings is given by the user (Shardanand &
Maes, 1995). However, there are limitations to this approach,
which appear by studying quantitative simulations of CF
systems (Epstein, 1996). The first one is the inclination to
“cluster formation,” which is induced by the very dynamics
of the system. CF systems produce interesting recommenda-
tions for naive profiles, but get stuck when the profiles get
bigger: eclectic profiles are disadvantaged.

Another problem, shown experimentally, is that the
dynamics favors the creation of hits, i.e., items which are
liked by a huge fraction of the population. If hits are not a
bad thing in themselves, they nevertheless limit the possibil-
ity of other items to “survive” in a world dominated by
weight sums.

CF has been used with some success in the field of music
selection (Pestoni et al., 2001; French & Hauver, 2001).
However, it has a number of issues for EMD systems: as put
in Pye (2000), it “require[s] considerable data and [is] only
applicable [ for new titles] some time after [their] release.”
Also a problem is that it is difficult to guarantee that the
extracted taste/buying patterns are linked to a genre similar-
ity. Finally, cluster formation and uneven distribution of
chances for items (e.g., hits) are important drawbacks of the
approach, both from the user viewpoint (clusters from which
it is difficult to escape), and the content provider viewpoint
(no systematic exploitation of the catalogue).

4.3 Co-occurrence analysis

We have introduced co-occurrence techniques to automati-
cally extract musical similarity between titles or between
artists (Pachet et al., 2001). The technique yields a distance
matrix for arbitrary sets of items. It was applied to two dif-
ferent music sources, and experiments were conducted on
various title and artist databases.

Sources

We have investigated two possible sources: radio programs,
and databases of compilation CDs.

– Radio programs: The rationale behind analyzing radio pro-
grams is that usually, at least for certain radio stations, the

choice of the titles played and the choice of their sequence
is not arbitrary. The radio programmer has, in general, a
vast knowledge of the music he or she plays on air, and
this knowledge is precisely what gives the program its
characteristic touch. For instance, some radio stations spe-
cialize in back catalogues of the sixties (in France e.g.,
Radio Nostalgie and Europe 2), others in non-contempo-
rary classical music (Radio Classique), and yet others have
more diverse catalogues (such as FIP/Radio France). In all
cases, however, the titles and their sequencing are carefully
selected in order to avoid breaking the identity of the
program. It is this very knowledge (choice of titles and
choice of sequencing) that we wish to utilize by data
mining. Several thousands radio stations exist in the occi-
dental world, and many of them make their programs avail-
able on the web, or through various central organizations,
such as Broadcast Data Systems. For our experiments we
have chosen a French radio station that has the advantage
of not being specialized in a particular music genre: Fip
(Radio France).

– Track Listing Databases: Another important source of
information is actual CD albums, and in particular, sam-
plers (compilations). Compilations, either official ones
produced by labels, or those made by individuals, often
carry some overall consistency. For instance, titles on com-
pilations such as “Best of Italian Love Songs,” “French
Baroque Music,” or “Hits of 1984” have explicit similari-
ties of various sorts (here, social impact, genre, and
period). Our main hypothesis is that if two titles co-occur
in different compilations, this reinforces the evidence of
some form of similarity between them.

Co-occurrence techniques

Co-occurrence analysis consists in building a matrix with all
titles in row and in column. The value at (i, j) corresponds 
to the number of times that titles i and j appeared together,
either on the same sampler, on the same web page, or as
neighbors in a given radio program.

To define an actual distance function, we need to take into
account several important factors. First, two titles may never
co-occur directly, but they may each co-occur with a third
title. The distance function should take such indirect co-
occurrence into account. Second, because we want to assess
both the soundness (all found similarities are “good”) and
completeness (all “good” similarities are found) of the
extracted similarities, we need to restrict the validation to a
close corpus of titles that can then be used for comparisons
with human similarity judgments.

Given a corpus of titles S = (T1, . . . , TN), we compute the
co-occurrence between all pairs of titles Ti and Tj. The 
co-occurrence of Ti with itself is simply the number of 
occurrences of Ti in the considered corpus. Each title is 
thus represented as a vector, with the components of the
vector being the co-occurrence counts with the other titles.
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Components of each vector are normalized to eliminate fre-
quency effects of the titles.

Results

These experiments show that the technique is indeed able to
extract similarities between items. We have determined that
70% of the clusters constructed from such data mining dis-
tances translate interesting similarities. Specific music genres
are quite well distinguished: for instance in our experiments,
two jazz guitar titles (Wes Montgomery – Midnight Mood,
and Jim Hall – Body and Soul) are clustered together. A com-
plete description of the results so far can be found in Pachet
et al. (2001).

Issues

– The clusters are not labeled: Characterizing the nature of
the extracted similarities is not easy. Besides common
artist similarities, two main kinds of similarity relations for
CDDB were identified: thematic/genre similarity, and sim-
ilarity of period (coming probably from the abundance of
“best of the year” samplers). For the radio (FIP), the sim-
ilarity relations are quite different. Current experiments on
a database of 5000 titles show that artist consistency is not
enforced as systematically as in the other data sources.
Moreover, the similarities are more metaphorical, and in
some sense less obvious, therefore often more interesting.
They can be of various kinds:
– covers, e.g., “Lady Madonna” by the Baroque 

Ensemble is close to “Ticket to Ride” by the Beatles,
– instrument/orchestration, e.g., Eleanor Rigby and a

Haydn quartet,
– based on title names or actual meaning of the lyrics,

e.g., “Kiss – Prince” close to “Le Baiser – Alain
Souchon.” Therefore, it is often not clear whether the
extracted similarity is an indication of genre, or rather
timbre, semantics . . . One possible cure for this is to
select sources that are likely to be genre specific (e.g.,
the “Best of Italian Love Songs” sampler, or playlists
from a jazz radio, etc.).

– Works only for titles appearing in the sources: One obvious
drawback is that this technique only works for titles
appearing in the analyzed sources. This is a problem in 
the context of an EMD system: similarities can only be
computed for a subset of the titles – or rather part of the
possible duplets (Ti, Tj) of titles – in a database or a cata-
logue. This suggests that this technique should be used in
conjunction with the other sources of similarities
described in this article.

5. Conclusion

We have described three approaches for extracting musical
genre.

– A manual classification of titles can be useful for boot-
strapping and evaluating automatic systems, but it is not
realistic for large databases, and does not easily scale-up.
We have chosen to classify artists, which gives a good
trade-off between precision and scalability. In any case,
analysis of existing genre taxonomies show that genre is
an ill-defined notion.

– We have reviewed signal techniques, and shown that they
mostly rely on supervised classification techniques on a
space of low-level timbral features. Success is limited to
small taxonomies (distinction between 1–5 families), and
very distinct genres (classical music and techno). This pre-
scriptive approach is limited by the inconsistencies of the
built-in taxonomy, and the assumption that genre can be
assessed from intrinsic signal attributes. We have shown
that for a given genre taxonomy, correlation between genre
classes and timbre similarity can be very poor.

– Data mining techniques such as co-occurrence analysis are
able to extract high-level similarities between titles and
artists, and are therefore well-suited to the unsupervised
clustering of songs into meaningful genre-like categories.
These techniques suffer from technical problems, such as
the labeling of clusters, but these issues are currently under
study and better schemes should be devised soon.

The approaches presented here differ in the techniques used,
but more importantly in the implicit conception of genre they
are based on. Prescriptive approaches consider genre as an
object of study, while emerging approaches attempt to con-
struct operational definitions of genre.
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