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Abstract 

We propose a system, the Continuator, that bridges the 
gap between two classes of traditionally incompatible 
musical systems: 1) interactive musical systems, limited 
in their ability to generate stylistically consistent material, 
and 2) music imitation systems, which are fundamentally 
not interactive. Our purpose is to allow musicians to 
extend their technical ability with stylistically consistent, 
automatically learnt material. This goal requires the 
ability for the system to build operational representations 
of musical styles in a real time context. Our approach is 
based on a Markov model of musical styles augmented to 
account for musical issues such as management of 
rhythm, beat, harmony, and imprecision. The resulting 
system is able to learn and generate music in any style, 
either in standalone mode, as continuations of musician’s 
input, or as interactive improvisation back up. Lastly, the 
very design of the system makes possible new modes of 
musical collaborative playing. We describe the 
architecture, implementation issues and experimentations 
conducted with the system in several real world contexts. 

1. Introduction 

Music improvisation is both a fascinating activity and a 
very frustrating one. Playing music requires an intimate 
relationship between musical thought and sensory-motor 
processes: the musician must think, listen, develop ideas 
and move his/her fingers very quickly. The speed and lack 
of time is a crucial ingredient of improvisation; it is what 
makes it exciting. It is also what makes it frustrating: 
beginners as well as experienced musical performers are 
by definition limited by their technical abilities, and by 
the morphology of the instrument. 

We propose to design musical instruments that address 
explicitly this issue: providing real time, efficient and 
enhanced means of generating interesting musical 
material. 

Musical performance has been the object of numerous 
studies, approaches and prototypes, using virtually all the 
computer techniques at hand. In our context, we can 
divide these approaches in two categories: interactive 

systems and music imitation systems. Schematically, 
interactive music systems propose ways of transforming 
quickly musical input into musical output. Musical 
interactive systems have been popular both in the 
experimental field (Baggi, 1992), (Biles, 1998) as well as 
in commercial applications, from one-touch chords of 
arranger systems to the recent and popular Korg Karma 
synthesizer (Karma, 2001). While a lot of work has been 
devoted to efficient controllers and interfaces for musical 
systems (Borchers, 1999), (Nime, 2001), these systems all 
share a common drawback: they are not able to learn, 
there is no memory of the past. Consequently the music 
generated is strongly correlated with musical input, but 
not or poorly with a consistent and realistic musical style. 

On the other hand, music imitation systems precisely aim 
at representing stylistic information, to generate music in 
various styles: from the pioneering Illiac suite by Hiller 
and Isaacson (1959) to the automatic compositions of 
(Cope, 1996). More recently, constraint techniques have 
been used to produce stylistically consistent 4-part 
Baroque music (see (Pachet & Roy, 2001) for a survey). 
In the domain of popular music, prototypes such as (Biles, 
1998) or (Ramalho, 1994) have demonstrated the 
technical feasibility of simulating convincingly jazz styles 
by computer. These systems propose fully-fledged 
automata that may produce impressively realistic music, 
but they do not support musical interaction and cannot be 
used as actual instruments. Moreover, these approaches 
require explicit, symbolic information to be fed to the 
system, such as human input for supervised learning, 
underlying harmonic structure, tempo, song structure, 
which further limits their usability. 

The system we present here is an attempt to combine both 
worlds: real-time interactive musical instruments that are 
able to produce stylistically consistent music.  

More precisely, we propose a system in which musical 
styles are learned automatically, in an agnostic manner, 
and therefore do not require any symbolic information 
(style, harmonic grid, tempo). The system is seamlessly 
integrated in the playing mode of the musician, as 
opposed to traditional question/answer or fully automatic 
systems, and adapts quickly and without human 
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intervention to unexpected changes in rhythm, harmony 
or style. Finally, the very design of the system allows the 
sharing of stylistic patterns in real time and constitutes in 
this sense a novel form of collaborative musical 
instrument. 

The remaining of the paper is structured as follows. First 
we introduce the architecture of the proposed system, its 
inputs and outputs. We then describe the heart of the 
engine, based on a Markov based model of musical styles. 
This model is augmented with 1) a hierarchical model of 
learning functions to adapt to imprecision in musical 
inputs and 2) a facility for biasing the Markovian 
generation, to handle external information such as 
changing harmony. Finally, we illustrate the use of the 
system in various musical contexts: solos, 
accompaniments, and collaborative music improvisation. 

2. Architecture 

In this paper we focus on a Midi system linked to an 
arbitrary midi controller. Experiments described here 
were conducted with Midi keyboard and guitars, and are 
easily applicable to any style and Midi controller. An 
audio version is currently in progress, and the ideas 
proposed in this paper are in a large respect independent 
of the nature of the information managed. 

We consider music as temporal sequences of Midi events. 
The information we represent are: pitch (integer between 
0 and 127), velocity/amplitude (also between 0 and 127), 
and temporal information on start and duration times, 
expressed as long integers, with a precision of 1 
millisecond, as provided by the MidiShare Midi operating 
system (Orlarey & Lequay., 1989). In the standard 
playing mode, the system receives input by one musician. 
The output of the system is sent to a Midi synthesizer and 
then to a sound reproduction system (see Figure 1). 

Midi controller

The Continuator

Midi synthesizer

Midi output stream

Midi input stream

Midi controller

The Continuator

Midi synthesizer

Midi output stream

Midi input stream

 

Figure 1. Flow of information to and from the 
Continuator. 

The system acts basically as a sequence continuator: the 
note stream of the musician is systematically segmented 
into phrases using a variable temporal threshold (typically 
about 250 milliseconds). Each phrase is sent 
asynchronously to a phrase analyzer, which builds up a 
model of recurring patterns. In reaction to the played 
phrase, the system generates a new phrase, built as a 

continuation of the input phrase, according to the database 
of patterns already learnt. 

In the next section we describe the heart of the system, 
based on an extension of a Markov model. 

3. Learning musical style, pratically 

Markov chains and music is an old and rather repetitive 
story. The most spectacular application to music is 
probably the compositions of (Cope, 1996), whose system 
is able to represent faithfully musical styles. However, his 
ad hoc scheme is not easily reproducible and extensible. 
One major interest of Markov-based models is that they 
are naturally able to generate new musical material in the 
style learned. Recently, variations of the basic Markov 
models have been introduced to improve the efficiency of 
the learning methods, as well as the accuracy of the music 
generated (Assayag et al., 1999), (Lartillot et al, 2001), 
(Trivino-Rodrigues & Morales-Bueno, 1999). In all cases, 
the main idea is to capture the local patterns found in the 
learnt corpus, using probabilistic schemes. New 
sequences are then generated using these probabilities. 
These sequences will contain, by construction, the 
patterns identified in the learnt corpus. 

These works show clearly two things: 1) Markov chain 
models (and their extensions, notably for variable-length) 
are able to represent efficiently musical patterns, but 2) 
there generative power is limited due to the absence of 
long-term information. In another words, these models 
can fool the listener on a short scale, but not for complete 
pieces. Using Markov models for interaction purposes 
allows us to benefit from 1) and avoid the drawback of 2). 
The responsibility for organizing the piece, deciding its 
structure, etc. are left to the musician. The system only 
"fills in the gaps", and therefore the power of Markov 
chain can be exploited fully.  

We address in the following sections the main issues 
involved in building effective and realistic models of 
musical styles: 

- Efficiency and the ability to perform the learning in 
real time, 

- A realistic management of continuity, 

- The handling of specifically musical issues such as 
rhythm and polyphony. 

3.1. Learning sequences efficiently 
The learning module we propose systematically learns all 
phrases played by the musician, and progressively builds 
up a database of patterns detected in the input sequences. 
After initial experiments with incomplete learning 
schemes such as the Lempel-Ziv mechanism described in 
(Assayag et al., 1999), we designed an indexing scheme 
which represents all the subsequences found in the corpus, 
in such a way that the computation of continuations is 1) 
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complete and 2) as efficient as possible. We describe here 
briefly the design of this learning scheme, which can be 
seen as an efficient implementation of a complete 
variable-order Markov model of input sequences, as 
initially introduced by (Ron et al., 1996). 

This technique consists in building a prefix tree by a 
simple, linear analysis of each input sequence. Each time 
a sequence is input to the system, it is parsed from right to 
left and new prefixes encountered are systematically 
added to the tree. Each node of the tree is labeled by a 
reduction function of the corresponding element of the 
input sequence. In the simplest case, the reduction 
function can be the pitch of the corresponding note. We 
describe in the next section more advanced reduction 
functions, and stress on the their role in the learning 
process. To each tree node is attached a list of 
continuations encountered in the corpus. These 
continuations are represented as integers, denoting the 
index of the continuation item in the input sequence. This 
indexing scheme makes it possible to avoid duplicating 
data by manipulating only indexes. When a new 
continuation is found for a given node, the corresponding 
index is added to the node’s continuation list (shown in 
the figure between accolades {}). 

For instance, suppose the first input sequence is {A B C 
D}. We will progressively build the tree structure 
illustrated in Figure 2. These trees represent all possible 
prefixes found in the learnt sequences, in reverse order, to 
facilitate the generation process (see next section). In the 
first iteration, the sequence is parsed from right to left, 
and produces the left tree of Figure 2. First, the node C is 
created, with continuation index {4}, representing the last 
D of the input sequence. Then node B is added as a son of 
node C, with the same continuation index {4}. Finally, 
node A is created as a son of node B, with the same 
continuation index. 

Then the parsing starts again for the input sequence minus 
its last element, i.e. {A B C}, to produce the middle tree 
of Figure 2. In this tree, all nodes have {3} as a 
continuation (meaning item C). Finally, the sequence {A 
B} is parsed and produces the tree on the right of Figure 
2. Nodes are created only once the first time they are 
needed, with empty continuation lists. The tree grows as 
new sequences are parsed, initially very quickly, then 
more slowly as patterns encountered are repeating.  
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Figure 2. The tree of the patterns found in {A B C D } 

Now, let us see what happens when the second following 
sequence is parsed: { A B B C}. 

Using the same mechanism, we parse again the input 
sequence from right to left, to produce the continuation 
index 8 (i.e. C) for {A B C}. We get the following 
updated tree structure, where the new nodes and 
continuations are indicated in red: 
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Figure 3. The tree structure augmented with the 
parsing of { A B B C }. 

We keep on parsing with the truncated subsequences until 
we get the following graph (Figure 4): 
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Figure 4. The complete graph corresponding to 
sequences {A B C D} and {A B B C}. 

As we will see below, this graph has the property that 
retrieving continuations for any subsequence is extremely 
fast, and requires a simple walkthrough the input 
sequence. 

3.2. Generation of continuations 
The second module of our system is the real time 
continuation mechanism, which generates the music in 
reaction to an input sequence. The generation is 
performed using a traversal of the trees built from input 
sequences. The main property of this generation is that it 
produces sequences which are locally maximally 
consistent, and which have the same Markovian 
distributions. 

The generation is performed by producing items one by 
one, and, at each iteration, considering the longest 
possible subsequence. Once a continuation is generated, 
the process is repeated with the input sequence augmented 
by the continuation. This tiling mechanism makes the real 
time generation possible, as we will see in the next 
sections. This process, referred to as variable-order 
Markov chains is the following. Suppose an input 
sequence such as: 

{A B } 

We walk through the previously built tree to look for all 
continuations of {A B}. We start by looking for a root 
node corresponding to the last element of the input 
sequence (B). We then walk down this tree to match the 
input sequence until we either complete the input 
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sequence, or do not find the corresponding node. When 
the walkthrough is finished, we simply return the set of 
continuations of the corresponding node. In our case we 
find a continuation for the whole input sequence {A B}: 

Continuation_List ( {A B} )  =  {3, 7}. 

Theses indexes correspond to items {C, B}. A 
continuation is then chosen by a random draw. Suppose 
we draw B. We then start again with the new sequence {A 
B B}, for which we repeat the retrieving process to find 
the continuation list: 

Continuation_List ( {A B B } )  =  {8}. 

We chose the only possible continuation (index 8 
corresponds to item C) and get {A B B C}. We do not 
find any continuation for the whole sequence {A B B C}, 
but we get continuations for the longest possible 
subsequence, that is here:  

Continuation_List ( { B C} )  =  {4}. 

We therefore get the sequence {A B B C D} and continue 
the generation process. At this point, there is no 
continuation for {A B B C D} as well as for any 
subsequence ending by D (indeed, D has always been a 
terminal item in our learnt corpus).  

In this case, when no continuation is found for the input 
sequence, a node is chosen at random. We will see in the 
next section a more satisfactory mechanism for handling 
such cases of discontinuity. 

It is important to note that, at each iteration, the 
continuation is chosen by a random draw, weighted by the 
probabilities of each possible continuation. The 
probability of each continuation is directly given by 
drawing an item with an equal probability distribution, 
since repeating items are repeated in the continuation list. 
More precisely, for a continuation x, its probability is: 

Markov_Prob(x) = nb of occurrences of x in L, where L is 
the continuation list.  

Since the continuations are in fact indexes to the original 
sequences, the generation can use any information from 
the original sequence which is not necessarily present in 
the reduction function (e.g. velocity, rhythm, midi 
controllers, etc.): the reduction function is only used to 
build the tree structure, and not for the generation per se. 

4. Reduction functions 

As we saw in the preceding section, the graph is not built 
from raw data. A Midi sequence has many parameters, all 
of which are not necessarily interesting to learn. For 
instance, a note has attributes such as pitch, velocity, 
duration, start time. A chord has attributes such as the 
pitch list, possibly its root key, etc. The system we 
propose allows the user to choose explicitly from a library 
of predefined reduction functions. The simplest function 
is the pitch. A more refined function is the combination of 

pitch and duration. Trivino-Rodrigues & Morales-Bueno 
(2001) introduced the idea of multi-attribute Markov 
models for learning musical data, and made the case that 
handling all attributes requires in principles a Cartesian 
product of attribute domains, leading to an exponential 
growth of the tree structures. The model they propose 
allows to avoid building the Cartesian product, but does 
not take into account any form of imprecision in input 
data. Conklin & Witten (1995) propose different 
reduction functions (called viewpoints) for representing 
music. Our experiments with real music led us to develop 
and implement such a library of reduction functions, 
including the ones mentioned in these works, as well as 
functions specially designed to take into account realistic 
Jazz styles. One of them is the PitchRegion, which is a 
simplification of pitch. Instead of considering explicitly 
pitches, we reduce pitches in regions, practically by 
considering only pitch / region_size. 

4.1. Hierarchical graphs 
One important issue in dealing with Markov models if the 
management of imprecision. By definition, Markov 
models deal with perfect strings, and there is no provision 
for handling imprecision. In our example, the String {A B 
C X} has no continuation, simply because symbol X has 
no continuation. In the approaches proposed so far, such 
case would trigger the drawing of a random node, thereby 
breaking somehow the continuity of the generated 
sequence. 

The treatment of inexact string matching in a Markovian 
context is addressed typically by Hidden Markov Models. 
In this framework, the state of the Markov model are not 
simply the items of input sequences, as other, hidden state 
are inferred, precisely to represent state regions, and 
eventually cope with inexact string inputs. However, 
Hidden Markov Models are much more complex than 
Markov models, and are cpu consuming, especially in the 
generation phase. More importantly, the determination of 
the hidden states is not controllable, and may be an issue 
in the practical context we are dealing with here. 

We propose here another approach, based on a simple 
remark. Suppose a model trained to learn the arpeggio in 
figure 5: 

 

Figure 5. An arpeggio learnt by the Continuator. 

Suppose that the reduction function is as precise as 
possible, say pitch, velocity and duration. Suppose now 
that the input sequence to continue is the one in Figure 6. 

It is clear that any Markov model will consider that there 
is no continuation for this sequence, simply because there 
is no continuation for Eb. The models proposed so far 
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would then draw a new note at random, and actually start 
a new sequence. 

 

Figure 6. An input sequence which does not match 
exactly with the learnt corpus. 

However, it is also clear intuitively, that a better solution, 
in such a case is to shift the viewpoint. The idea is to 
consider a less refined reduction function. In this case, les 
us consider for instance pitch regions of three notes 
instead of pitches. 

The learnt sequence is then reduced to: {PR1 PR1 PR2 
PR3 PR5} 

The input sequence is reduced to: {PR1 PR1 PR2} 

In this new model, there is a continuation for {PR1 PR1 
PR2}, which is PR3. 

Because our model keeps track of the index of the data in 
the input sequences (and not the actual reduction 
functions), we can generate the note corresponding to 
PR3, in our case, G. Once this continuation has been 
found, the process is started again with the new sequence, 
using the more refined reduction function. 

More precisely, we introduce a hierarchy of reduction 
functions, to be used in a certain order in cases of failure. 
This hierarchy can be defined by the user. Typically, a 
useful hierarchy can be the following: 

1 – pitch * duration * velocity 

2 – small pitch region * velocity 

3 – small pitch regions 

4 – large pitch regions, 

where the numbering indicates the order in which the 
graphs are considered in cases of failure. In this case, a 
possible continuation found by our system would be as 
follows, with an edequate handling of the Eb 
“imprecision”: 

 
The approach we propose allows to take into account 
inexact inputs, at a minimum cost. The complexity for 
retrieving the continuations for a given input sequence is 
indeed very small as it involves only walking through 
trees, without any actual search. 

5. Polyphony and Rhythm  

Before describing how we turn our model into a real time 
interactive system, we have to explain how we handle 

several important musical issues, which are crucial to 
ensure that the generation is realistic musically. 

5.1. Polyphony  
Because our model is based on sequences of discrete data, 
we have to ensure that the items in the model are in some 
sort independent, to be recombined safely with each other. 
With arbitrary polyphony in the input, this is not always 
the case, as illustrated in Figure 7: some notes may not be 
stylistically relevant without other notes sounding at the 
same time. 

 

Figure 7. Handling polyphony with segmentation. 
Chords are clustered (on the left), and legato notes are 

separated (on the right). 

Assayag et al. (1999) propose a scheme for handling 
polyphony consisting in slicing up the input sequence 
according to every event boundary occurring in any voice. 
This scheme is satisfactory in principle, in that it allows to 
model intricate contrapuntal relationships between several 
voices. In practice, we experimented with various 
schemes and came up with a simpler model more fitted 
with the properties of real interactive music.  XXXTaking 
into account the “negative time” 

We first apply an aggregation scheme to the input 
sequence, in which we aggregate clusters of notes 
sounding approximately “together”. This situation is very 
frequent in music for instance with the use of pedals. 
Conversely, to manage legato playing styles, we treat 
notes slightly overlapping as actually different (see the 
end of the figure) by considering that an overlap of less 
than a few milliseconds is only the sign of legato, not of 
an actual musical cluster. 

These cases are actually tricky to handle at the generation 
phase, because some delay can be introduced, if one 
simply regenerates the sequence of notes as contiguous. 
To cope with this situation, the respective inter note 
delays are memorized and introduced again at the 
generation phase. 

5.2. Rhythm 
Rhythm refers to the temporal characteristics of musical 
events (notes, or clusters). Rhythm is an essential 
component of style and requires a particular treatment. In 
our context, we consider in effect that musical sequences 
are generated step by step, by reconstructing fragments of 
already parsed sequences. This assumption is 
unfortunately not always true, as some rhythms do not 
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afford reconstruction by slicing arbitrarily bits and pieces. 
As Figure 7 illustrates, the standard clustering process 
does not take into account the rhythmic structure, and this 
may lead to strange rhythmical sequences at the 
generation phase. 

This problem has no universal answer, but different 
solutions according to different musical contexts. Based 
on our experiments with jazz and popular music 
musicians, we have come up with three different modes 
that the user can choose from:  

Natural rhythm: The rhythm of the generated sequence is 
the rhythm as it was encountered during the learning 
phase. In this case, the generation explicitly restitutes the 
temporal structure as it was learned, and in particular 
“undoes” the aggregation performed and described in the 
previous section.  

Linear rhythm: this mode consists in generating only 
streams of eight-note, that is with a fixed duration and all 
notes concatenated. This allows generating very fast and 
impressive phrases, and is particularly useful in the be-
bop style. 

Input rhythm: in this mode, the rhythm of the output is the 
rhythm of the input phrase, possibly warped if the output 
is longer than the input. This allows to create 
continuations that sound like imitations rhythmically. 

Fixed metrical structure: For popular and heavily 
rhythmic music, the metrical structure is very important 
and the preceding modes are not satisfactory.  Conklin 
and Witten (1995) suggest to use the location of a note in 
a bar as yet another viewpoint, but this scheme forces to 
use quantization, which in run raises many issues which 
are intractable in an interactive context. 

Instead, we propose in this mode to segment the input 
sequences according to a fixed metrical structure. The 
metrical structure is typically given by an external 
sequencer, together with a given tempo, through Midi 
synchronization. For instance, it can be 4 beats, with a 
tempo of 120. In this case (see Figure 8), the 
segmentation ensures that notes are either truncated at the 
ending of the temporal unit when they are too long, or at 
the beginning of the unit if they begin too early. 

 

Figure 8. Handling polyphony with fixed segmentation 

6. Turning the Generator into an 
Instrument 

The learning and generation module described in the 
preceding sections are able to generate music sequences 
that sound like the sequences in the learnt corpus. As 
such, this provides a powerful musical automaton able to 
imitate faithfully styles, but not a musical instrument. 
This section describes the main design concepts that allow 
to turn this style generator into an interactive musical 
instrument. This is achieved through two related 
constructs: 1) a step-by step generation of the music 
sequences achieved through a real time implementation of 
the generator, and most importantly 2) a modification of 
the basic Markovian generation process by the adjunction 
of a fitness function which takes into account 
characteristics of the input phrase. 

6.1. Real time generation 
The real time generation is an important aspect of the 
system since it is precisely what allows to take into 
account external information quickly, and ensure that the 
music generated follows accurately the input, and remains 
controllable by the user. The most important aspect of the 
real time architecture is that the generation of musical 
sequences is performed step-by step, in such a way that 
any external information can be used to influence the 
generation (see next section). The generation is performed 
by a specific thread (generation thread), which generates 
the sequence by chunks. The size of the chunks is 
parameterized, but can be as small as 1 note event. Once 
the chunk is generated, the thread sleeps and wakes up for 
handling the next chunk in time. 

time
External Information

Phrase Generation Thread

Generation

Wake up

time
External Information

Phrase Generation Thread

Generation

Wake up

 

Figure 9. The step-by-step generation process can take 
into account external information continuously. 

6.2. Biasing the Markov Generation 
The main idea to turn our automaton into an interactive 
system is to influence the Markovian generation by real 
time characteristics of the input.  As we saw above, the 
very idea of Markov-based generation is to produce 
sequences in such a way that the probabilities of each 
item of the sequence are the probabilities of occurrences 
of the items in the learnt corpus.  
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In the context of musical interaction, this property is not 
always the right one, because many things can happen 
during the generation process. In particular, in the case of 
tonal music, the harmony can change. Typically, in a Jazz 
trio for instance, the pianist play chords which have no 
reason to be always the same, throughout the generation 
process. Because we target a real world performance 
context, these chords are not predictable, and cannot be 
learnt by the system prior to the performance. The system 
should be able somehow to take this external information 
into account during the generation, and twist the 
generated sequence in the corresponding directions. 

The idea is to introduce a constraint facility in the 
generation phase. External information may be sent as 
additional input to the system. This information can be 
typically the last 8 notes (pitches) played by the pianist 
for instance, if we want the system to follow harmony. It 
can also be the velocity information of the whole band, if 
we want the system to follow the amplitude, or any 
information that can be used to influence the generation 
process. This external input is used as follows: when a set 
of possible continuation nodes is computed (see section 
on generation), instead of choosing a node according to its 
Markovian probability, we weight the nodes according to 
how they match the external input. For instance, we can 
decide to prefer nodes whose pitch is in the set of external 
pitches, to favor branches of the tree having common 
notes with the piano accompaniment. 

In this case, the harmonic information is provided 
implicitly, in real time, by one of the musician (possibly 
the user himself), without having to explicitly enter the 
harmonic grid or any symbolic information in the system. 

More precisely, we consider a function Fitness (x, 
Context) with value in [0, 1] which represents how well 
item x fits with the current context. For instance, a Fitness 
function can represent how harmonically close is the 
continuation with respect to external information. If we 
suppose that piano is the set of the last 8 notes played by 
the pianist for instance, Fitness can be defined as: 

Fitness(p, piano) = | p ∩  piano |  /  |piano | 

This fitness scheme is of course independent of the 
Markovian probability defined above. We therefore 
introduce a new weighting scheme which allows to 
parameterize the importance of the external input, via a 
parameter S (between 0 and 1): 

Prob(x) = S * Markov_Prob(x) + (1 – S) * Fitness(x, Context) 

By setting S to extreme values we eventually get two 
extreme behaviors: 

• S = 1, we get a musical automaton insensitive to the 
musical context, 

• S = 0, we get a reactive system which generates the 
closest musical elements to the external input it finds 
in the database. 

Of course, interesting values are intermediary: when the 
system generates musical material which is both 
stylistically consistent, and sensitive to the input. 
Experiments in these various modes are described below. 

7. Experiments 

We have conducted a series of experimentations with 
system, in various modes and configurations. There are 
basically two aspects we can assess: 

1 The musical quality of the music generated, 

2 The new collaborative modes the system allows. 

We review each of these aspects in the following sections. 

7.1. Musical Quality 
It is difficult to describe music by words, and rate its 
quality, especially jazz improvisation. However, we can 
easily rate how the system differs from the human input. 
We have conducted tests to check whether listeners could 
tell when the system is playing or not.  In most of the 
cases, if not all, the music produced is undistinguishable 
from the user’s input. This is typically true for quick and 
fast solos (keyboard or guitar) in which the system 
generates long and often impressive jazzy phrases in the 
style of Pat Martino, John Mc Laughlin, or Alan 
Holdsworth, depending on the selected input database. 

Concerning fixed metrical structure, experiments in the 
various styles of the Karma music workstation were 
recorded. In these experiments, we have connected the 
Continuator to the Korg Karma workstation, both in input 
and output. The Continuator is used as an additional layer 
to the Karma effect engine. The Continuator is able to 
generate infinite variations from simple recordings of 
music, in virtually all the styles proposed by the Karma. 
Audio samples can be heard at our web site. 

7.2. New Collaborative Music Modes 
An interesting consequence of the design of the system is 
that it leads to several new playing modes with other 
musicians. Traditionally, improvised music has consisted 
in quite limited types of interaction, mostly based around 
question/answer systems (Baggi, 1996), (Walker, 1997). 
With the Continuator, new musical modes can be 
envisaged: 

- Single autarcy. One musician plays with the system 
after having fed the system with a database of 
improvisations by a famous musician, as Midi files. We 
have experimented in particular with a database of midi 
choruses from Pat Martino, provided by (Heuser, 1994), 
and a database of Bernard Lubat’s piano style. 

- Multiple autarcy: each musician has its own version 
of the system, with its own database. This provides a 
traditional setting in which each musician plays with 
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his/her own style. Additionally, we experimented 
improvisations in which one musician (Gyorgy Kurtag) 
had several copies of the system linked to different midi 
keyboards. The result for the listener is a dramatic 
increase in musical density. For the musician, the 
subjective impression ranges from a “cruise” button 
with which he only has to start a sequence and let the 
system continue, to the baffling impression of a musical 
amplifying mirror.  

- Master/Slave: one musician uses the system in its 
basic form, another (e.g. pianist) provides the external 
data to influence the generation. This is typically useful 
for extending a player’s solo ability while following the 
harmonic context provided by another musician. 
Conversely, the system can be used as an automatic 
accompaniment system which follows the user. In this 
configuration, the Continuator is given a database of 
chord sequences, and the input of the user is used as the 
external data. Chords are played by the system so as to 
satisfy simultaneously two criteria: 1) continuity, as 
given by the learnt corpus (e.g. two fives, harmonic 
cadenzas, etc.) and 2) closeness to the input. The 
samples show clearly how the user tries to fool the 
system by playing quick transposition and strange 
harmonies. In all cases, the Continuator finds chords 
that match the input as closely as possible. A 
particularly striking example is a Bach prelude (in C) 
previously learnt by the system, and used for generation 
of an infinite stream of arpeggios. When the user plays 
single chords on a keyboard, the arpeggios 
instantaneously “follow” the chords played. 

- Cumulative: all musicians share the same pattern 
database. This setting was experimented during a Jazz 
festival (Uzeste, France), where two musicians played 
with the same (Bernard Lubat) database, 

- Sharing: each musician plays with the pattern 
database of the other (e.g.; piano with guitar, etc.). This 
creates exciting new possibilities as a musician can 
experience playing with unusual patterns. 

8. Conclusion 

We have described a music generation system, which is 
able to produce music satisfying two traditionally 
incompatible criteria: 1) stylistic consistency and 2) 
interactivity. This is made possible by introducing several 
improvements to the basic Markovian generation, and by 
implementing the generation as a real time, step-by-step 
process. The resulting system is able to produce musical 
continuations of any user – including beginners - 
according to previously learnt, arbitrary styles. 
Additionally, the design of the system makes it possible to 
share musical styles, and thus to open new modes of 
collaborative playing. 

Current work is devoted to the elaboration of an extensive 
style library by recording material from experienced, top-

level musicians of various styles (jazz, funk, baroque). An 
audio version is under progress, in which the input to the 
system is an audio stream. The stream is analyzed in real 
time to extract meaningful segments, not necessarily 
corresponding to actual musical notes. These segments 
together with basic audio descriptors (pitch, zero crossing 
rate, energy, etc.) are then fed to the system described 
here. This will allow using the system for non-Midi 
instruments, voice in particular. 
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