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Improving Multilabel Analysis of Music Titles: A
Large-Scale Validation of the Correction Approach

Francois Pachet and Pierre Roy

Abstract—This paper addresses the problem of automatically ex-
tracting perceptive information from acoustic signals, in a super-
vised classification context. Global labels, i.e., atomic information
describing a music title in its entirety, such as its genre, mood, main
instruments, or type of vocals, are entered by humans. Classifiers
are trained to map audio features to these labels. However, the per-
formances of these classifiers on individual labels are rarely satis-
factory. In the case we have to predict several labels simultane-
ously, we introduce a correction scheme to improve these perfor-
mances. In this scheme—an instance of the classifier fusion par-
adigm—an extra layer of classifiers is built to exploit redundan-
cies between labels and correct some of the errors coming from
the individual acoustic classifiers. We describe a series of experi-
ments aiming at validating this approach on a large-scale database
of music and metadata (about 30 000 titles and 600 labels per title).
The experiments show that the approach brings statistically signif-
icant improvements.

Index Terms—Feature extraction, learning systems, music, pat-
tern classification.

I. INTRODUCTION

ATABASES of digital content of ever growing size are
D now increasingly available in our digital world. This situ-
ation creates economically and culturally desirable phenomena
such as the long tail [1], which enhance the accessibility of hith-
erto poorly distributed content. Consequently, this mass of data
creates a need for accurate descriptions of contents. Metadata
can help users search and find content, but only precise, robust
metadata can turn the presence of an item in a large database in
its actual availability.

In the field of music, many methods have addressed the
problem of metadata creation (see, e.g., [2] for a review). Three
main categories of approaches can be distinguished [3]. First,
purely manual approaches consist in building and maintaining
online databases of metadata, associated with content using
identification technology, such as audio fingerprinting. This
is the case of the AllMusicGuide and Pandora endeavours.
Second, so-called cultural metadata can be collected from the
analysis of user usage, such as buying profiles or web pages,
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the most widespread approach being collaborative filtering [4].
Lastly, acoustic metadata attempt to automate the description
process from the analysis of the acoustic signal. This last
approach is very popular in the music information retrieval
(MIR) research community. However, to our knowledge, this
approach has not yet been used commercially, due to unsatis-
factory performance of these acoustic analysis systems.

The work presented here is an attempt to improve these au-
tomatic approaches in the domain of music, i.e., produce au-
tomatically robust and fine-grained music metadata using only
the acoustic signal as input, and metadata entered by humans as
training and testing data.

More precisely, we are interested in the case when several,
possibly many, labels have to be predicted simultaneously. The
method we propose consists in exploiting possible correlations
between labels, which can be exhibited in the case we dispose
of sufficiently large metadata databases. In this paper, we de-
scribe a comprehensive study aiming at demonstrating the va-
lidity of the correction approach on a large-scale database, with
minimum bias. Following a general trend in MIR research, we
considered a bag-of-frames (BOF) approach based on a set of
general audio features inspired by the MPEG-7 audio standard.

The following section briefly reviews the BOF approach and
its limitations and introduces the feature set used in this study.
Section II introduces the large-scale multilabel database used
for the experiment. Section I1I details the implementation of the
correction approach, and Section IV presents the results and a
discussion.

A. BOF Approach to Global Description

The performance of acoustic analysis systems applied on
the extraction of global musical features has so far consistently
shown limitations, sometimes referred to as glass-ceiling ef-
fects. These limitations seem impossible to overcome by simply
tuning the various parameters at hand. These limitations are
often observed for works based on the so-called BOF approach,
which we describe in the next section.

1) BOF Approach: The BOF approach owns its success to
its simplicity and generality, as it can be used for virtually all
possible global descriptor problems. The BOF approach con-
sists of modeling the audio signal as the statistical distribution
of audio features computed on individual, short segments. Tech-
nically, the signal is segmented into successive, possibly over-
lapping frames, from which a feature vector is computed. The
features are then aggregated together using various statistical
methods, varying from computing the means/variance of the
features across all frames to more complex modeling such as
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Gaussian mixture models (GMMs). In a supervised classifica-
tion context, these aggregated features are used to train a clas-
sifier. Once trained, the classifier can be used to classify new
data, from which features are extracted and aggregated, or tested
against a new data set, to assess its performance.

The BOF approach can be parameterized in many ways:
frame length and overlap, choice of features and feature vector
dimension, choice of statistical reduction methods (statistical
moments or Gaussian mixture models), and choice of the classi-
fier (decision trees, support vector machines, GMM classifiers,
etc.). In the remainder of this paper we refer to these parameters
as BOF parameters.

2) Limitations of the BOF Approach: Many papers in the
MIR literature report experiments with variations of BOF pa-
rameters on varied audio classification problems. It can be noted
that these results are never fully satisfactory. Reference [5] ex-
hibited performance limitations for timbre similarity or genre
classification tasks using a BOF approach with Mel-frequency
cepstrum coefficients (MFCCs) as features, GMMs as a statis-
tical reduction method and a kNN classifier (exploiting a dis-
tance produced by the GMMs). Further works slightly improved
these results by adding nonspectral features [6], but their ap-
proach still exhibited strong limitations. Reference [7] com-
pares two BOF variations for singer identification in polyphonic
audio with specific voice features. They also report unsatisfac-
tory performance. In the domain of instrument recognition, [8]
investigated a BOF approach with specific features and tuning
parameters, notably a clever feature selection mechanism, but,
again, report far-from-perfect results. Reference [9] describes
interesting experiments in mood classification using a BOF ap-
proach and standard audio features, on an 800-title database.
They report performances of about 80%, which, although still
not satisfactory for industrial applications, is above the perfor-
mances obtained using timbre similarity. However, we claim in
this paper that these results are biased by the small size of the
database used for training and testing, and our large-scale eval-
uation with approximately the same approach does not confirm
these results, as described in the following sections.

Several factors involved in the processing chain can explain
these performance limitations:

1) Features. The acoustic features considered may not contain

sufficient information for the given classification problem.

2) Statistical reduction. The necessity to reduce the quantity
of information extracted in individual frames to feature
vectors of reasonable dimension using statistical means
may introduce a loss of information since perceptually im-
portant, but not statistical significant information may be
discarded in the process. This statistical erosion has been
hypothesized to cause the presence of hubs when distances
are computed in this manner [10].

3) Classifier. The algorithm that learns the mapping between
features and classes may have limitations, especially in the
case of nonconvex training sets.

4) Lack of information. A limitation may come from an in-
trinsic difficulty of global music description, possibly re-
lated to some unconscious information processing at stake
when listening to music, or simply to the fact that the
problem has no perfect solution.

The goal of this paper is not to discuss the limitations of the
BOF approach per se, but to demonstrate the validity of the cor-
rection approach with as little bias as possible. To this aim, we
conducted our correction experiment using the most general fea-
ture set available: a BOF approach with generic audio features,
described in the next section.

B. Details of the BOF Approach

We exploit the acoustic signals as provided by the HiFind
database (described in Section II). These signals were given in
the form of a wma file at 128 kb/s. They were converted to raw
wav files sampled at 44 100 Hz and mixed down to mono.

In a preliminary study, we tried several classification algo-
rithms with different parameters, to find the best performer for
this problem. We evaluated the performance of J48, a decision
tree algorithm, of kNN with k£ = 1, 2,3 and of support vector
machine (SVM) with both linear and radial basis function (RBF)
kernels. SVM + RBF outperformed every other candidate algo-
rithm, so we chose it to create the acoustic classifiers of our ex-
periment.

More precisely, we used SVM with a set of general audio
features. This set consists of 49 audio features taken mostly
from the MPEG-7 audio standard [11]. This set includes spectral
characteristics (spectral centroid, kurtosis and skewness, HFC,
MFCC coefficients), temporal (ZCR, inter-quartile-range), and
harmonic (chroma).

We performed several experiments to yield the optimal BOF
parameters for this feature set: localization and duration of the
signal, statistical aggregation operators used to reduce dimen-
sionality, frame size, and overlap. More precisely, we consid-
ered the following parameter values:

1) signal duration: 30 s, 1 m, 2 m, whole title;

2) frame size: 512, 1024, 2048, 4096 sample frames;

3) frame overlap: 0%, 25%, 50%, and 75%;

4) statistical aggregation: mean variance, skewness, kurtosis,
and combinations thereof.

The best tradeoff between accuracy and computation time is
achieved with the following parameters: 2048 sample frames
(46 ms) with a 50% overlap computed on a 2-min signal ex-
tracted from the middle part of the title, the features are the
two first statistical moments of this distribution, i.e., the mean
and variance, yielding a total feature vector of dimension 98 (49
means + 49 variances). The 49 features are the following.

e Harmonic Spectral Centroid, Harmonic Spectral Devia-
tion, Harmonic Spectral Spread, Spectral Centroid, Spec-
tral Flatness, Spectral Spread, Spectral Kurtosis, Spectral
Skewness, Spectral Rolloff, ZCR, RMS, RHF, HFC, IQR,
Centroid, Harmonic Spectral Variation.

* 20 first MFCC coefficients.

* A naive Pitch feature is computed using the Harmonic
spectral product [12]. This method is applied to each frame,
with no attempt at source or voice separation.

e Chroma: the spectrum is divided in pitch-wide bands. Each
band is filtered by a triangular filter. Bands an integral
number of octaves apart are superimposed, yielding 12
bands corresponding to the 12 pitch classes. The Chroma
feature returns the 12-dimensional vector made up of the
average value in each class.
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II. HIFIND: A LARGE DATABASE OF
FINE-GRAINED MUSIC DESCRIPTION

As mentioned above, the need for describing music stems
from organizational purposes. Descriptions should be both ma-
chine-readable, and kept as simple as possible. Consequently,
the most popular form of musical metadata are so-called global
labels, i.e., descriptors of the music title as a whole, as opposed
to labels that would apply only to a specific segment, a musical
passage or event, in the musical piece.

The notion of global label is natural as we all need to classify
music using simple terms. It is also a controversial notion as
music listening, a process typically during three minutes, calls
up different cognitive tasks during time, and may involve dif-
ferent affects depending on the structural evolution of the music
piece. Some moments can be exciting, boring, sources of ten-
sion or relaxation, etc. Models such as the implication-realiza-
tion model of [13] precisely emphasize the nonglobal nature of
music, and the inherent difficulty in reducing a music title to a
single word, even a grounded one. Global music labels are there-
fore intrinsically problematic, and constitute as such a debatable
“ground truth.” However, the possibility to describe music glob-
ally, using precise ontologies for several musical dimensions is
acknowledged to be not only possible but useful, as illustrated
by the Pandora and HiFind efforts, as well as by the success of
the collaborative music tagging projects such as LastFM.

A. HiFind Database and the Metadata Creation Process

Several databases of annotated music have been proposed in
the MIR community, such as the RWC database [14] or the
various databases created for the Mirex tasks [15]. However,
none of them has the scale and number of labels needed to
test our approach. For this study, we have used a music and
metadata database provided by the HiFind Company (a sub-
sidiary of Real Networks). This database is a part of an effort
to create and maintain a large repository of fine-grained mu-
sical metadata to be used in various music distribution systems,
such as playlist generation, recommendation, advanced music
browsing, etc. Since its founding in 1999, HiFind has catego-
rized 450 000 tracks. For this work, HiFind supplied us with a
subset of 49 620 tracks from 2677 artists, selected at random.
The database contains popular music produced between 1920
and 2006 and belonging to 39 different genres.

B. Controlled Categorization Process

The label annotation is done by a team of about 25 catego-
rizers, mainly trained musicians and music journalists. A cate-
gorizer is able to choose from 935 possible labels to describe
the piece of music (hereof 340 are from the genre group). On
average, a fully categorized track takes about 8 min to be cat-
egorized. The HiFind labels are binary (0/1-valued) indicating
the validity of the label for a song.

Labels are grouped in the following 16 categories, repre-
senting a specific dimension of music description: Style, Genre,
Musical setup, Main instruments, Variant, Dynamics, Tempo,
Era/Epoch, Metric, Country, Situation, Mood, Character,
Language, Rhythm, and Popularity. Labels describe a large
range of musical information: objective information such as
the “presence of acoustic guitar,” or the “tempo range” of the
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song, as well as less objective characteristics, e.g., “style,’
“character” or “mood” of the song.

The categorization process at work at HiFind is highly con-
trolled. In a first phase, each title is entirely listened to by one
categorizer. Categorizers use an ad hoc categorization software
to set the value (i.e., true or false) for each label. In practice,
about 37 labels in average are set to true for a given title, the
remaining ones being set to false by default. The 16 label cate-
gories are considered in some specific order to ease and speed
up the categorization process. Within a category, some rules may
apply that prevent some combinations of labels to be selected.
For instance, for the genre category, the categorizer can select as
many genre labels as appropriate per song, with at least one. On
the average each song has two genre labels (for example “Blues-
rock” and “Contemporary Blues”). Concerning the Main instru-
ments category, the categorizer selects instruments which domi-
nate the recording. A typical selection for a Metal song would be
“Vocals” + “Male” + “Guitar (distorted).” Instruments which
play the major role in a solo of a song although not constantly
featured in the recording (e.g., a Saxophone) are also selected
as true.

The Popularity category is particular and consists of three la-
bels: high, medium and low. The selection of a label from this
group is done by a categorizer based on 1) chart success, 2) artist
popularity, 3) genre specific popularity. A “popularity_high” is
given to a song which was in the global/local charts or has a key
role within its specific genre (for instance Jazz tracks might not
be chart hits but still be popular among its subset of listeners).
A “popularity_medium” is given to a song which is a non-hit
from a highly popular artist, a low chart entry song or a pop-
ular song among a specific genre. For instance, a track from the
genre “Detroit Techno” is neither widely popular nor is the artist
very known. Still, there are levels of popularity for this subgroup
of listeners. A “popularity_low” is given to a track from an un-
known artist with no chart history.

In a second phase, the categorized titles are checked by a cate-
gorization supervisor, who checks, among other things, aspects
such as consistency and coherence to ensure that the descrip-
tion ontologies are well-understood and utilized consistently
across the categorization team. Although errors and inconsisten-
cies can be made during this process, it nevertheless guaranties
arelative good “quality” and consistency of the metadata, as op-
posed, e.g., to collaborative tagging approaches in which there
is no supervision by definition. Additionally the metadata pro-
duced is extremely precise (a maximum of 948 labels per title),
a precision which, again, is difficult to achieve with collabora-
tive tagging approaches.

There is no systematic way to ensure that the categorization
produces absolutely correct and consistent information, so we
had to consider the database as it was provided as ground truth.
Some minor “clean up” was, however, performed before use,
by discarding titles with metadata of obviously of low quality.
For instance, we discarded songs having much less labels set to
true than the average 37. Additionally, we kept only those labels
for which we had a significant amount of titles (above 20) with
the true and false values, to build training and testing sets of
sufficient size. As a result of this cleanup, the total number of
titles considered in this study is 32 978, and the number of labels
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632. This database was used both for training our classifiers and
for testing them, as described in Section III-D.

C. Database Sparseness and Redundancy

As observed in [16], this database is quite sparse: The mean
number of labels set to frue per song (occupation factor) is 5.8%
(i.e., 37 on atotal of 632). Sparseness suggests the dominant role
of the true-valued labels compared to false-valued labels for a
given song.

Another feature of the database is its redundancy. For in-
stance, labels like “Country Greece” and “Language Greek™ are
well correlated. There are correlations between pairs of labels,
as described in [17], typically between language and country
labels. There are more complex correlations between arbitrary
numbers of labels. This redundancy is a sign of the presence
of many inter-label dependencies that justifies the deployment
of a statistical approach to label inference, either for correcting
acoustic classifiers as we will describe here, or as a stand-alone
process as described in [16]. The correction approach attempts
to exploit them all.

III. CORRECTION APPROACH

In this section, we describe the experiment conducted in
training and testing acoustic classifiers on the HiFind database
presented above. In the first section, we introduce the correc-
tion approach. We then describe the experiment to validate the
approach.

A. Classifier Fusion

The idea of combining the decisions of different classifiers to
improve pattern recognition systems emerged in the early 1990s,
in particular, in the domain of handwritten character recognition
[18]. The idea has since received different names, e.g., classifier
(or data) fusion, mixture of experts, classifier ensembles [19].

Several strategies have been devised to combine the decisions
of a set of classifiers, like fuzzy aggregation methods [20] or
probabilistic methods, such as the Dempster—Shafer fusion [21].
Wolpert [22] proposes to train a higher-lever classifier on the
outputs of a set of original classifiers trained on multiple par-
titioning of the learning set. The higher-lever classifier, called
stacked classifier, estimates and corrects the generalization bi-
ases of the original classifiers.

Our approach is close to that of Wolpert as we use the out-
puts of a set of original (acoustic) classifiers to train a higher-
level (correction) classifier. The fundamental difference is that
all the original classifiers are trained on the same data (i.e.,
same acoustic features extracted from the same music titles)
but are predictors for different classes. The stacked classifiers of
Wolpert’s approach estimate and correct the biases of the orig-
inal classifiers, whereas correction classifiers learn the relation-
ships between the different classes, thus exploiting redundancy
in the database’s metadata structure.

B. Correction Approach

Our correction approach aims at exploiting statistical corre-
lations between the labels we attempt to model, in the training
corpus. These correlations can be used to correct the individual
classifiers obtained by using only acoustic information. In the

rest of this paper, those classifiers are referred to as acoustic
classifiers.

This approach is based on a hypothesis. First, the informa-
tion produced by the acoustic classifiers as well as the infor-
mation about the correlations is fuzzy and approximate by na-
ture. In practice, however, it is hoped that these approximations
can somehow be compensated by an appropriate feature extrac-
tion scheme. Second, the classifiers we build (acoustic and cor-
rection) exploit the information extracted from the same set of
acoustic features, albeit in different ways. From a signal view-
point, there is strictly speaking no “additional information” in-
troduced at the correction stage. However, the correction targets
inter-labels dependencies that are typically not exploited explic-
itly in traditional approaches, in which labels are predicted in-
dividually. This hypothesis justifies the need for a large-scale
validation.

A previous study, described in [17], proposed to use
inter-label correlation to improve multilabel music classifica-
tion, considered as “contextual information.” The cited paper
reported an average of 15% of improvement in precision over
the purely acoustic classifiers. In this paper, successive gener-
ations of classifiers are created. The first generation consists
of acoustic classifiers trained on timbre features. The second
generation consists of classifiers trained on the output of the
acoustic classifiers having a precision greater that a predefined
threshold. In general, the (IV + 1)th generation classifiers are
trained on the output of the best classifiers found before the
Nth generation.

However, this approach revealed flawed for several reasons,
which motivated in part the present study. The most impor-
tant problem was that the approach, iterative by nature, was
biased by a cumulated “contamination” of train and test sam-
ples, eventually producing overfitting. The performance of the
“first-generation” classifiers was taken into account to compute
the next-generation classifiers. This performance was computed
using the Test databases which were then reused to evaluate the
performance of the next-generation classifiers, thereby creating
a contamination. The second source of contamination stemmed
from the way Train and Test databases were constructed for
each label. No separation was enforced across labels, i.e., some
training samples for a label could be test samples for another
one. This created another source of contamination in the case of
a classifier X based on classifier Y, such as some test samples
for X were included in the Train set of Y. Lastly, the scheme
did prevent direct reuse of a classifier for the next generation,
but not its indirect use after more than two generations.

The encouraging results of this study were used as the basis of
an argumentation to sustain the hypothesis that the limitations
observed in timbre similarity studies would be caused primarily
by some high-level processing involving the brain, supposedly
requiring other information than the signal [23]. However in-
teresting, these arguments were based on a heavily biased ex-
periment so no serious conclusion could be drawn at this stage
concerning the correction approach.

A subsequent study addressed and solved the contamination
issue, by proposing a clean correction scheme with no use of
test information whatsoever in the train phase [24]. This prelim-
inary study reported interesting and comparable improvements
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in classifier performance, but on a more solid experimental set-
ting. However, this study was also based on the sole use of
timbre similarity as an acoustic seed, and could only be applied
to a subset of the same, small, 5000-title reference database, for
reason of time and memory limitations (the timbre similarity
matrix cannot be computed for large datasets). These results
highlighted the potential interest of the correction approach, but
were not fully convincing to the present authors, as the observed
improvements in classification performance could not clearly be
attributed to the correction effect per se, so no real insight was
gained.

C. Min-F-Measure as Evaluation Criteria

To avoid the problems inherent to the sole use of precision
or recall, the traditional approach to evaluation classifiers is to
use F-Measure. However, in our case, we have to cope with
a particularly unbalanced 2-class (true and false) database. So
the mean value of the F-measure for each class (true and false)
can still be artificially good. To avoid this bias, we assess the
performance of our classifiers with the more demanding min-F-
measure, defined as the minimum value of the F-measure for the
positive and negative cases. A min-F-measure near 1 for a given
label really means that the two classes (true and false) are well
predicted.

D. Description of the Experiment

In this section, we describe the correction experiment. Due
to the nature of the correction process (see below), we first had
to ensure that Train and Test are structurally equivalent. So we
split the database in two “balanced” parts Train and Test: for
each label, Train contains approximately the same proportion of
examples and counter-examples as 7est. We obtained this state
by performing repeated random splits until a balanced partition
was observed. Then, we built the acoustic and correction clas-
sifiers as follows.

1) Acoustic Classifiers: First, we build a set of 632 acoustic
classifiers, one for each label. As described in Section I-B, we
chose a SVM + RBF kernel classifier.

The acoustic classifiers are trained and tested using the Train
and Test databases described above. More precisely, each clas-
sifier, for a given label, is trained on a “maximally balanced”
subset of Train, i.e., the largest subset of Train with the same
number of true and false titles for this label. The most frequent
items are selected randomly.

In practice, the size of these individual train databases varies
from 20 to 16320, with an average of 1700. This train data-
base size somehow represents the “grounding” of the labels. The
classifiers are then tested on the whole 7est base. Note that the
Test base is usually not balanced with regards to a particular
label, which justifies the use of the min-F-measure to assess the
performance of each classifier.

2) Correction Classifiers: In a second step, we build a new
set of 632 classifiers of second generation, referred to as cor-
rection classifiers. The correction classifiers also use a SVM al-
gorithm but with a linear kernel, which turned out to perform
slightly better than the RBF in this configuration (632 Boolean
inputs, instead of the 98 floats for the acoustic classifiers).
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Each correction classifier takes as input the vector of Boolean
predictions from the 632 acoustic classifiers.

Correction classifiers are then, again, trained on Train and
tested on 7Zest. In this case, we consider the whole Train data-
base for training, as opposed to maximally balanced sets used
in the previous step. This is justified by the fact that, at this step,
we try to learn the inter-label dependencies, so a set which is
balanced for a given label may not be representative of these
dependencies.

It is important to note that in this scheme there is no con-
tamination between the two phases, as opposed to the approach
described in [17]: the performance of acoustic classifiers on Test
is not exploited in the correction phase. This performance is in-
dicated here only for comparison purposes. The results are de-
scribed in the next section.

IV. RESULTS

The main results of this experiment are the following.

Acoustic classifiers perform much better than random.

The correction approach is efficient: we observe significant
improvements in the second-generation classifiers. This im-
provement is uniform and does not depend on the grounding of
labels.

There is no clear dependency between the nature of the la-
bels, as represented by their category (see Section IV-B) and
their “acoustic classifiability.” Categories exhibit a high vari-
ance with regards to acoustic classifiability. Strikingly, a priori
“subjective” labels are not necessarily more difficult to learn
than a priori “objective” ones.

These points are detailed and discussed in the next sections.

A. Compared Performance of Acoustic Classifiers

In this section, we report on the performances of the acoustic
classifiers

1) Acoustic Classifiers Outperform Random Oracles: A
random oracle is a classifier that yields a random but systematic
answer, solely based on the distribution of examples in the
training set. A naive random oracle that would always draw the
most represented class could have a nonzero (mean) F-measure,
but its min -F-measure would be 0, by definition.

For our comparison, we defined a less naive random oracle as
follows: given a label with p positive examples (and therefore
N — p negative ones, with N the size of the dataset), this oracle
returns true with probability p/N. Note that a simple random
oracle that would return true and false with probability 1/2 for
every label would have a lower performance.

Note also that the min-F-measure of this random oracle only
depends on the proportion of positive and negative examples
in the test dataset. Roughly speaking, when using our random
oracle, a label with balanced positive and negative instances has
a min-F-measure of approximately 50%, whereas a label with
200 positive examples (and therefore around 16 000 negative
examples) has a min-F-measure of 2.3%.

The comparison of the performance of acoustic classifiers
with random oracles shows that the classifiers do indeed learn
something. For more than 450 out of 632 labels, the acoustic
classifier outperforms the corresponding random oracle. Table I
indicates the distribution of the relative performance of acoustic
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TABLE I
NUMBER OF LABELS FOR WHICH AN ACOUSTIC CLASSIFIER IMPROVES
OVER A RANDOM CLASSIFIER BY A CERTAIN AMOUNT. COLUMN
“IMPROVEMENT” INDICATES PERFORMANCE IMPROVEMENT. THERE
ARE 79 LABELS FOR WHICH AN ACOUSTIC CLASSIFIER OUTPERFORMS
A RANDOM CLASSIFIER BY +20 (IN MIN-F-MEASURE)

Improvement # of Labels
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Fig. 1. Distribution of the performance of acoustic classifiers. There are many
labels for which the corresponding acoustic classifier performs poorly. As per-
formance increases, the number of corresponding labels decreases.

classifiers compared to random oracles.Table I shows that 158
labels lead to low-performance classifiers, i.e., they do not per-
form much better than a random oracle; half of the labels lead to
classifiers that outperform a random oracle by less than 10; the
remaining ones clearly outperform a random oracle, i.e., they
are well-modeled by acoustic classifiers.

2) Distribution of Acoustic Classifiers Performance: It is in-
teresting to look at the distribution of the performances (min-F-
measure) of the acoustic classifiers. These performances vary
from 0% to 74%. Fig. 1 shows that the statistical distribution of
the performances is close to a power law distribution, which is
confirmed by the log-log graph of Fig. 2.

More precisely, if y is the number of acoustic classifiers with
performance = expressed as a min-F-measure, the distribution
of the performance of acoustic classifiers is best approximated
by y = 263 - 2134,

3) Acoustic Classifiers Trained on Large Datasets Perform
Better: Lastly, we can observe the relationship between the per-
formance and the size of the training set. The trend line in Fig. 3
shows that the performance of acoustic classifiers increases with
the size of the training dataset. This is consistent with the ac-
knowledged fact that machine-learning algorithms require large
numbers of training samples, especially for high-dimensional
feature sets.

These experiments show that acoustic classifiers definitely
learn some musical information, with varying degrees of perfor-
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Fig. 2. Log-log graph of the distribution of the performance of acoustic clas-
sifiers. The distribution of the performance of acoustic classifiers is close to a
power law (with more data fluctuation as we reach high performance, which can
be due to the small number of labels considered, i.e., labels well-modeled by an
acoustic classifier).
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Fig. 3. Relative performances of the 632 acoustic classifiers (i.e., the difference
between the min-F-measures of the acoustic classifier and of the corresponding
random classifier), as a function of the training database size (moving average
over 30 labels). This graph shows that the performance of the acoustic classifiers
increases with the size of the training database.

mance. The next section is devoted to the problem of improving
these performances using the correction approach.

B. Validity of the Correction Approach

In this section, we compare the performance of the acoustic
classifiers with their corrected counterparts, as described in
Section III-D.

The experiment shows that the correction approach is valid.
Fig. 4 shows a comparison of the acoustic versus correction clas-
sifiers. One can observe that the correction curve is generally
above the acoustic one, except for the few labels listed as fol-
lows:

Popularity low (—14%);
Tempo/Moderato (—11%);
Situation/Night (—5%);
Character/smokey (—4%);
Mood/positive (—4%).

This result is highlighted by the “mean” value which is clearly
separated and in favor of the corrected classifiers.
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Fig. 4. Global improvement in classifier performance (min-F-measure).
The z-axis represents label indices, sorted by increasing performance of the
corresponding acoustic classifier. The y-axis represents the min-F-measure
of the classifiers. Consequently the performance of the acoustic classifiers is
the “smooth” curve, and the other one shows the performance of the corrected
classifiers. The two horizontal lines in each graph represent the average perfor-
mance of the acoustic (thick gray line) and corrected classifier (thin black line).

TABLE II
RANKING OF THE MEAN OF THE MIN-F-MEASURES
FOR ALL LABELS IN THE FOUR EXPERIMENTS

Mean of the min-F-

Experiment
measures for all labels
Corrected 14.29
Acoustic 12.58

As a conclusion on the validity of the correction approach,
we rank the classifier performances in Table II. The average
improvement is 1.71. The relative performance improvement is
16.4%.

The statistical significance of this result is assessed using the
x? test. Note that this test cannot be computed on the F-measure
since it represents a frequency. We therefore compute x? on data
from the whole confusion matrices. More precisely, we compute
x?2 on the following.

1) The well-classified titles (True positive + True negative

titles for the acoustic and corrected classifiers).

2) The misclassified titles (False positive 4+ False negative).

We obtain the following results: y2;; = 99402, with p <
0.001 for the well-classifier examples; x2;; = 61631, with
p < 0.001 for the misclassified examples.

Fig. 5 shows that the average TP + TN is higher for the
corrected classifiers, and that the average FP+FN is smaller for
the corrected classifiers. This shows that correction significantly
improves the performance of the acoustic classifiers.

C. Categories are not Grounded

In this section, we analyze the relation between the perfor-
mance of the classifiers and their “semantics,” as given by their
categories (there are 16 categories, see Section II-A).

1) General Case: First, we observe that some categories are,
on average, better learned than others by the acoustic classifiers.
Fig. 6 shows the minimum, maximum, and mean performance
for each category. We can see, for instance, that the “Style” cat-
egory is in average poorly modeled, as compared to, e.g., The
“Dynamics” category.
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Well-classified and Misclassified Examples
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Fig. 5. Statistical significance of the results shown in Table II. The light gray
bars represent the average number of well-classified titles (TP + TN) for the
acoustic (left) and corrected classifiers (right). The dark bars represent the av-
erage number of misclassified titles.
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Fig. 6. Performance of acoustic classifiers on each of the 16 categories. The
graph shows, for each category, the lowest performance (bottom of the vertical
line), the best performance (top of the line) and the mean performance across
labels of this category (triangles). It is clear that categories exhibit a high vari-
ance with regards to “acoustic classifiability.”

However, each category contains both very good and very bad
labels, as shown in Fig. 6. For instance, the Style category con-
tains the “Urban” and “Rock” labels which are in the top list
of the acoustic classifiers (68% and 66% in min-F-measure, re-
spectively), and also “Folk Rock” which yields a min-F-measure
of 2.8% (with a random oracle yielding 2.2%), so extremely bad.
This high variance of category is illustrated in Fig. 6. In other
words, no category is intrinsically easy or difficult to model
using acoustic features.

Things are somehow different with the correction. In Table III
and Fig. 7, we see that the improvement of correction classifiers
does depend on the category. For categories Style, Country,
Genre, Language, Musical Setup, and Epoch, correction clas-
sifiers perform significantly better than acoustic classifiers.
Conversely, categories Main Instruments, Mood, Variant,
Popularity, Tempo, Metric, Situation, Character, Rhythm, and
Dynamics do not benefit from the correction approach (the
performance even degrades for Popularity and Tempo).

However, the performance of corrected classifiers (not shown
here) follows the same pattern than the performance of acoustic
classifiers (see Fig. 6). This confirms that categories are not re-
lated to the capacity of being learned. In other words, labels are
somehow grounded, but not categories.

It is important to stress the counter-intuitive nature of
these results. Seemingly « high-level” labels, e.g., “Situation
Landscape Panning Shot” (min-F-measure 69) or “Mood Sen-
timental” (17), can be better learned than seemingly low-level
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Fig. 7. Graphical representation of the performance of acoustic and corrected
classifiers for each label category.

TABLE III
PERFORMANCE OF ACOUSTIC AND CORRECTED
CLASSIFIERS FOR EACH CATEGORY

Dimension | MeanAcoustic | Mean Correction
Char. 20.14 22.32
Country 8.04 10.11
Dynamics 30.25 33.00
Epoch 15.00 16.88
Genre 15.35 17.48
Instr. 11.50 13.03
Lang. 12.81 16.63
Metric 6.60 7.40
Mood 16.81 18.61
Period 0.00 0.50
Pop. 24.00 20.67
Rhythm 28.60 32.10
Setup 16.64 19.88
Sit. 14.45 16.16
Style 4.94 5.95
Tempo 25.88 28.00
Variant 19.67 21.77

ones, e.g., “Character Metallic” (18) or “Instrument Accordion”
(13). This can be partly explained by the same reasons that
make the correction approach work: some high-level labels are
correlated with lower-level ones which are easier to model. The
corresponding acoustic classifier may then reach indirectly a
good performance.

2) Case of Popularity: The case of the popularity category
is interesting to point out. The corresponding result contradicts
recent claims about the possibility of a “Hit Song Science” that
aims at predicting whether a given song will be a hit, prior to
its distribution. More precisely, Hit Song Science claims that
cultural items have specific, technical features that make them
preferred by a majority of people, explaining the nonuniform
distribution of preferences [25]. These features could be ex-
tracted by algorithms to entirely automate the prediction process
from a given, arbitrary new song. The idea that popularity can
be inferred from technical features contradicts the natural in-
tuitions of any musically trained listener. A study showed the
inherent unpredictability of cultural markets [26]. The unpre-

dictability was shown to stem from a cumulative advantage or
rich-get-richer effect. The study did not conclude, however, that
there was no objective substrate to user preferences, but demon-
strated the existence of a preference bias introduced when users
are merely exposed to judgments of their pairs. The “popu-
larity feature” claims have been made in the domains of music
[27] as well as movie [28], leading to the appearance of hit
counseling businesses [29], [30]. In particular, Dhanaraj and
Logan describe an experiment [27] in which a system is trained
to learn a mapping between various musical features extracted
from the acoustic signal and from the lyrics, and the popu-
larity of the song. They conclude from this experiment that their
system learns indeed something about popularity, and so that Hit
Song Science is possible. However, the experiment described by
Dhanaraj and Logan was performed on a relatively small data-
base (1700 songs), with rudimentary features, mostly based on
timbre.

As a side-effect of our core experiment, we can revisit
this claim on a larger database. The Popularity category in our
HiFind database contains three labels, low, medium, and high. It
represents the popularity of the title, as observed, e.g., from hit
charts and records of music history. It is interesting to observe
that this Popularity category is not well modeled by acoustic
classifiers: its mean performance is ranked fourth, but with the
second lowest maximum value among categories. Moreover the
acoustic performances are respectively of 36%, 36%, and 4%
for the three classes. This is to be compared to the performances
of the associated random classifiers for these classes, which are
27%, 22%, and 3%, respectively. This means that popularity
is practically not learned by acoustic classifiers. Furthermore,
these performances are not improved with correction, as shown
on Fig. 7 and Table III. This further suggests that there are no
significant statistical patterns concerning popularity.

This result, obtained on a large-scale evaluation with the best
techniques available to our knowledge, contradicts recent claims
of so-called “Hit Song Science” that the popularity of a music
title can be learned effectively from acoustic features. We sug-
gest that these claims are either based on spurious data or on
biased experiments.

V. IMPLEMENTATION

All the data used in this experiment is available online at
http://www.csl.sony fr/~pachet/correction/.

The implementation of the feature extraction was done in
C (Windows dll). The evaluation was done using a Java-based
framework, using the Weka library [31]. Feature extraction
tasks were parallelized and distributed on two machines (a
1.7-GHz dual-core Xeon and a 2 dual-core Xeon at 2.66 GHz).
The training and testing phases (series of 632 SVMs) were
distributed on eight processors. The overall computation took
two weeks.

VI. CONCLUSION

We introduced the correction approach, an attempt to use sta-
tistical redundancies in the training database to correct errors of
individual classifiers by learning how to correct errors using sta-
tistical redundancy in the training database. The experiments de-
scribed here confirm the validity of the approach in general. For
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some labels, the improvements in classification are substantial.
For other labels the performances obtained are still not sufficient
to automate the metadata extraction process. However, the cor-
rection approach is worth considering in the case of multilabel
classification, as it is compatible with other known mechanisms
for improving individual classification tasks (e.g., feature selec-
tion, boosting, bagging, parameter tuning).

The correction approach can be applied to other types of
metadata databases, in particular social tagging systems which
also provide multilabel descriptions of items. It can also be ap-
plied to other fields than music, in which signal-based analysis
shows limitations, such as picture or video collections.
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