
Editorial Metadata in Electronic Music Distribution Systems:

Between Universalism and Isolationism

François Pachet, Amaury La Burthe, Jean-Julien Aucouturier and Anthony Beurivé

Sony CSL – Paris

Abstract

We address the problem of metadata management in the
context of future Electronic Music Distribution (EMD)
systems, and propose a classification of existing musical
editorial systems in two categories: the isolationists and
the universalists. Universalists propose shared informa-
tion at the expense of consensuality, while isolationist
approaches allow individual parameterization at the
expense of the lack of reusability. We propose an
architecture and a system for managing editorial
metadata that lies in the middle of these two extremes:
we organize musical editorial information in such a way
that users can benefit from shared metadata when they
wish, while also allowing them to create and manage a
private version of editorial information. A mechanism
allows the synchronizing of both views: the shared and
the private.

1. Introduction

We propose in this article a short scenario describing
how users could benefit from a new metadata manage-
ment system. Then, we expose the relationship between
editorial data management (EMD) systems and editorial
metadata.

1.1 Vision

Picture yourself on a trip to Iceland. Before leaving,
you have obtained a Bjork mp3 from a friend. You
have loaded the file on your mp3 walkman, which
already contains about 5,000 of your favorite tunes.
Each song on this walkman is associated to metadata:

about the artist, the title, and so on. Although you
enjoy the new tune, you do not know much about
Bjork: you have only been able to classify the artist in
your walkman’s local genre taxonomy as ‘‘Electronica /
Icelandic’’.

As you walk by a café in Reykjavik, you decide that
you would like to see what information the local
community has to offer about Bjork (she’s Icelandic,
isn’t she?) You turn on your walkman, which immedi-
ately connects to the nearby metadata server at the café
and download locally available information. Unfortu-
nately, access to the music files is copyrighted and
restricted. However, you have access to the correspond-
ing metadata. Your walkman automatically browses the
local genre taxonomy and is able to trace down Bjork,
although she has been entered with her full Icelandic
name, Gudmundsdottir, and classified in a different
genre: Pop/Trip Hop. The local server has a lot of
available metadata about Bjork, but its access is
restricted to Iceland so you choose to gather metadata
while you are there. Your walkman’s metadata manager
is able to fill in the fields corresponding to album, track
listing and recording date, and also downloads the fact
that Bjork was a member of another Icelandic band: the
Sugarcubes. Your friend back home will certainly be
interested in knowing this! However, you decide to
preserve your carefully built genre taxonomy, and do not
update your local genre metadata or Bjork’s full name: it
is only useful on the local server because it also holds
some mp3s of classical music by a female pianist named
Anna Gudmundsdottir.

You later notice that the local server has a metadata
field that does not exist in your metadata manager: the
mood of the song. You realize how useful this would be
for browsing your own collection. Your walkman

Correspondence: François Pachet, Sony CSL Paris, 6, rue Amyot, 75005 Paris, France. E-mail: Pachet@csl.sony.fr

Journal of New Music Research
2005, Vol. 34, No. 2, pp. 173 – 184

DOI: 10.1080/09298210500148504 ª 2005 Taylor & Francis



matches the many songs that you have in common with
the server, creates a new field in your metadatabase, and
uploads the mood information. While you are at it, you
also download information about the many other songs
by Bjork that sit on the server. The next thing you do is
to connect to your favorite online music shop, and buy
all Bjork’s songs that have the same mood as the one that
sits on your walkman. As the shop’s server does not
support browsing by mood, you decide to contribute to
their metadatabase by submitting the mood metadata
about your songs. In return, your point card is credited,
which allows you to download one extra song for free:
Why not try this ‘‘Sugarcube’’ thing?

1.2 EMD and editorial metadata

The notion of musical metadata is now well established
as a key ingredient of systems dedicated to the electronic
distribution of music audio files. To manage collections
of audio music titles, either personal or online, an
application must have access to many kinds of informa-
tion to identify, categorize, index, classify and generally
organize music titles. Because there are so many types of
information that can be made explicit about music titles,
musical metadata comes in many flavors. However,
classifying musical metadata based on its ontological
nature is a difficult task because there is virtually no limit
to what can be said about a music title. In this context,
we are interested in metadata that has the following
properties:

. It is useful – that is, it corresponds to actual features
of the applications targeted.

. It is consensual – that is, the information makes sense
to a large part of the targeted audience, and these
people would usually agree on them.

The distinction between the various forms of musical
metadata is usually made based on the way this metadata
is extracted, adopting an engineering viewpoint. Not only
is this approach easier, but it is probably the only one
today that is reasonable. Musical metadata can be
divided in the following categories in this scheme:

. Identification information: this allows for the unique
characterization of a music title.

. Editorial information: this is related to prescriptive
knowledge about the music (consensual information,
facts, content description, etc.).

. Acoustic features: this corresponds to objective,
acoustic features of the music titles. It is normally
extracted automatically from the signal.

. Cultural information: this captures the similarity
between music that emerges from socially shared
sources of textual information such as web search
engines.

Sony CSL’s Music Browser project (Pachet et al.,
2004), conducted in the context of the Cuidado and
SemanticHifi IST projects (http://shf.ircam.fr/; see
section 8), consists of designing and implementing a
music browser that gathers all these kinds of metadata.
One exemplar feature of the Music Browser is that it
implements the complete chain linking music titles seen
as objective items (signals or texts) to users, considered
as complex subjects. This article focuses on editorial
metadata as it is designed and used in the Music
Browser. Although some of the architecture and
techniques presented here also may apply to the
management of acoustic and cultural metadata, they
will not be discussed here. Notably, connections
between our architecture and the MPEG7 standard,
which provides a format for representing acoustic
metadata information, will not be discussed (see, e.g.,
Herrara et al., 1999).

Moreover, we place ourselves in the emerging context
of local and mobile ad hoc networks (MANET) (Basagni
et al., 2004). Ad hoc networks are wireless, self-
organizing systems formed by cooperating nodes within
communication range of each other that form temporary
networks. In such environments, different users, with
different goals, share the resources of their devices and
form an open community. A few projects envision music
browsing in the context of MANETs. SoundPryer
(Axelsson & Östergen, 2002) describes a system aimed
at car travellers that enables the p2p wireless exchange of
music files. TunA (Bassoli et al., 2003) is designed for
urban pedestrians, and allows the sharing of music as
well as information about the user (name, age, etc.) in
order to foster social interaction. In both systems, the
issue of sharing metadata about the actual content being
shared is left unaddressed.

2. Existing editorial metadata information
systems

2.1 Isolationist versus universalist

Editorial metadata is no longer a fantasy: they crop up in
virtually every musical application. There are, however,
two radically opposed approaches to how this metadata
is organized. The first, the ‘‘Isolationist’’ approach,
consists of letting individual users handle their metadata
in isolation, with very limited sharing. This is the
approach of most peer-to-peer systems such as Kazaa
(www.kazaa.com). The second, the ‘‘Universalist’’ ap-
proach, consists of creating a central, shared database
server from which all clients feed. Examples of this
approach are CDDB (www.cddb.com), FreeDB
(www.freedb.org), AllMusicGuide (AMG) (www.allmu-
sic.com), MusicBrainz (www.musicbrainz.org) and
MoodLogic (www.moodlogic.com).

174 François Pachet et al.



The isolationist approach consists of letting users
manage editorial information themselves. A system such
as Kazaa (see Figure 1) proposes different fields based on
ID3 tags for describing music titles. The fields are: title,
artist, album, category (corresponding to genre) and
year. Additionally, one can add the language, some
keywords and a short description of the track. This
approach has an obvious drawback in terms of usability:
users must painstakingly fill in the fields for all the new
titles they enter into their collection. There is almost no
sharing of this metadata, other than through the actual
transfer of files. When user A downloads a file from user
(B), he or she also gets the associated metadata. This
metadata can itself be incompatible with existing
metadata. For instance, user A may have decided to
enter an artist’s name as ‘‘McLaughlin, John’’, while B
prefers ‘‘John McLaughlin’’. Thus, A has to change
manually all the artist metadata of the downloaded files.

The universalist approach is aimed at suppressing this
drawback by imposing fixed metadata. A central server
contains the metadata for a certain number of songs.
When a user decides to annotate his or her local files, a
query is made to the server, together with signatures of
the files. The server identifies the files from the signatures
and provides the required metadata. While this approach
does avoid manual annotation, it also comes at a price:
the metadata is fixed, and imposed, and the user cannot
change it; and it works only to the extent that the
signature database of the server actually includes all the
music files of the user’s collection. CDDB and later the
FreeDB and MusicBrainz (see Figure 2) systems are
typical examples of this approach and the community
vision of the two last (i.e., everyone contributes for the

benefit of everybody) achieve excellent results. However,
while they are good at expressing consensus, there is no
room for personalization.

The editorial information system we propose lies in
the middle of these two extremes. We allow both sharing
of information and local personalization. In the ensuing
sections, we will detail the nature of the metadata
managed and the client-server architecture of the system.

2.2 Two kinds of editorial metadata

Editorial information servers such as Musicbrainz,
Moodlogic or AMG provide two sorts of metadata:
consensual information or facts about music titles and
artists; and content description of titles, albums or
artists. The first category does not raise any particular
problem as this information is universal by nature. It
includes, for instance: artists and song name (AMG,
Moodlogic & Musicbrainz); albums and track listings
(AMG & Musicbrainz); group members (AMG); date
of recording for a given title (Moodlogic); short
biography for artists with date of birth and years of
activity (AMG); albums plus, sometimes, album credits
(AMG); labels (AMG); and charts and awards (AMG
with Bilboard.com). However, these kinds of informa-
tion are not particularly useful for content-based search
systems such as the music browser, which aim at
matching music titles with tastes. Tastes, whatever they
are, are rarely well expressed using administrative
information on music.

The second category is both more interesting and
problematic. Content description includes such widely
needed information as: artist style (AMG); artist instru-

Fig. 1. The management of ID3 tags in Kazaa.

Editorial metadata 175



ments (AMG); song mood (Moodlogic); song review
(AMG); song or artist genre (AMG, Moodlogic); and
more generally attributes aimed at describing the
intrinsic nature of the musical item in question (artist
or song). These descriptions, again, are useful to the
extent that they can be used for musical queries in large
catalogues. The user tests performed in the Cuidado
project showed that there is virtually no limit to such
information. As explained in the next section, we have
added several more such descriptors in the Music
Browser. Moreover, we propose an open approach
where the user can adapt/add any descriptor to suit his
or her needs or tastes.

In conclusion, the existing approaches cover only
the two extreme cases: editorial metadata that is
universal and shared by the whole world (AMG,
Musicbrainz) or metadata that is unique to their
author (peer-to-peer systems) and transmitted on a
file-by-file basis. We propose an intermediate approach
that covers the case where users want both to share
consensual editorial metadata and yet be able to
express their own vision of the world by adapting it
locally. In the following sections, we describe the
nature of editorial metadata managed by the Editorial
Information Manager, the choice made for music title
identification and describe the architectural issues
raised by the management of private and shared
information.

3. Editorial metadata in the music browser

The Music Browser aims to exploit all possible metadata
that can be extracted or accumulated for music titles. The
architecture we present here is focused on the manage-

ment of editorial data described in sections 3.2 and 3.3.
Therefore we will focus on the editorial metadata
manager integrated in the music browser.

3.1 The music browser

The kind of editorial metadata we are interested in the
Music Browser is that which can be used readily for
searching music. More precisely, our editorial metadata
appears directly under the form of search fields that can
be used in the browser. Figure 3 shows the query panel of
the Music Browser in which several kinds of editorial
metadata information are displayed and can be used to
issue musical queries.

Fig. 3. The Music Browser query panel.

Fig. 2. Track listing of the album A Hard Day’s Night by The Beatles, as found in the MusicBrainz database.

176 François Pachet et al.



3.2 Editorial information about titles

As can be seen in Figure 4, editorial information is
managed with a specific tool proposing choice lists for
each property. Concerning music titles, our tool enables
basic editions as title name or keywords, as well as less
obvious features such as title genre and primary and
secondary artist. The notion of primary and secondary
artist has been introduced to represent the various
degrees of association between artists and music titles
in a generic way: what is important for a musical query
system is not necessarily to make the distinction between
all possible roles of artists (composer, performer,
conductor, remixer, etc.), but to propose a simple
indexing scheme. In all cases, the Editorial Information
Manager proposes a unified view of artists links to songs
as ‘‘primary’’ and ‘‘secondary’’.

These notions of primary and secondary have different
significations according to the context. In popular music,
performers are usually put forward for identifying music
(e.g., ‘‘With a little help from my friends’’ by ‘‘Joe
Cocker’’) and composers come last (e.g., ‘‘With a little
prayer’’ sung by ‘‘Aretha Franklin’’ (primary artist) is in
fact composed by ‘‘Burt Bacharach’’ (secondary artist)).
In classical music, the distinction is inverse (e.g., the
Opera Rinaldo is primarily identified with Haendel
(composer); a user may want to access a particular
recording of this opera by conductor René Jacobs
(secondary artist)). In another context, some remixes of
songs can be identified primarily by the remixer (e.g., the
recent remix of the song ‘‘A little less conversation’’ is
primarily identified with JunkieXL (also known as the
Amsterdam-based remixer Tom Holkenborg)). In second

approximation, this song is an Elvis Presley song (i.e.,
usually performed by him).

3.3 Editorial information about artists

On top of the artist metadata already described in section
2.2, the Editorial Information Manager adds some
content features deemed useful for browsing and not
present in any existing editorial server:

. Type: Michael Jackson is a singer, while the Beatles
are a band. Elvis Presley is a singer and a musician,
while JunkieXL is a DJ and a remixer.

. Interpretation: The Beatles have mainly recorded
music with vocals, while John Coltrane has mainly
played instrumental music.

. Voice quality: Frank Sinatra is a crooner, while Janis
Joplin has a broken voice.

. Voice range: Barry White has a bass range, while
Britney Spears has a soprano range.

. Language: The Beatles sing in English.

. Keywords: Any other relevant information such as
‘‘1975 live version’’, ‘‘remix’’ or ‘‘birthday song’’.

Moreover the Editorial Manager proposes some seman-
tic information about artists. For instance, many artists
belong to bands: Paul McCartney belongs to The
Beatles, Phil Collins to Genesis, and so on. This
information is not only useful for administration
purposes, but can also readily be used for browsing.
We introduced the ‘‘memberOf’’ predicate in the
Editorial Database. Figure 5 shows an example of the
use of this information.

Fig. 4. The editorial data management panel: ‘‘A Little Less Conversation’’ has artist 1 ‘‘Elvis Presley’’ and artist 2 ‘‘JunkieXL’’.

Editorial metadata 177



4. Architecture

This section describes the software and client-server
architecture underlying the management of editorial
information in the Music Browser.

4.1 Architecture of the editorial information manager

As shown in Figure 6, the CUIDADO metadatabase is a
MySQL database hosted on a SQL server. The server
acts as a server both for Php scripts and servlets. The
MusicBrowser is implemented in Java and communicates
with the MySQL database using JDBC drivers. The
editorial metadata server runs a Php server accessible
over the Internet. Specific Php scripts allow client
applications to fetch and submit editorial metadata using
this server.

However, Php scripts are not efficient enough to
handle a variety of operations – in particular, operations
requiring large amounts of information to be loaded into
memory. To address this issue, the server includes a
servlet server that is able to load precompiled informa-
tion in memory (typically the list of artist and title
names) to speed up operations like approximate string
matching algorithms. Note that such an architecture uses
only free and standard middleware components. The
music browser, as well as our architecture, runs on
Windows, Mac and Linux machines in a transparent
way.

4.2 The MCM application interface

Following our experiments with content-based interac-
tive music systems, we have started developing a more
general application interface (API) – the so-called
‘‘MCM’’ (Multimedia Content Management) – on which
the implementation of the client-side Music Browser
relies. MCM is a set of java classes that offer the
following data structures and functionalities:

. Multimedia itemTypes, which describe the entities
with which we are dealing (e.g., songs or artists).

. Items of a given itemType (e.g., ‘‘Yesterday’’ is an
item of the itemType ‘‘song’’; ‘‘The Beatles’’ is an
item of the itemType ‘‘artist’’) that exist synchro-
nously both in the database and in memory.

. Fields or metadata for each of these ItemTypes (e.g.,
a song’s tempo or an artist’s name). Fields have a
value for each item. The values are read/written in the
database, and can be cached in memory for applica-
tions which require more processor power.

. Items may link to one another (e.g., song items can be
associated with artist items). These associations are
treated like fields: the ‘‘song’’ itemType has a
Reference field to the ‘‘artist’’ itemType. A reference
field’s value is the corresponding item (e.g., the value
of the ‘‘artist’’ field of the song item ‘‘Yesterday’’ is
the artist item ‘‘The Beatles’’).

. Fields may be computable – that is, their value is the
output of an extractor, either computed online or
offline, in batch mode. Fields corresponding to
editorial metadata are per definition non-computable.
Computable fields typically represent acoustic meta-
data that can be computed from the audio signal
(e.g., length, tempo, pitch, etc.). However, there is no
restriction to the kind of information computable
fields can operate on: this could as well be text, web
data, and so on.

. Items can link to other items with relations (e.g.,
cultural similarity, or memberOf predicates).

. Items, fields, relations can be added (e.g., add a new
directory of mp3s into the Browser or add a third-
party extractor), updated, retrieved or deleted from
the database.

Using MCM, all the architectural difficulties of creating
databases, synchronizing data, calling extractors are
hidden out. Applications like the Music Browser can be

Fig. 5. The ‘‘member_of’’ predicate.

Fig. 6. Editorial data management architecture.

178 François Pachet et al.



developed very quickly by concentrating only on mean-
ingful, higher-level concepts.

In MCM, editorial metadata can take the form of a
TextField (a subclass of MCMField) of a given Item-
Type. For instance, the ‘‘titleName’’ is a TextField of the
ItemType ‘‘song’’, and can have value (e.g., ‘‘Yesterday’’
or ‘‘Piano Sonata No.4 E-flat Major’’). To prevent
duplication problems, metadata that take their value in a
taxonomy (e.g., genre, country) are implemented as
ReferenceFields to an ItemType. For instance, the
‘‘genre’’ field of the ItemType ‘‘song’’ is a reference to
an item of the itemType ‘‘genre’’ (e.g., ‘‘pop’’). In turn,
items of the itemType ‘‘genre’’ can receive further
metadata/fields like most prototypical artist (e.g., ‘‘The
Beatles’’, for genre= pop).

Using this representation, the structure of a metada-
tabase can be abstracted to the list of its available MCM
ItemTypes and Fields while the actual values of the
metadata are encapsulated in the Items. We will use the
MCM representation in the following sections to
describe the problems raised by editorial metadata
management, as well as the experiments we made with
the MusicBrowser system.

5. Synchronization techniques

In the context of ad hoc and local-network-based
communities, users want both to share metadata and
manage metadata of their own. This situation raises a
key issue: the synchronization of the data.

5.1 Music identification

One common element of every EMD system is a front-
end able to link musical files, either available on the
user’s devices or online, to the metadata describing the
corresponding music object (i.e., to a fully recognized
‘‘song’’ item, with its associated field values). Although
this identification stage is independent of the manage-
ment strategy of the whole system and may be found
either in the peer-to-peer, universalist or ad hoc
approach, it is nevertheless an essential component of
the metadata management chain. In this section, we
describe the choice made in the Music Browser.

5.1.1 Content-based identification

Identification can be done in a blind way simply by
analyzing the music signal. Over the past few years, there
has been a great deal of academic and industrial efforts
concerning this technique, usually referred to as ‘‘Audio/
Music Fingerprinting’’ or ‘‘Hashing’’. The general idea is
to extract a very compact representation of the music
signal, its signature or fingerprint, and compare it to a

database of already extracted and identified signatures.
The signatures should be very robust to noise so thatmany
distorted/compressed/broadcast/variously encoded in-
stances of the same music title can be matched to one
unique entry in the database. Signatures should also be
compact so thatmatching one test signature against a huge
database can be done in feasible time (as an example, it is
claimed that the AudibleMagic database can identify over
3.5 million recorded songs with new content added daily;
source : http://www.audiblemagic.com). Different index-
ing schemes and search algorithms are then used to match
the extracted signature against the database.

The reported performances of the various identifica-
tion algorithms are all very good, usually in the top 1%
using realistic levels of noise and distortion. This makes
these technologies well-suited for many commercial
applications. The business model used by Moodlogics
(www.moodlogic.com), ID3Man (www.id3man.com;
with its fingerprinting technology Auditude: www.audi-
tude.com), MusicBrainz (www.musicbrainz.org; with
Relatable: www.relatable.com), Tuneprint (www.tune-
print.com), GraceNote (www.gracenote.com; integrated
into Apple’s iTune and mp3 walkman iPod) allows
users to link their personal music files to metadata that
has been gathered on a server by the provider. One
common extension of this is to automatically fix the
ID3 tags of the user’s mp3, or even to rename the files
themselves with their correct title and artist name as
identified from the database. Other commercial, much
advertized applications of fingerprinting technologies
are Broadcast Monitoring (Nielsen: www.bdsonline.-
com; Audible Magic: www.audiblemagic.com; Yacast:
www.yacast.com), filtering technology for file sharing
(e.g., preventing copyrighted files being exchanged in
Napster) or ‘‘Name that tune’’ applications on mobile
phones (Shazam: www.shazamentertainment.com) or
digital radio on personal computers (Clango: www.clan-
go.com).

5.1.2 Using external information

Another way to identify music files and link them to
metadata consists of using external information on the
titles when available. For instance, Sony’s Emarker
system (discontinued in September 2001; see Bricklin,
2001) was used to exploit the geographical and temporal
location of a radio listener requesting a song by querying
a large database containing all radio station programs by
time and location. The approach is much lighter than the
signal-based one since no signal processing is required
and it can scale-up to recognize virtually any number of
titles. It works, of course, only for titles played on official
radio stations.

External information can be as simple as file names,
with the difficulty that names are even less standardized.
For instance, consider a file name like:

Editorial metadata 179



D:\mp3\CSL2-9\Various – RockFM \Original Rock – 5 -

Crack The World Ltd - Fine Young Cannibals - She Drives

Me Crazy.mp3.

To start with, which section is the artist name? ‘‘Rock
Fm’’, ‘‘Original Rock’’, ‘‘Fine Young Cannibals’’ or
‘‘She drives me crazy’’?

In Pachet and Laigre (2001), we proposed a heuristic-
based parsing system to exploit the information possibly
contained in the filename itself. We have studied large
corpora of files, whose names are decided by humans
without particular constraints other than readability, and
have drawn various hypotheses concerning the natural
syntaxes that emerge from these corpora. A central
hypothesis is the local syntactic consistency, which claims
that filename syntaxes, whatever they are, are locally
consistent within clusters of related music files. These
heuristics allow the parsing of filenames successfully
without knowing their syntax a priori using statistical
measures on clusters of files rather than on parsing files
on a strict individual basis.

It is impossible for an automatic system to parse a
filename like the one given above. However, we can
observe that in the same directory, there are many
filenames having the same syntax

a� 0� b� c� d;

where a, b, c, d are strings and 0 is a number (‘‘j’’
indicates separation between recognized segments):

Original Rock j 1 j Crack The World Ltd j Animals j The
House of the Rising Sun j
Original Rock j 2 j Crack The World Ltd j The Moody
Blues j Nights in White Satin j
Original Rock j 3 j Crack The World Ltd j The Beatles j
Mister Moonlite j
Original Rock j 4 j Crack The World Ltd j The Beatles j
Ain’t She Sweet j
Original Rock j 5 j Crack The World Ltd j Fine Young
Cannibals j She Drives Me Crazy j
Original Rock j 6 j Crack The World Ltd j Fine Young
Cannibals j Good Thing j

We then look at the statistics on the different sections: a
and b are always the same (‘‘Original Rock’’ and ‘‘Crack
the World Ltd’’); 0 is incrementing; there are several
different d’s for each c (‘‘Fine Young Cannibals – She
Drives Me Crazy’’, ‘‘Fine Young Cannibals – Good
Thing’’); there are usually more words in d than in c; and
so on. From all these statistics and with a few
appropriate heuristics, the algorithm is able to infer that,
for example, c is the artist field and d is the song title
field. Experiments in Pachet and Laigre (2001) showed
that the parsing error with this algorithm is below 5%,
which compares with the recognition rates achieved by

fingerprinting techniques. This second approach was
used in the Music Browser and is now integrated into the
MCM API.

Audio fingerprinting is well suited to the universalist
approach, in which it is considered implicitly that the
collection of titles is finite and shared by all. In our
context, we target communities of users who do not
necessarily access files that are sufficiently well known to
be included in the signature databases. Furthermore,
communities may wish to specialize in specific musical
areas, including sharing metadata on music titles that are
not produced by majors. Finally, we deemed that
maintaining very large databases of fingerprints was
not suitable on small devices aimed at local or ad hoc
networks.

5.2 Synchronization between recognized items

In a given metadatabase, items are uniquely identified
with an id or hashcode. For instance, ‘‘The Beatles’’ may
be the artist item #34 in a database (A) and the item
#1546 in another (B). In the next section, we will present
an architecture that enforces common indexes via a
central id server while maintaining full local flexibility.
However, there are situations where, when sharing data
between 2 arbitrary databases, we cannot presume that
the ids of equivalent items are the same. The MCM API
has a provision (through the Comparator interface) for a
number of matching algorithms able to uniquely identify
an item from a database (A) as a corresponding item of
the same ItemType in another database (B).

The available implementations so far are:

. A regular expression comparator that identifies as an
exact match for string s any string t that entirely
contains s. This is currently used to synchronize genre
taxons (e.g., ‘‘Rock’’ is matched to ‘‘Rock and
Roll’’).

. A heuristic-based artist matcher that copes with the
various artist syntaxes we encountered in Pachet and
Laigre (2001): ‘‘The Beatles’’ is uniquely matched
with ‘‘Beatles’’ and ‘‘Beatles, The’’; ‘‘Paul McCart-
ney’’ is uniquely matched with ‘‘McCartney, Paul’’
and ‘‘McCartney (Paul)’’; and so on.

. An acronym-based comparator used for countries:
‘‘United States of America’’ is matched with ‘‘USA’’
and ‘‘the USA’’.

In the cases where an exact match cannot be found, an
edit-distance comparator (see, e.g., Crochemore &
Rytter, 1994) is able to rank all approximate matches
in similarity order so as to assist the decision process. For
instance, if the system cannot find a match for the artist
item ‘‘beetles’’ in database A, it will suggest a list of close
matches, among which will appear ‘‘The Beatles’’.

180 François Pachet et al.



5.3 Synchronization between different structures

Adding another degree of complexity, one might want to
synchronize two meta-databases that have different
structures (i.e., different ItemTypes and Fields). It may
be that the same objects have received different names;
for instance, the ‘‘song’’ itemType of database A may be
referred to as ‘‘chanson’’ (the French word for ‘‘song’’) in
database B, or the Field ‘‘bpm’’ in database A may be
called ‘‘tempo’’ elsewhere. In certain cases, the whole
structure may even be different; for instance, the songs’
‘‘artist’’ field in database A is a ReferenceField to an
‘‘artist’’ item, while it is a simple TextField in database B.
A fully automatic translation between such different
schemes is not realistic. However, MCM has a built-in
tool to assist such conversions. Figure 7 shows the
process of translating the ‘‘filename’’ field of an itemType
‘‘song’’ into the French ‘‘nom de fichier’’ of the
corresponding ItemType ‘‘chanson’’. Once a symbolic
link is made between the two metadata, values can be
transferred automatically.

The process can be further assisted by providing a list
of alternative possible names for each itemType through
the use of Comparators similar to those discussed in
section 5.2. For instance, the system may know that
‘‘artist’’ is likely to be equivalent to any of the following
identifiers: ‘‘musician’’, ‘‘composer’’, ‘‘performer’’,
‘‘band’’, ‘‘singer’’, ‘‘musicien’’. In fact, Figure 7 illustrates
a further special case where one of the two databases is
not a MCM one, but an arbitrary SQL database (as can
be found, e.g., in a third-party EMD system), where one
first has to examine non-described tables and columns
and look for clues of the underlying concepts and
semantic relations between them.

6. Sharing scenarios and topologies

With the apparition of ad hoc networks, single or
multiple users can share their data easily and in a
transparent way. This situation raises a key issue: the
management and synchronization of the data. How can
users keep their database up-to-date while benefiting
from new entries without degrading their customized
databases?

6.1 Open topology

For some simple sharing scenarios, it is possible to
envision that each client (or rather: peer) runs his or her
own metadatabase server, each with its own naming
conventions, database structures, ontologies, and so on.
When two such nodes are within communication range
of each other, they form a temporary, ad hoc network
and may share some metadata.

Scenario: Import a genre taxonomy. It is a well known
fact that music genre taxonomies are largely syntacti-
cally inconsistent and non-consensual. However, they
do provide a lot of useful information for browsing,
and users have the ability to very quickly navigate
between different, even orthogonal taxonomies (Aucou-
turier & Pachet, 2003). As envisioned in the
introduction to this article, user A may want to import
in his or her local metadatabase the genre taxonomy
used by user B. We suppose here that, like in the
MusicBrowser, there exists a ‘‘genre’’ metadata that is a
ReferenceField of the itemType ‘‘artist’’ linking to a
‘‘Genre’’ ItemType, which has only one TextField: its
‘‘name’’. As mentioned before, this is only one example
of a metadata scheme from among the very many
enabled by an API like MCM. For instance, one could
design a system where artists can have several genres (as
it is likely to change over a career), or where genre is a
per-song or per-album metadata. Efficiency arguments
in the context of massive commercial music databases
may call for a (over)simplified metadata scheme, while
expert, niche communities (e.g., jazz lovers) may need
specialized schemes such as different types of artists for
each song (composer, performer, soloist, rhythm sec-
tion, sound engineer, etc.). The very purpose of an API
like MCM is to enable the user to design his or her own
scheme, while ensuring that the various metadata
management mechanisms presented in this article still
work.

The process of importing the genre metadata into user
A’s local database is summarized here:

Fig. 7. The MCM conversion tool to synchronize two meta-
databases with different structures.

Editorial metadata 181



. Synchronize the structures: match the corresponding
‘‘artist’’ and ‘‘genre’’ itemtypes, as well as the Fields,
as described in section 5.3.

. Create a new genre itemType (e.g., ‘‘Reykjavik-
Genre’’) in A.

. Download all the ‘‘genre’’ items (i.e., instances of the
genre itemType: Rock, Pop, Jazz, etc.), and keep a
correspondence table of the ids in A and B (which
may be different).

. Synchronize the ‘‘artist’’ items (i.e., instances of the
artist ItemType): uniquely match each artist in A into
B’s list of artists using a Comparator as described in
section 5.2.

. For each artist item in A that also appears in B,
download the corresponding genre value (a genre
index in B’s taxonomy) and convert it to an index in
A’s newly downloaded taxonomy.

While the whole chain is made possible by the various
MCM services introduced in this article, we would still
remark that this process may become unrealistic in
practice. As shown earlier, the various synchronization
processes in use here are still prone to error and are not
yet fully automatic, which makes the processing of large
databases tedious. Furthermore, the fact that we cannot
rely on unique indexes for the same objects in both
databases makes even more difficult the sharing of more
complex metadata structures like the memberOf pre-
dicate or similarity relations that link the ids of several
artists.

6.2. Hybrid topology

We propose an architecture for the Music Browser that
addresses this problem by relying on a central server
architecture (Figure 8), while still offering the flexibility
of local customization. In our architecture, community
users all work on a community server, itself synchronized
with the central server. The music browser is installed on
each user’s computer and used as a front-end to create/
modify metadata. The architecture is based on two main
operations: update and infer, which are described in the
next section.

6.2.1 Updating metadata (client side)

Scenario: Adding new songs or artists. Users can add new
songs and/or artists to their local database using the data
management tool (see Figure 4). Users choose song files
(e.g., mp3, wav) or enter artist name manually and the
corresponding file/artist names are automatically ana-
lyzed. As described in section 5, we use a parsing
mechanism to automatically recognize artists and songs
names. Using Comparators, the client metadata manager
looks for artists and songs in the local database as well as
in the central server database. Three results are possible:

. If the song and/or artist exists on the central server,
the user is offered a list of closest matching artists
and/or songs and can link his or her new entry with
the chosen one while all metadata are imported. This
process ensures that every database shares the same
artist and song indexes to avoid compatibility
problems. If Michael Jackson is referenced as artist
#98 and as a memberOf Jackson5 referenced as artist
#10, then every local database must use these same
indexes. See reference 1 in Figure 9.

. If the song and/or artist already exists in the user’s
local database, then the new entry can be removed (to
avoid duplication), marked as double, or as a new
song and/or artist (e.g., for a live version or
homonym artists). See reference 2 in Figure 9.

. If the song and/or artist does not exist at all, users
create all metadata using the management tool. These
data are stored on the local server and broadcast to

Fig. 9. Adding and importing new data.

Fig. 8. Interaction between systems.

182 François Pachet et al.



the central server for further processing. See reference
3 in Figure 9.

Scenario: Adding new metadata. Music is constantly
evolving and no system could reasonably forecast every-
thing (Datta, 2002). Furthermore, as communities can
run their own metadata servers, they will most probably
want to tune them to create new fields or simply add a
new musical genre. The Editorial Manager includes such
a feature (i.e., the ability to update the database structure
itself): users can update their database structure to evolve
it. As for songs and artists, such modifications are
broadcast to the central server for further processing.

Scenario: Synchronizing the local metadatabase. It can
happen that a song or an artist in the central server is
created or modified. The metadata manager has the
ability to synchronize local metadata with the shared
metadata of the server. When required, users can choose
to update part or all of the local metadata. The same
mechanism is available for the database structure.

6.2.2 The infer process

When new data are submitted to the central server, they
need to be integrated. We call this the ‘‘infer’’ process.
The integration can be unconstrained and accumulative.
Each contribution is accepted in a non-destructive way:
conflicting entries (e.g., genre= ‘‘Rock’’ and genre=
‘‘Pop’’ for the same artist item: ‘‘The Beatles’’) are

duplicated with information about the contributing user,
date and so on. This scheme very much resembles
existing democratized web publishing models like we-
blogs (Blogs) or the Portland Pattern Repository (Wiki:
http://c2.com/cgi/wiki?) (see Figure 10).

In the current architecture, the infer process is rather
envisaged in a collaborative filtering way (Sarwar et al.,
2001). Data are stored and regularly analyzed by the
central server. The emergence of consensus enables the
consolidation of new entries. This process is performed
automatically to avoid manual moderation, which is a
time-consuming process. Once a week, metadata are
updated on the central server.

When a community user performs a complete
synchronization, all local data are updated. For each
community server using the central one, at least for the
basic indexes, compatibility is ensured. However, there is
always the opportunity to refuse updates, new entries
may be considered non-relevant for the community, and
so on. As in Musicbrainz, the central server will benefit
from users entries (although the MusicBrowser already
performs pretty well as stand-alone software to manage
large collection of music files).

Gathering data being a key issue for most metadata
systems, we believe that community vision can represent
an interesting new approach. Shared among specific
music genre specialists (people involved in ‘‘East Coast
Rap’’ or in ‘‘Intelligent Techno’’ using an ad hoc
network), a database can quickly become highly specia-
lized with a limited number of users. Members will
probably be keener to add and consolidate entries if they

Fig. 10. Web interface to contribute to the ‘‘Beatles’’ entry in the Portland Pattern Repository.

Editorial metadata 183



see an immediate benefit for their community. This
community then shares their data with the central
database server without degrading their data and without
necessarily opening their database to everyone.

7. Conclusion and future work

In the context of ad hoc and local-network-based
communities, users want to share metadata and manage
metadata of their own. We have presented an architec-
ture for managing musical editorial metadata that allows
client applications to exploit shared metadata when
available, as well as creating and managing local, private
information. This architecture is based on two basic
principles: an update mechanism, which warns the
central database of any local modifications, and an infer
mechanism, which computes emerging, consensual values
from user inputs. The resulting architecture provides
greater flexibility in editorial metadata management for
electronic music distribution systems. However, the
synchronization of the database structure is a difficult
task and is still only half automatic.

This system is a first step in the direction of hybrid
metadata systems in the sense that it lies between the two
extremes of the universalist and isolationist approaches.
Current work focuses on extending this paradigm to
include other forms of metadata – in particular, acoustic
metadata computed from the audio signal, as well as
musical similarity relations computed from data mining
techniques and enhancement of the synchronization
processes. Finally, user experiments are in progress to
assess the robustness of our approach in the context of
real-world network environments.

Acknowledgements

The Music Browser project originated and has been
conducted inside Sony Computer Science Laboratories in
the context of the Cuidado and SemanticHifi IST
projects. The Cuidado project (Sarwar et al., 2001),
entitled ‘‘Content-based Unified Interfaces and Descrip-
tions for Audio/Music Databases available Online’’, ran
from January 2001 to December 2003. The project is

currently being continued in the context of the Seman-
ticHifi project (Vinet et al., 2002) started in December
2003.

References

Aucouturier, J.-J. & Pachet, F. (2003). Musical genre: A
survey. Journal of New Music Research, 32(1), 83 – 93.

Axelsson, F. & Östergren, M. (2002). SoundPryer: Joint
music listening on the road. Paper presented at UBI-
COMP’02.

Basagni, S., Conti, M., Giordano, S. & Stojmenovic, I. (Eds)
(2004). Mobile ad hoc networking. Wiley-IEEE Press.

Bassoli, A., Moore, J. & Agamamnolis, S. (2003). TunA:
Local music sharing with handheld Wi-Fi devices. Paper
presented at the 5th Wireless World Conference, Surrey,
UK, July.

Bricklin, D. (2001). Sony eMarker: How a clever system
works. Available online at: www.bricklin.com/emar-
ker.htm.

Crochemore, M. & Rytter, W. (1994). Text algorithms.
Oxford: Oxford University Press.

Datta, D. (2002). Managing metadata. Paper presented at
the 3rd International Conference on Music Information
Retrieval (ISMIR 2002), Paris, France, October.

Herrera, P, Serra, X. & Peeters, G. (1999). Audio descriptors
and descriptors schemes in the context of MPEG-7. Paper
presented at the ICMC, Beijing, October.

Pachet, F. & Laigre, D. (2001). A naturalistic approach to
music file name analysis. Paper presented at the 2nd
International Symposium on Music Information Retrie-
val, Bloomington, IN, October.

Pachet, F., La Burthe, A., Aucouturier, J.-J. & Zils, A.
(2004). The Sony Popular Music Browser. Journal of the
American Society for Information (JASIS) (special issue
on Music Information Retrieval), 35(12), 1037 – 1044.

Sarwar, B., Karypis, G., Konstan, J. & Riedl, J. (2001).
Item-based collaborative filtering recommendation algo-
rithms. Paper presented at the 10th World Wide Web
International Conference, Hong Kong, 1 – 5 May.

Vinet, H., Herrera P. & Pachet, F. (2002). The CUIDADO
Project: New applications based on audio and music
content description. Paper presented at the International
Computer Music Conference, Göteborg, Sweden, Sep-
tember.

184 François Pachet et al.




