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ABSTRACT

Many works in audio and image signal analysis asetd
on the use of “features” to represent charactesistf
sounds or images. Features are used in various, \f@ys
instance as inputs to classifiers to categorizeraatically
objects, e.g. for audio scene description. Mostadf all,
approaches focus on the development of clever ifilass
and on the various processes of feature seleatlassifier
algorithms and parameter tuning. Strangely, theéufea
themselves are rarely justified. The predominamagigm
consists in selecting, by hand, “generic”, well-mo
features from the literature and focusing on thet of the
chain. In this study we try to generalize the notiof
feature to make the choice of features more sydteraad
less prone to hazardous, unjustified human choités.
introduce to this aim the notion of “analytical tieee™:
features built only from the analysis of the prablat hand,
using a heuristic function generation process. \Wews

some experiments aiming at answering some genera

guestions about analytical features.

1 INTRODUCTION

Most audio classification approaches use eitherofiieese
two paradigms: 1) a general scheme, callag-of-frames
and 2)ad hocapproaches.

The bag-of-frame approach [1], [35] consists
considering the signal in a blind way, using a aysitic
and general scheme: the signal is sliced into coise,
possibly overlapping frames (typically of 50ms)orfr
which a vector of audio features is computed. Teadures
are supposed to represent characteristic informaifahe
signal for the problem at hand. These vectorsthes
aggregated (hence the “bag”) and fed to the resthef
chain: First, a subset of available features istified,
using some feature selection algorithm. Then thtufe set
is used to train a classifier, from a databaseabkled
signals (training set). The classifier thus obtdiing then
usually tested against another database (tedbsetpess its
performance.

instrockes, [6],

The use of the features as input to classifiergsptao
roles: a dimension reduction role, and a represienteole.
Indeed, the signal itself could in principle be dises input
to classifiers, but its dimension (number of samplies
usually too high with respect to the training setes
resulting in overfit. Additionally, the time/amplide
representation of signals has long been acknowtetiybe
poorly adapted to represent perceptive informateundio
features used in the classification literature piecisely at
capturing essential perceptive characteristics oflia
signals that are not obviously present in its temapo
representation. A source of audio features is figtance
MPEG?7-audio [10] or more specifically [23] or [1fa} the
music domain. These features are usually of
dimensionality, and contain statistical informatioom the
temporal domain (e.g. Zero-crossing rate), speckaiain
(e.g. SpectralCentroid), or more perceptive asggcish as
sharpness, relative loudness, etc.).

The bag-of-frame approach has been used extengively
the MIR domain, for instance by [27]. A large prdpan of
IR related papers has been devoted to studyingldtesls
of this chain of process: feature identificatiorB][2feature
aggregation [18]; feature selection [4],[17],[2E]assifier
comparison or tuning [1], [35].

An even larger proportion of Ismir papers (abou%25

according to [1]) discuss the application of thigpeoach to
specific musical problems: genre classification][1&0],
[34], [33] ; orchestral sound classification [2pErcussion
instrument classification [32], [30]; [31], [9]tabla
[3], noise classification [8] a=livas
identification tasks, such as vocal identificatifit®], mood
detection [13].

This approach achieves indeed a reasonable defree o
success on some problems. For instance, speechc musi
discrimination systems based on the bag-of-framadigm
yield almost perfect results. However, the approstcbws
limitations when applied to more “difficult” probies.
Although classification difficulty is hard to de@irprecisely,
it can be noted that problems involving classesh vt
smaller degree of abstraction are usually much more
difficult to solve. For instance, genre classifioat works
well on abstract, large categories (Jazz vs Robki},

low



Pachet, F. Roy, P. Exploring Billions of audio f@&s. CBMI 07, Bordeaux, 2007

performance degrades for more precise classesBe-gop
versus Hard-bop).

In these cases, the natural tendency is usualbotofor
ad hoc approaches, which aim at extracting “manually’
from the signal the characteristics most approerfat the
problem at hand, and exploit them accordingly. Tais be
done either by defining ad hoc features, integratethe
bag-of-frame approach (e.g. the 4-Hertz modulatinargy
used in some speech/music classifiers, [27], oddfining
completely different schemes for classifying, ethe
analysis-by-synthesis approach designed for drummdo
classification [38], and further developed by [aTid [26].

One of the possible reasons for the limitationhef bag-
of-frame approach is that the generic features, . meth as
the Mpeg-7 feature set, do not always capture éhevant
perceptive characteristics of the signals to besified.
Some classifier algorithms, such as kernel metHa8s
including Support Vector Machines [2], [29], do ttg
transform the feature space with the aim of imprgvi
inter-class  separability. However, the increasin
sophistication of feature selection or classifilgoathms
cannot compensate for any lack of information i@ ithitial
features set.

Although ad hoc approaches may indeed
interesting performance, they are rarely reusate:hoc
features are,
Consequently  the scientific ~ contribution (and
epistemological status) of reports of ad hoc apgres is
debatable.

In this work we try to extend the range of applias
for which the general
satisfactory results, by proposing a mechanismithants
specific ad hoc features in an automatic way. Vderckhat
these features can improve the performance ofifikass
independently of the details of the classificatibrain.

To find better features than the generic ones, care
find inspiration in the way human experts actuatlyent
ad hoc features. The papers quoted above use aenwfb
tricks and techniques to this aim, combined wittuitions
and musical knowledge, in trial-and-error loops.r Fo
instance, one can use some front-end system toatiaera
signal, or pass it through some filter, add prepost-
processing to isolate the (hopefully) most salien
characteristics of the signal.

We propose here to automate a process of featur

invention, with an algorithm which explores quicldwery
large space of ad hoc functions. The functionshaik by
composing together - in the sense of functionalasition
- elementary operators. We call these functiondytioal
because they are described by an explicit compaosiof
functions, by opposition to other forms of signediuction,
such as arbitrary computer programs.
This paper is structured as follows: In Section & w

briefly introduce the EDS system, designed to ereat

reac

by definition specific to a problem.

bag-of-frame approach gives

automatically and explore large sets of analytfeatures.
Section 3 is devoted to the description of concrete
experiments to assess the interestingness of aalyt
features, with regards to “generic” ones. ThesegRrRENts
can be seen as preliminary investigations of aifeagpace

of billions (of billions) of features.

2 CREATION OF ANALYTICAL FEATURES:

THE EDS SYSTEM

EDS - Extractor Discovery System — is a projecind a
system — developed in the Sony CSL laboratory insPa
[39], [40], whose aim is to study experimentallg thotion

of analytical feature for audio signal processing
applications.

EDS is able to explore efficiently the space oflytital
features for arbitrary supervised audio classificat
problem. A problem is determined by a databaseudfca
samples labeled (usually by hand) with a finite eét

%lasses. The exploration of the space of analyfeztures

is based on various function creation methods feoset of
basic operators, considered as elementary. These
ﬁspects are described in the following sections.

tw

2.1  Alibrary of elementary operators

The choice of elementary operators is of coursérarl.
These operators were selected so as to allow geion of
functions with a “reasonable” degree of abstractioa.
represent salient perceptive characteristics of stxends
with a relatively small number of operators (abbQt see
below), while still allowing the possibility of elqring
unknown, and possibly relevant functions. Theseaipes
are either basic mathematical operations (e.g.
multiplication of a signal by a scalar, absolutéuea max,
etc.) or basic signal processing operators suckoasier
transforms, filters,Db, root-mean-square and spectral
operators likespectralCentroidspectralSkewnesstc. This
library also includes more specifically musical @ders
such a®itch or Ltas This list can of course be modified by
the user. For the sake of reproducibility, we diéscin this
paper results obtained with the 76 basic operdisted in
Annex 1.

The space of analytical features obtained by coitipos

6f basic operators is in principle infinite. Onendaowever
estimate the number of reachable functions by lilgithe
number of basic operators used in the expressioma of
function. With 5 operators maximum, the size of fdmgture
space (with the basic operators of Annex 1)
approximately 2,5.10 In practice, we explore functions
with at most 10 operators, which represents a spéice
5.1G° functions (hence the title of this paper). Thegess
estimates were obtained through an exhaustive eratioe

is
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of all syntactically correct functions, and by ditizing 3. lteration of the process. The next populatiorbugt

scalar parameters (for instance we considered @oly from the best features found in the current poutat
values for filter cut-off frequencies, etc.). Wencabserve to which are added new features obtained using
that the number of functions grows exponentiallyhwthe various genetic transforms of the current features.

number of operators used. Here are some typicahpbes The genetic transforms of step 3 are the following:
of functions generated by EDS:

2.2.1  Substitution
(A) Mean(Mcc(Differentiation(x),5))

(B) Medi an(Rms(Split(Normalize(x),32))) Substitution consists in replacing one of the ojpesaof the
] ] ] feature by another one, of compatible type. Faaimse:
The first function (A) computes the average of thérst (A") Max(Mfcc(Differentiation(x),5))

cepstral coefficients of the derivative of the sijn g 5 substitutionNlax replacedviean) of (A)
(represented by). The second one (B) computes the mean
value (Median) of the energy Rmg of successive frames 5 5 5 Cloning
(split) of 32 samples long in the normalized signal. o . o o
Feature creation is controlled by two mechanismsing  Cloning is a special case of substitution whichsists in
and heuristics. copying a feature but changing its numerical patame
e.g.:
2.1.1  Typing (B") Median(Rms(Split(Normalize(x),64)))
is a clone of (B). Values of these parameters hosen in a

Each basic operator is typed according to the physi «gasonable” interval of values, which depends o t
dimensions of its arguments. These types are wsauadid operator and the sampling rate.

the construction of syntactically meaningless fesgu For
instance, the Fft operator kaes as input somethitiya 553  Mutation
“time/amplitude” type, and its output type is

frequency/amplitude. EDS can therefore g(_meratg/lutation is an extension of substitution to subrespions
Fft(HpFilter(x)), but not, e.g.Eft(max(x)) appearing in the definition of a feature, whichisfis the

typing rules:
2.1.2  Heuristics (A") Mean(Chroma(Normalize(x)))
is a mutation de (A) in which the sub expressithmoma

These heuristics allow the system to further aesigloring (Normalize(x)YeplacesMfcc (Differentiation (x),5)
certain functions by evaluating them prior to the

computgtion of their fitness. For instancz_e, a hstios ;tgtes 2924  Crossover
that it is usually unnecessary to consider funetiovith o o

fft(Fft(Fft(Fft(x)))). new one while satisfying the typing rules. For amste:
In practice, adding a new basic operator to ouratip (’C) Mean(Rms(Split(Normalize(x),32)))
amounts to define 1) corresponding typing rules aihd (C’) Median(Rms(Split(Differentiation(x)))

heuristics to control the use of this operator.réree other (C) and (C’) are crossovers between (A) and (B).
design issues related to adding operators, whiehnat

covered in this paper (see rather Pachet & Zilsr). 225  Addition
. ] Addition consists in adding an operator to the robia
2.2  Creating analytical features feature:

) ] ] (B") Abs(Median(Rms(Split(Normalize(x),32))))
The creation of analytical features by composings an addition of (B).

elementary operators is based on genetic progragimin
search [11]. The main steps of this search aréotteving: 5 3 Eyaluation of individual features

1. Construction of an initial population of anai@li g evaluate features, we need a computable critevitich
features, by random compositions of operators. measures the quality of a feature, i.e. its capatit
2. Evaluation of features. This evaluation consists jstinguish elements of different classes (in tasecof a
computing the function on all the signals of thegassification problem) or to approximate a tarfyetction
training database and compare these results with “’(in the case of a regression problem).
labels. The correlation between these two series |y the case of classification, tHescher Discriminant

produces ditnessfor the function. The computation of Rayig [5] is often used because it is simple to comyute
this correlation is described in Section 2.3.
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reliable for binary problems (two classes). Howeiteis  with the analytical features found by EDS with thet of
notoriously inadapted to multi-class problems, amtigular  basic operators in 8.1. We follow the standard s@hén
for non-convex distributions of data. supervised classification: classifiers are systaraby
To improve the evaluation of features, we rathesehto tested with samples that were not used either ¢ater
implement an “embedded approach” (Blum and Langleyanalytical features, or to train them. Moreover, wge 10-
1997) to feature selection, by which features amduated fold cross-validation wherever possible.
using a classifier built on-the-fly during the fea search
process. The fitness of the feature is then defiaedhe 2.5 Choosing the classifiers
performance of a classifier built with this unicfeature (or
more precisely its F-measure, [24]) trained ontthening  There is a huge literature concerning supervizedniag
database. This measure yields better performarae tthe  algorithms [36], as well as many implementationshefse
Fischer criteria on multi-class problems as the sonealgorithms, with no clear winner in the generalecdn the
addressed in this paper. aim of demonstrating the advantages of analytieaiufes,
In the case of a regression problem, sound sanapies we have conducted our experiments with varioussiflass,
labeled with a real number rather than a class.s@heto avoid biases (SVM, kNN, J48, neural networksy. the
numbers are for instance the values of a targettifomone  sake of clarity we report here only the resultshv@upport
wants to approximate. The goal is to find featutteat Vector Machines (SVM) [29], which turned out to baad
allow to compute values that approximate this targemost stable of the algorithms we tried. We used SKkhe
function for new audio samples. implementation of the Weka library
The most widely used criterion to assess a feature(http://www.cs.waikato.ac.nz/ml/wekawith the default
performance is Pearson’s Correlation, which wefaséhe  parameters, in particular the polynomial kernel.

regression problems presented here. We used EDS in a fully automated way for the corati
and selection of analytical features. For each Iprbwe
2.4  The space of analytical features ran the genetic search until no improvements waued in

feature fitness. The next section describes theurea
In this paper, we raise three questions about #tere of selection process.
the analytical feature space:
2.6 Feature Selection
1. Can analytical features capture information tfexteric
features cannot?
2. Can all “perceptive” features be approximated b
analytical features?
3. Can analytical features actually improve sumeni
classification tasks?

To compare the two approaches (general versustamahly
¥eatures) in a fair manner, it is important totralassifiers
on spaces with identical dimension.

The set of all reference features (cf. Annex 2) has
dimension of 100. For each problem we explore & ver

The sections below address these three questior|16'1srge feature set (see below) from which we sefeature

: . . ) . sets of dimension less than or equal to 100. Moeeigely
through various experiments in the audio domainthig . : :
. : i . " we present results obtained for various sizes atfife sets
aim, we consider a set of “generic features”, tafkem the

literature. This set is of course arbitrary, butuged here (from 1 to 100). As we will now see, EDS finds rastly

. A better analytical features but also feature setdesser
only as a means to compare analytical featuresraralby. dimension
The features of this reference set are listed th B our '
experiments, we systematically compare the perfaoma
classifiers built with analytical features, withasbifiers 3  QUESTION #1: CAN ANALYTICAL FEATURES
built with the generic feature set. CAPTURE INFORMATION THAT GENERIC

In order to assess the efficiency of analyticatuess, we FEATURES CANNOT?

compare them to results obtained with a “referdeaéure
set”, whose complete list is given in Annex 3. ThisThis question can be answered quite simply by damnsig
reference set includes general features commordg s a somewhat artificial problem, built to show theiliation
audio signal classification tasks, and well definedof generic features.

mathematically. The list includes notably the Mpegtdio The problem we consider (already briefly sketched i
list, as well as several others, suchCigsoma often used [19]) consists in detecting a sinus waveform in igey
for music analysis [7]. frequency range (say 0-1000Hz) mixed with a powerfu

We systematically evaluate the performance of twaolored noise in another frequency range (1000-2@D0
classifiers: one built with the reference set, titieer built Since the colored noise is the most predominant
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characteristic of the signal, we show that genfaatures
are unable to detect the isolated sinus. For icstawhen
we look at the spectrum of a 650Hz sinus mixed with
1000-2000Hz colored noise (Figure 1), the peakefsinus
is visible but not predominant, and is thus haré@xtract
automatically with general spectral features.

Of course, this problem is easy to solve by harfterw
one knows how these signals are constructed: ficeafto
apply a pre-filtering that cuts off most of theduencies of

the colored noise, so that the sinus emerges froen t

problem. EDS explored about 40,000 features to find
almost optimal analytical feature for this probleithe
result is illustrated in Figure 3, and shows cledhlat one
analytical feature (of dimension 1) can solve thebfem
almost perfectly, whereas even the full set of gene
features (of dimension 100) cannot. The best aicalyt
feature found by EDS is the following:

(A) MaxPos(Fft(Integration(BpFilter(Hamming(x), 10,
500))))

spectrum. As seen on Figure 2, the sinus peak @wmerg

when the signal is low-pass filtered, and beconassee to
extract automatically.

=T

Tools window Help

=T e
S| KN A A m D

5000 5000

Figure 1. Spectrum of a 650Hz sinus mixed with 1000-
2000Hz colored noise.

I TES

Eile Edit Wiew Insert Tools Window Help

lDEemas " A A 202

1] 1000 2000 3000 4000 5000 6000

Figure 2. Spectrum of a 650Hz sinus mixed with 1000-
2000Hz colored noise, pre-filtered by a 1000Hz LRass
Filter.

This feature (A) is easy to interpret, and does oaim
exactly what should be done in this case, althqugbably
not in the most simplest way. Its fitness (Pearson
coefficient) is 9.99. The most likely human feature
knowing the database creation process, would betsiny
like:

MaxPos(Fft(LpFilter(x, 1000)))

This “theoretically perfect” feature is also goddg7), but
slightly less than (A). This shows incidentally ttlae best
features are not necessarily the most “justified”.

90 75 50 25 15 10 5 3 2 1

[- - ®@- - ReF —&—EDs |

Figure 3. Results of the Pink noise experiment. One
analytical feature is enough to solve the problarfagtly,
whereas a feature set of dimension 100 with generic
features cannot. The difference is even more drdsti
smaller feature sets.

However, we show here that this particular example,

although very simple, cannot be adequately solvadgu
generic features. To this aim, we conduct the Yahg

experiment. We build a database of sinus + color@de
with varying values for the sinus (from 0 to 1008) HEach
signal is labelled with the corresponding frequentyhe
sinus.

We then train two “regression” classifiers for thésk.
The first one (REF) is trained using the generadudes set,
with varying dimensions (from 1 to 100). The secamg
(EDS) is trained with analytical features built ftnis
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4  QUESTION #2: CAN ALL PERCEPTIVE decreases, again with a spectacular result witlglesin
FEATURES BE APPROXIMATED BY features (84% versus 43%).
ANALYTICAL FEATURES? More precisely, Figure 5 shows that analytical deat

also outperforms all the specific feature setssaged here:
This question is of course difficult to answer isyastematic general spectral features, MFCC, and also the wiatlef
way. We propose here also an experiment in which wgeneral features!
compare the performance of generic features against EDS produced the following analytical feature:
analytical ones, but this time to approximate aotkn” Abs (Sum (Integration (PeakPos (Fft (HpFilter
feature which is not in the reference set. (Derivation (x), 3969.0))))))

To this aim, we chose an audio feature called ‘spkc which yields a correlation coefficient of 0.79. $hs an
compactness”, an implementation of which is avé#lab interesting result, since it contains operators thalicitly
from the jAudio feature extraction library. appear in the mathematical definition of spectral

This feature is described as follows (p. 603 of]}15 compactness (see definition above).

“Compactness is closely related to Spectral Smasthras

defined by [14]. The difference is that insteadsofming However, EDS produced an even better analytical
over partials, compactness sums over frequencydiias feature:

FFT. This provides an indication of the noisinegsh® Abs(Centroid(Hanning(Variance(Derivation(Split(x,

signal”. 882)))))) whose correlation with spectral compactness is

We do not know the details of the implementation ofover 0.84. We observe here the phenomenon desaribed
compactness, nor its precise definition, but tlisnot  Section 3.
needed here. The aim of this experiment is to sae h

“reachable” this feature is, from the set of gendentures, The best reference feature found is:
and with analytical features. HarmonicSpectralDeviation (Hanning (x))
To this aim, we also build several regression diass .

as in the preceding experiment. Because spectaflires
are known to be correlated, and also because MREC a
known to represent well spectral information in ereth, we o8
conduct several experiments to show that spectral 07
compactness is not easily reachable from otherwknsets
of generic features. We used here a database dd 250

Best Analytic Feature
85%
100 Analytic Features
90%
23 Reference Features
83%

percussion sounds described in [25]. The resules ar 0s o Jowrce.
illustrated in Figure 4 and Figure 5. 04 z 03865
m o + s
zz :—__:_:—__:\:P\:\A—A—A—A—A 02 % 0.1935
70 \-.~‘ ot =
60 = - -
) ' Figure 5. Comparison of various regression classifiers to
o " approximate the “spectral compactness” feature. Ddw
o analytical feature yields a performance of 85%tdbahan
® the best reference feature (43%), far better thimatare set
° with 6 general spectral features (19%), and thanlthfirst
T % s % m » w5 a2 . MFCC (38%), and slightly better than the whole stt
reference features of dimension 100 (83%). A set of
[+ - - R wrerceFesres —4— costamiyio Feres | dimension 100 analytical features further improvhe

. ] correlation up to 90%.
Figure 4. Results of the “Compactness” feature experiment.

Compared performance between analytical and referen

features, for various feature set dimensions. Ay 5 QUESTION #3: CAN ANALYTICAL FEATURES
features perform better (and the improvement getsem ACTUALLY IMPROVE SUPERVIZED
important as the feature set dimension decreases). CLASSIFICATION TASKS?

Figure 4 shows again than the gain in performarice o ] .
analytical features increases as the size of thtufe set 10 address this general question we conducted alever
experiments on specific, multiclass audio clasaifan
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tasks. These experiments are reported in variopgerpa experiments tend to show that analytical features d
For instance, we showed that analytical features caachieve, in general, better performance than generi
improve the classification of perceptive musicalergy features, or equivalent performance but with reduce
(Zils & Pachet 03), and, in a non musical conteddg feature sets. The experiments conducted here ate no
barks (Molnar et al. 07). We report here the maindefinitive as they use an arbitrary set of basierafors for
conclusions of an experiment conducted on theroducing analytical features, as well as an abyjtset of
classification of percussion sounds [25]. In thishtem, we reference features. However, we claim that analltic
attempted to classify automatically sounds comimgnfa features should be investigated more systematictdly
Pandeiro (Brazilian tambourine), using only veryaim increase our understanding of signal classification
portions of the attack of the sound. This problerses general.

from the desire to build new musical instrumentstth

extend the possibilities given by traditional onesjng

interactions with a computer. The results showed Here

also, analytical features can improve the perforreaaf

classification over generic ones, as illustrated-igure 6.

Here again, the gain is particularly interesting $onall

size feature sets, as the classification performascnot

substantially improved for high dimension featueessWe

think this glass ceiling is due to the inherenficliity of

the problem (attack portion of sounds may be infiye

ambiguous in some cases).

100
95
90
85
80
75
70
65
60
55
50

90 75 50 25 15 10 5 3 2 1

— Re f er enc e IGR = = = =EDSIGR

s Referenc @ EDS FS  mmmm—EDS EDS FS

Figure 6. Classification results for the classification of
attack portions of the Pandeiro into six sound sdas
Compared performances of analytical features (EDI8)
reference features (REF), using two feature selecti
methods.

6 CONCLUSION

We have introduced the notion of analytical feattwe
audio classification. Analytical features are cedain a
systematic and ad hoc way using the samples dfdi@ng
database. Our feature generator is able to searatspace

of about 16° features. The main fundamental question we
raised here is the nature of this space, and whethe
analytical features can cover characteristics ahds that
generic features cannot. To this aim we presentsiwall
experiments to compare the performance of classifie
using generic features and using analytical featurbese
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