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ABSTRACT 

Many works in audio and image signal analysis are based 
on the use of “features” to represent characteristics of 
sounds or images. Features are used in various ways, for 
instance as inputs to classifiers to categorize automatically 
objects, e.g. for audio scene description. Most, if not all, 
approaches focus on the development of clever classifiers 
and on the various processes of feature selection, classifier 
algorithms and parameter tuning. Strangely, the features 
themselves are rarely justified. The predominant paradigm 
consists in selecting, by hand, “generic”, well-known 
features from the literature and focusing on the rest of the 
chain. In this study we try to generalize the notion of 
feature to make the choice of features more systematic and 
less prone to hazardous, unjustified human choices. We 
introduce to this aim the notion of “analytical feature”: 
features built only from the analysis of the problem at hand, 
using a heuristic function generation process. We show 
some experiments aiming at answering some general 
questions about analytical features. 

1 INTRODUCTION 

Most audio classification approaches use either one of these 
two paradigms: 1) a general scheme, called bag-of-frames 
and 2) ad hoc approaches. 

The bag-of-frame approach [1], [35] consists in 
considering the signal in a blind way, using a systematic 
and general scheme: the signal is sliced into consecutive, 
possibly overlapping frames (typically of 50ms), from 
which a vector of audio features is computed. The features 
are supposed to represent characteristic information of the 
signal for the problem at hand.  These vectors are then 
aggregated (hence the “bag”) and fed to the rest of the 
chain: First, a subset of available features is identified, 
using some feature selection algorithm. Then the feature set 
is used to train a classifier, from a database of labeled 
signals (training set). The classifier thus obtained is then 
usually tested against another database (test set) to assess its 
performance. 

The use of the features as input to classifiers plays two 
roles: a dimension reduction role, and a representation role. 
Indeed, the signal itself could in principle be used as input 
to classifiers, but its dimension (number of samples) is 
usually too high with respect to the training set size, 
resulting in overfit. Additionally, the time/amplitude 
representation of signals has long been acknowledged to be 
poorly adapted to represent perceptive information: audio 
features used in the classification literature aim precisely at 
capturing essential perceptive characteristics of audio 
signals that are not obviously present in its temporal 
representation. A source of audio features is for instance 
MPEG7-audio  [10] or more specifically [23] or [15] for the 
music domain. These features are usually of low 
dimensionality, and contain statistical information from the 
temporal domain (e.g. Zero-crossing rate), spectral domain 
(e.g. SpectralCentroid), or more perceptive aspects (such as 
sharpness, relative loudness, etc.). 

The bag-of-frame approach has been used extensively in 
the MIR domain, for instance by [27]. A large proportion of 
MIR related papers has been devoted to studying the details 
of this chain of process: feature identification [23], feature 
aggregation [18]; feature selection [4],[17],[21], classifier 
comparison or tuning [1], [35].  

An even larger proportion of Ismir papers (about 25% 
according to [1]) discuss the application of this approach to 
specific musical problems: genre classification [16], [20], 
[34], [33] ; orchestral sound classification [22], percussion 
instrument classification [32], [30] ; [31],  [9], tabla 
strockes, [6],  [3], noise classification  [8] as well as 
identification tasks, such as vocal identification  [12], mood 
detection [13]. 

This approach achieves indeed a reasonable degree of 
success on some problems. For instance, speech music 
discrimination systems based on the bag-of-frame paradigm 
yield almost perfect results. However, the approach shows 
limitations when applied to more “difficult” problems. 
Although classification difficulty is hard to define precisely, 
it can be noted that problems involving classes with a 
smaller degree of abstraction are usually much more 
difficult to solve. For instance, genre classification works 
well on abstract, large categories (Jazz vs Rock), but 
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performance degrades for more precise classes (e.g. Be-bop 
versus Hard-bop).  

In these cases, the natural tendency is usually to look for 
ad hoc approaches, which aim at extracting “manually” 
from the signal the characteristics most appropriate for the 
problem at hand, and exploit them accordingly. This can be 
done either by defining ad hoc features, integrated in the 
bag-of-frame approach (e.g. the 4-Hertz modulation energy 
used in some speech/music classifiers, [27], or by defining 
completely different schemes for classifying, e.g. the 
analysis-by-synthesis approach designed for drum sound 
classification [38], and further developed by [37] and [26]. 

One of the possible reasons for the limitation of the bag-
of-frame approach is that the generic features used, such as 
the Mpeg-7 feature set, do not always capture the relevant 
perceptive characteristics of the signals to be classified. 
Some classifier algorithms, such as kernel methods [28] 
including Support Vector Machines [2], [29], do try to 
transform the feature space with the aim of improving 
inter-class separability. However, the increasing 
sophistication of feature selection or classifier algorithms 
cannot compensate for any lack of information in the initial 
features set. 

Although ad hoc approaches may indeed reach 
interesting performance, they are rarely reusable: ad hoc 
features are, by definition specific to a problem. 
Consequently the scientific contribution (and 
epistemological status) of reports of ad hoc approaches is 
debatable. 

In this work we try to extend the range of applications 
for which the general bag-of-frame approach gives 
satisfactory results, by proposing a mechanism that invents 
specific ad hoc features in an automatic way. We claim that 
these features can improve the performance of classifiers, 
independently of the details of the classification chain. 

To find better features than the generic ones, one can 
find inspiration in the way human experts actually invent 
ad hoc features. The papers quoted above use a number of 
tricks and techniques to this aim, combined with intuitions 
and musical knowledge, in trial-and-error loops. For 
instance, one can use some front-end system to normalize a 
signal, or pass it through some filter, add pre or post-
processing to isolate the (hopefully) most salient 
characteristics of the signal. 

We propose here to automate a process of feature 
invention, with an algorithm which explores quickly a very 
large space of ad hoc functions. The functions are built by 
composing together - in the sense of functional composition 
- elementary operators. We call these functions analytical 
because they are described by an explicit composition of 
functions, by opposition to other forms of signal reduction, 
such as arbitrary computer programs. 

This paper is structured as follows: In Section 2 we 
briefly introduce the EDS system, designed to create 

automatically and explore large sets of analytical features. 
Section 3 is devoted to the description of concrete 
experiments to assess the interestingness of analytical 
features, with regards to “generic” ones. These experiments 
can be seen as preliminary investigations of a feature space 
of billions (of billions) of features. 

2 CREATION OF ANALYTICAL FEATURES: 
THE EDS SYSTEM 

EDS – Extractor Discovery System – is a project – and a 
system – developed in the Sony CSL laboratory in Paris 
[39], [40], whose aim is to study experimentally the notion 
of analytical feature for audio signal processing 
applications. 

EDS is able to explore efficiently the space of analytical 
features for arbitrary supervised audio classification 
problem. A problem is determined by a database of audio 
samples labeled (usually by hand) with a finite set of 
classes. The exploration of the space of analytical features 
is based on various function creation methods from a set of 
basic operators, considered as elementary. These two 
aspects are described in the following sections. 

2.1 A library of elementary operators 

The choice of elementary operators is of course arbitrary. 
These operators were selected so as to allow the creation of 
functions with a “reasonable” degree of abstraction, i.e. 
represent salient perceptive characteristics of the sounds 
with a relatively small number of operators (about 10, see 
below), while still allowing the possibility of exploring 
unknown, and possibly relevant functions. These operators 
are either basic mathematical operations (e.g. 
multiplication of a signal by a scalar, absolute value, max, 
etc.) or basic signal processing operators such as Fourier 
transforms, filters, Db, root-mean-square, and spectral 
operators like spectralCentroid, spectralSkewness, etc. This 
library also includes more specifically musical operators 
such as Pitch or Ltas. This list can of course be modified by 
the user. For the sake of reproducibility, we describe in this 
paper results obtained with the 76 basic operators listed in 
Annex 1. 

The space of analytical features obtained by composition 
of basic operators is in principle infinite. One can however 
estimate the number of reachable functions by limiting the 
number of basic operators used in the expression of a 
function. With 5 operators maximum, the size of the feature 
space (with the basic operators of Annex 1) is 
approximately 2,5.109. In practice, we explore functions 
with at most 10 operators, which represents a space of 
5.1020 functions (hence the title of this paper). These sizes 
estimates were obtained through an exhaustive enumeration 
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of all syntactically correct functions, and by discretizing 
scalar parameters (for instance we considered only 10 
values for filter cut-off frequencies, etc.). We can observe 
that the number of functions grows exponentially with the 
number of operators used. Here are some typical examples 
of functions generated by EDS: 

 
(A) Mean(Mfcc(Differentiation(x),5)) 
(B) Median(Rms(Split(Normalize(x),32))) 
 

The first function (A) computes the average of the 5 first 
cepstral coefficients of the derivative of the signal 
(represented by x). The second one (B) computes the mean 
value (Median) of the energy (Rms) of successive frames 
(split) of 32 samples long in the normalized signal. 
Feature creation is controlled by two mechanisms: typing 
and heuristics. 

2.1.1 Typing 

Each basic operator is typed according to the physical 
dimensions of its arguments. These types are used to avoid 
the construction of syntactically meaningless features. For 
instance, the Fft operator kaes as input something with a 
“time/amplitude” type, and its output type is 
frequency/amplitude. EDS can therefore generate 
Fft(HpFilter(x)), but not, e.g., Fft(max(x)). 

2.1.2 Heuristics 

These heuristics allow the system to further avoid exploring 
certain functions by evaluating them prior to the 
computation of their fitness. For instance, a heuristics states 
that it is usually unnecessary to consider functions with 
many times the same operator in a row, such as 
fft(fft(fft(fft(x)))). 

In practice, adding a new basic operator to our library 
amounts to define 1) corresponding typing rules and 2) 
heuristics to control the use of this operator. There are other 
design issues related to adding operators, which are not 
covered in this paper (see rather Pachet & Zils Ismir04). 

2.2 Creating analytical features 

The creation of analytical features by composing 
elementary operators is based on genetic programming 
search [11]. The main steps of this search are the following: 
 
1. Construction of an initial population of analytical 

features, by random compositions of operators. 
2. Evaluation of features. This evaluation consists in 

computing the function on all the signals of the 
training database and compare these results with the 
labels. The correlation between these two series 
produces a fitness for the function. The computation of 
this correlation is described in Section 2.3. 

3. Iteration of the process. The next population is built 
from the best features found in the current population, 
to which are added new features obtained using 
various genetic transforms of the current features. 

The genetic transforms of step 3 are the following: 

2.2.1 Substitution 

Substitution consists in replacing one of the operators of the 
feature by another one, of compatible type. For instance: 

(A’) Max(Mfcc(Differentiation(x),5)) 
is a substitution (Max replaces Mean) of (A) 

2.2.2 Cloning 

Cloning is a special case of substitution which consists in 
copying a feature but changing its numerical parameters, 
e.g.: 

(B’) Median(Rms(Split(Normalize(x),64))) 
is a clone of (B). Values of these parameters are chosen in a 
“reasonable” interval of values, which depends on the 
operator and the sampling rate. 

2.2.3 Mutation 

Mutation is an extension of substitution to sub expressions 
appearing in the definition of a feature, which satisfies the 
typing rules: 

(A”) Mean(Chroma(Normalize(x))) 
is a mutation de (A) in which the sub expression Chroma 
(Normalize(x)) replaces Mfcc (Differentiation (x),5). 

2.2.4 Crossover 

Crossover consists in combining two features to create a 
new one while satisfying the typing rules. For instance:  

(C) Mean(Rms(Split(Normalize(x),32))) 
(C’) Median(Rms(Split(Differentiation(x))) 

(C) and (C’) are crossovers between (A) and (B). 

2.2.5 Addition 

Addition consists in adding an operator to the root of a 
feature: 

(B”) Abs(Median(Rms(Split(Normalize(x),32)))) 
is an addition of (B). 

2.3 Evaluation of individual features 

To evaluate features, we need a computable criterion which 
measures the quality of a feature, i.e. its capacity to 
distinguish elements of different classes (in the case of a 
classification problem) or to approximate a target function 
(in the case of a regression problem). 

In the case of classification, the Fischer Discriminant 
Ratio [5] is often used because it is simple to compute and 
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reliable for binary problems (two classes). However it is 
notoriously inadapted to multi-class problems, in particular 
for non-convex distributions of data. 

To improve the evaluation of features, we rather chose to 
implement an “embedded approach” (Blum and Langley, 
1997) to feature selection, by which features are evaluated 
using a classifier built on-the-fly during the feature search 
process. The fitness of the feature is then defined as the 
performance of a classifier built with this unique feature (or 
more precisely its F-measure, [24]) trained on the training 
database. This measure yields better performance than the 
Fischer criteria on multi-class problems as the ones 
addressed in this paper. 

In the case of a regression problem, sound samples are 
labeled with a real number rather than a class. These 
numbers are for instance the values of a target function one 
wants to approximate. The goal is to find features that 
allow to compute values that approximate this target 
function for new audio samples. 

The most widely used criterion to assess a feature’s 
performance is Pearson’s Correlation, which we use for the 
regression problems presented here. 

2.4 The space of analytical features 

In this paper, we raise three questions about the nature of 
the analytical feature space: 
 
1. Can analytical features capture information that generic 

features cannot? 
2. Can all “perceptive” features be approximated by 

analytical features? 
3. Can analytical features actually improve supervised 

classification tasks? 
 

The sections below address these three questions 
through various experiments in the audio domain. To this 
aim, we consider a set of “generic features”, taken from the 
literature. This set is of course arbitrary, but is used here 
only as a means to compare analytical features empirically. 
The features of this reference set are listed in 8.2. In our 
experiments, we systematically compare the performance 
classifiers built with analytical features, with classifiers 
built with the generic feature set. 

In order to assess the efficiency of analytical features, we 
compare them to results obtained with a “reference feature 
set”, whose complete list is given in Annex 3. This 
reference set includes general features commonly used in 
audio signal classification tasks, and well defined 
mathematically. The list includes notably the Mpeg-7 audio 
list, as well as several others, such as Chroma, often used 
for music analysis [7]. 

We systematically evaluate the performance of two 
classifiers: one built with the reference set, the other built 

with the analytical features found by EDS with the set of 
basic operators in 8.1. We follow the standard scheme in 
supervised classification: classifiers are systematically 
tested with samples that were not used either to create 
analytical features, or to train them. Moreover, we use 10-
fold cross-validation wherever possible. 

2.5 Choosing the classifiers 

There is a huge literature concerning supervized learning 
algorithms [36], as well as many implementations of these 
algorithms, with no clear winner in the general case. In the 
aim of demonstrating the advantages of analytical features, 
we have conducted our experiments with various classifiers, 
to avoid biases (SVM, kNN, J48, neural networks). For the 
sake of clarity we report here only the results with Support 
Vector Machines (SVM) [29], which turned out to best and 
most stable of the algorithms we tried. We used SVM in the 
implementation of the Weka library  
(http://www.cs.waikato.ac.nz/ml/weka) with the default 
parameters, in particular the polynomial kernel. 

We used EDS in a fully automated way for the creation 
and selection of analytical features. For each problem, we 
ran the genetic search until no improvements were found in 
feature fitness. The next section describes the feature 
selection process.  

2.6 Feature Selection 

To compare the two approaches (general versus analytical 
features) in a fair manner, it is important to train classifiers 
on spaces with identical dimension.  

The set of all reference features (cf. Annex 2) has a 
dimension of 100. For each problem we explore a very 
large feature set (see below) from which we select feature 
sets of dimension less than or equal to 100. More precisely 
we present results obtained for various sizes of feature sets 
(from 1 to 100). As we will now see, EDS finds not only 
better analytical features but also feature sets of lesser 
dimension. 

3 QUESTION #1: CAN ANALYTICAL FEATURES 
CAPTURE INFORMATION THAT GENERIC 

FEATURES CANNOT? 

This question can be answered quite simply by considering 
a somewhat artificial problem, built to show the limitation 
of generic features.  

The problem we consider (already briefly sketched in 
[19]) consists in detecting a sinus waveform in a given 
frequency range (say 0-1000Hz) mixed with a powerful 
colored noise in another frequency range (1000-2000Hz). 
Since the colored noise is the most predominant 
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characteristic of the signal, we show that generic features 
are unable to detect the isolated sinus. For instance, when 
we look at the spectrum of a 650Hz sinus mixed with a 
1000-2000Hz colored noise (Figure 1), the peak of the sinus 
is visible but not predominant, and is thus hard to extract 
automatically with general spectral features. 

Of course, this problem is easy to solve by hand, when 
one knows how these signals are constructed: It suffices to 
apply a pre-filtering that cuts off most of the frequencies of 
the colored noise, so that the sinus emerges from the 
spectrum. As seen on Figure 2, the sinus peak emerges 
when the signal is low-pass filtered, and becomes easier to 
extract automatically. 
 

 

 
Figure 1. Spectrum of a 650Hz sinus mixed with 1000-

2000Hz colored noise. 

 
Figure 2. Spectrum of a 650Hz sinus mixed with 1000-

2000Hz colored noise, pre-filtered by a 1000Hz Low-Pass 
Filter. 

However, we show here that this particular example, 
although very simple, cannot be adequately solved using 
generic features. To this aim, we conduct the following 
experiment. We build a database of sinus + colored noise 
with varying values for the sinus (from 0 to 1000 Hz). Each 
signal is labelled with the corresponding frequency of the 
sinus.  

We then train two “regression” classifiers for this task. 
The first one (REF) is trained using the generic feature set, 
with varying dimensions (from 1 to 100). The second one 
(EDS) is trained with analytical features built for this 

problem. EDS explored about 40,000 features to find an 
almost optimal analytical feature for this problem. The 
result is illustrated in Figure 3, and shows clearly that one 
analytical feature (of dimension 1) can solve the problem 
almost perfectly, whereas even the full set of generic 
features (of dimension 100) cannot. The best analytical 
feature found by EDS is the following: 

 
(A) MaxPos(Fft(Integration(BpFilter(Hamming(x), 10, 
500))))  

 
This feature (A) is easy to interpret, and does almost 
exactly what should be done in this case, although probably 
not in the most simplest way. Its fitness (Pearson 
coefficient) is 9.99. The most likely human feature, 
knowing the database creation process, would be something 
like: 

MaxPos(Fft(LpFilter(x, 1000))) 
 
This “theoretically perfect” feature is also good (0.87), but 
slightly less than (A). This shows incidentally that the best 
features are not necessarily the most “justified”. 
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Figure 3. Results of the Pink noise experiment. One 
analytical feature is enough to solve the problem perfectly, 
whereas a feature set of dimension 100 with generic 
features cannot. The difference is even more drastic for 
smaller feature sets. 
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4 QUESTION #2: CAN ALL PERCEPTIVE 
FEATURES BE APPROXIMATED BY 

ANALYTICAL FEATURES? 

This question is of course difficult to answer in a systematic 
way. We propose here also an experiment in which we 
compare the performance of generic features against 
analytical ones, but this time to approximate a “known” 
feature which is not in the reference set.  

To this aim, we chose an audio feature called “spectral 
compactness”, an implementation of which is available 
from the jAudio feature extraction library. 

This feature is described as follows (p. 603 of [15]): 
“Compactness is closely related to Spectral Smoothness as 
defined by [14]. The difference is that instead of summing 
over partials, compactness sums over frequency bins of an 
FFT. This provides an indication of the noisiness of the 
signal”. 

We do not know the details of the implementation of 
compactness, nor its precise definition, but this is not 
needed here. The aim of this experiment is to see how 
“reachable” this feature is, from the set of generic features, 
and with analytical features.  

To this aim, we also build several regression classifiers 
as in the preceding experiment. Because spectral features 
are known to be correlated, and also because MFCC are 
known to represent well spectral information in general, we 
conduct several experiments to show that spectral 
compactness is not easily reachable from other, known, sets 
of generic features. We used here a database of 2500 
percussion sounds described in [25]. The results are 
illustrated in Figure 4 and Figure 5. 
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Figure 4. Results of the “Compactness” feature experiment. 
Compared performance between analytical and reference 
features, for various feature set dimensions. Analytical 
features perform better (and the improvement gets more 
important as the feature set dimension decreases). 

Figure 4 shows again than the gain in performance of 
analytical features increases as the size of the feature set 

decreases, again with a spectacular result with single 
features (84% versus 43%). 

More precisely, Figure 5 shows that analytical features 
also outperforms all the specific feature sets envisaged here: 
general spectral features, MFCC, and also the whole set of 
general features! 

EDS produced the following analytical feature: 
Abs (Sum (Integration (PeakPos (Fft (HpFilter 

(Derivation (x), 3969.0)))))) 
which yields a correlation coefficient of 0.79. This is an 

interesting result, since it contains operators that explicitly 
appear in the mathematical definition of spectral 
compactness (see definition above). 

 
However, EDS produced an even better analytical 

feature: 
Abs(Centroid(Hanning(Variance(Derivation(Split(x, 
882)))))), whose correlation with spectral compactness is 
over 0.84. We observe here the phenomenon described in 
Section 3. 

 
The best reference feature found is: 
HarmonicSpectralDeviation (Hanning (x)) 
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Figure 5. Comparison of various regression classifiers to 
approximate the “spectral compactness” feature. The best 
analytical feature yields a performance of 85%, better than 
the best reference feature (43%), far better than a feature set 
with 6 general spectral features (19%), and than the 10 first 
MFCC (38%), and slightly better than the whole set of 
reference features of dimension 100 (83%). A set of 
dimension 100 analytical features further improves the 
correlation up to 90%.  

5 QUESTION #3: CAN ANALYTICAL FEATURES 
ACTUALLY IMPROVE SUPERVIZED 

CLASSIFICATION TASKS? 

To address this general question we conducted several 
experiments on specific, multiclass audio classification 
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tasks. These experiments are reported in various papers. 
For instance, we showed that analytical features can 
improve the classification of perceptive musical energy 
(Zils & Pachet 03), and, in a non musical context, dog 
barks (Molnar et al. 07). We report here the main 
conclusions of an experiment conducted on the 
classification of percussion sounds [25]. In this problem, we 
attempted to classify automatically sounds coming from a 
Pandeiro (Brazilian tambourine), using only very small 
portions of the attack of the sound. This problem arises 
from the desire to build new musical instruments that 
extend the possibilities given by traditional ones, using 
interactions with a computer. The results showed that here 
also, analytical features can improve the performance of 
classification over generic ones, as illustrated in Figure 6. 
Here again, the gain is particularly interesting for small 
size feature sets, as the classification performance is not 
substantially improved for high dimension feature sets. We 
think this glass ceiling is due to the inherent difficulty of 
the problem (attack portion of sounds may be inherently 
ambiguous in some cases). 
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Figure 6. Classification results for the classification of 
attack portions of the Pandeiro into six sound classes. 
Compared performances of analytical features (EDS) with 
reference features (REF), using two feature selection 
methods. 

6 CONCLUSION 

We have introduced the notion of analytical feature for 
audio classification. Analytical features are created in a 
systematic and ad hoc way using the samples of the training 
database. Our feature generator is able to search in a space 
of about 1020 features. The main fundamental question we 
raised here is the nature of this space, and whether 
analytical features can cover characteristics of sounds that 
generic features cannot. To this aim we present two small 
experiments to compare the performance of classifiers 
using generic features and using analytical features. These 

experiments tend to show that analytical features do 
achieve, in general, better performance than generic 
features, or equivalent performance but with reduced 
feature sets. The experiments conducted here are not 
definitive as they use an arbitrary set of basic operators for 
producing analytical features, as well as an arbitrary set of 
reference features. However, we claim that analytical 
features should be investigated more systematically to 
increase our understanding of signal classification in 
general. 
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8 ANNEXES 

8.1 Basic EDS operators 

The list of basic operators used by EDS in this study is the 
following: 
Abs 
Arcsin 
AttackTime 
Autocorrelation 
Bandwidth 
BarkBands 
Bartlett 
Blackman 
BpFilter 
Centroid 
Chroma 
Correlation 
dB 
Differentiation 
Division 
Envelope 
Fft 
FilterBank 
Flatness 
Hamming 
Hann 
Hanning 
HarmSpectralCentroid 
HarmSpectralDeviation 
HarmSpectralSpread 
HarmSpectralVariation 

HFC 
HMean 
HMedian 
HMax 
HMin 
HpFilter 
Integration 
Inverse 
Iqr 
Length 
Log10 
LpFilter 
Max 
MaxPos 
Mean 
Median 
MelBands 
Min 
Mfcc0 
Mfcc 
Multiplication 
Normalize 
Nth 
NthColumns 
PeakPos 
Percentile 

Pitch 
PitchBands 
Power 
Range 
RemoveSilentFrames 
RHF 
Rms 
SpectralCentroid 
SpectralDecrease 
SpectralFlatness 
SpectralKurtosis 
SpectralRolloff 
SpectralSkewness 
SpectralSpread 
Split 
SplitOverlap 
Sqrt 
Square 
Sum 
Triangle 
Variance 
Zcr 
Harmonicity(Praat) 
Ltas(Praat) 
 

 
A precise description of each operator can be found in (Zils, 
04). 

8.2 Annex 2 – Reference features 

The list of general features used as the reference set is the 
following (features preceded by ‘*’ could not be computed 
on the attack sounds because of their size): 
 
* HarmonicSpectralCentroid(Hanning(x)) 
* HarmonicSpectralDeviation(Hanning(x)) 
* HarmonicSpectralSpread(Hanning(x)) 
Log10(AttackTime(x)) 
*Pitch(Hanning(x)) 
SpectralCentroid(Hanning(x)) 
* SpectralFlatness(Hanning(x)) 
SpectralSpread(Hanning(x)) 
Centroid(x) 
PitchBands(Hanning(x),12.0) 
Mfcc0(Hanning(x),20.0) 
* HarmonicSpectralVariation(SplitOverlap(Hanning(x),2048,0.5)) 
Rms(x) 
RHF(Hanning(x)) 
HFC(Hanning(x)) 
SpectralKurtosis(Hanning(x)) 
SpectralSkewness(Hanning(x)) 
SpectralRolloff(Hanning(x)) 
Iqr(x) 
Chroma(Hanning(x)) 
MelBands(Hanning(x),10.0) 
BarkBands(Hanning(x),24.0) 
Zcr(x) 

 


