
Description-Based Design
of Melodies

François Pachet
Sony CSL Paris
6 Rue Amyot
75005 Paris, France
pachet@csl.sony.fr

Most current approaches in computer-aided compo-
sition (CAC) are based on an explicit construction
paradigm: users build musical objects by assembling
components using various construction tools. Virtu-
ally all technologies developed by computer science
and artificial intelligence have been applied to CAC,
thereby progressively increasing the sophistication
of music-composition tools. Composers can choose
between many programming paradigms to express
the compositions they “have in mind,” from the
now-standard time-lined sequencers (e.g., Stein-
berg’s Cubase) to advanced programming languages
or libraries (e.g., OpenMusic; Assayag et al. 1999).

Although these explicit constructions do benefit
from abstractions of increasing sophistication (ob-
jects, constraints, rules, flow diagrams, etc.), CAC
always remains based on an explicit construction
paradigm: Users must give the computer a clear
and complete definition of their material. This ap-
proach has the enormous advantage of letting users
control all dimensions of their work. However, it
also requires from users a fine understanding of
the technicalities at work. For instance, composing
music with object-orientation requires the under-
standing of objects, classes, and message passing.
Using constraints requires the understanding of
constraint satisfaction, filtering, and of the basic
constraint libraries, etc.

An interesting attempt to escape these technical
requirements is the Elody system (Letz, Orlarey,
and Fober 1998) in which the user can create
arbitrary abstractions by selecting musical material
together with a specific dimension of music (e.g.,
pitch or rhythm). These abstractions can then be
applied to other musical material to create yet
more complex objects. But here again, the user
must mentally maintain a model of the abstraction
algorithm at work, a task that can be particularly
difficult as the complexity of the composition
grows. Other approaches propose construction tools
that do not require explicit programming skills.

Computer Music Journal, 33:4, pp. 56–68, Winter 2009
c© 2009 Massachusetts Institute of Technology.

For instance, Hamanaka, Hirata, and Tojo (2008)
propose a morphing metaphor in which melodies
can be created as interpolations between two given
melodies. But this approach is limited to the context
of the generative theory of tonal music (Lerdahl and
Jackendoff 1983), and is not extensible to arbitrary
categories, as we will show later.

We propose here a novel approach to music
composition called description-based design that
attempts to remove the need for the user to under-
stand anything technical related to the target objects.
In this article, we focus on the creation of simple
musical objects—unaccompanied melodies—as a
working example, but our paradigm is general and
can be applied to many other fields of design.

First, we introduce the general description-based
design mechanism, and then we describe the type of
melodies we target. Finally, we describe experiments
demonstrating the functionality of the algorithm
and its potential.

Description-Based Design

Description-based design stems from the paradigm
of Reflexive Interaction (Pachet 2008). The idea is to
let users manipulate images of themselves, produced
by an interactive machine-learning component. The
creation of objects (musical objects in our case)
is performed as a side-effect of the interaction, as
opposed to traditional interactive systems in which
target objects are produced up-front as the result of
a controlled process. A typical example of reflexive
interactive system is the Continuator (Pachet
2004), a system that continuously learns stylistic
information coming from the user’s performance
and generates music “in the same style” in the
form of real-time answers to, or continuations of,
the music performed by the user. The Continuator
was shown to trigger spectacular interactions with
professional jazz musicians (Pachet 2004) as well as
with children (Addessi and Pachet 2005) involved
in free, unstructured improvisation. However, this
type of interaction shows limitations when users
want to structure their production—in other words,

56 Computer Music Journal



when they want to shift from improvisation to
composition.

Description-based design adds a further com-
ponent to the Continuator-like interaction by
introducing an explicit linguistic construct, pre-
cisely aimed at addressing this “structure” problem
inherent in free-form improvisation systems. The
idea is as follows. In the first phase, the system
generates objects—melodies, in our case—randomly
or according to specific generators. The user can
then freely tag these objects with words, “jumpy,”
“flat,” “tonal,” “dissonant,” etc. Each object can be
tagged by several words, or by none. In the second
phase, the user selects a starting object (say, a flat
melody), and one of the previously assigned tags
(say “jumpy”). The user can then ask the system
to produce a new object that will be “close” to the
selected one, but “more jumpy” or “less jumpy.”
More generally, the user can reuse any of the tags to
modify a given object in the semantic direction of
the tag. The system will then attempt to generate a
new object that optimally satisfies two conditions:
being “close” to the starting object, and increasing
(or decreasing) the probability of being of a certain
tag. The new object (in our case, a progressively
“jumpier” melody) is then added to the palette of
objects created by the system. It can, in turn, be
tagged or refined at will. The design activity is there-
fore strictly restricted to tagging objects and creating
variations using these tags. The implementation of
this scheme requires a combination of components
that we briefly describe here.

Object Generator

We call the objects that the user wants to produce
target objects. In our context, these objects are de-
fined by a set of technical features that describe these
objects and a generator that produces sets of objects.
The generator is a program that should be able to
randomly generate every possible object of interest.
The choice of the feature set will influence the
capacity of the system to faithfully learn user tags,
but identifying a reasonable feature set is usually
straightforward. These two ingredients are therefore
easy to design. We give the details for the particular
case of unaccompanied melodies subsequently.

A Machine-Learning Tagging System

The second component is a tagging system, associ-
ated with a machine-learning algorithm that learns
a mapping between user tags and the feature set.
In our case, this machine-learning component is a
support vector machine (SVM). SVMs are automatic
classifiers routinely used in many data-mining
applications (Burges 1998). In the training phase, the
SVM builds an optimal hyper-plane that separates
two classes, so as to maximize the so-called
“margin” between the classes. This margin can then
be used to classify new points automatically using
a geometrical distance as illustrated subsequently.
SVMs have been used extensively to learn music
information, in particular in the audio domain,
typically using spectral features (Mandel, Poliner,
and Ellis 2006). In our case, we use them to learn
classes from symbolic features, as described herein.

The tags are entered by the users as free text.
To each tag is associated an SVM classifier that is
retrained each time a user adds or removes a tag for
an object. To avoid undesirable effects such as over-
fitting, a feature-selection algorithm is applied prior
to the training phase. We use the IGR (information
gain ratio) algorithm (Quinlan 1993) by which only a
limited number of features are kept, maximizing the
“information gain” of each retained feature. Once
trained, this classifier can compute a probability
for that tag to be true for any object. Similarly, the
classifier computes the probabilities, for a selected
melody, of all learned tags, according to the current
state of the system in the session. More precisely, for
a given tag, we use Boolean classifiers trained on pos-
itive and negative examples. Positive examples are
all the objects having been tagged by the user with
this tag. Negative examples are chosen automati-
cally by the system, according to various heuristics.
(Notably, it chooses approximately the same number
of negative examples as positive ones, and it chooses
only objects that have been tagged, obviously with
tags other than the one under consideration.)

Of course, the accuracy of this prediction depends
on many factors, including the feature set, but also
the number of examples (i.e., objects having been
tagged by the user). In the experiment described in
this article, we show empirically that the predictions

Pachet 57



Figure 1. A support vector
machine defines a class
separation in a
n-dimensional space as an
hyperplane of dimension
n − 1, dividing the space
into two regions. In this
figure, the heavy lines are

defined by particular
“margin” points called
support vectors and define
the margin. The lighter
line, in the middle of the
margin, represents the
class separation itself. The
distance between a point

and the hyperplane is
traditionally interpreted as
the inverse of the
probability for the item to
belong to the class outside
the boundary. In this case,
variation2 is closer to A
than variation1, so its

probability to belong to A
is greater. Note that the
distance between an item
and its variations
(variation1 and variation2)
is not necessarily
meaningful.

are satisfactory after about 70 examples for each
category, but this result is not general.

A crucial aspect of the classifier to work in our
context it that it should yield, for a given item,
not only a class membership, but a probability of
membership. SVM are an appropriate framework in
this case, as they precisely transform a classification
problem into a geometrical distance problem. Once
trained to classify between two classes, say A and
B, the SVM identifies a set of support vectors that
define an optimal margin between A and B, as illus-
trated in Figure 1. The classification decision for an
item I is then made on the basis of the distance of I
to the hyperplane defined by the support vectors. As
a consequence, one can interpret this distance as the
inverse of the probability for I to belong to A (or B).
This is particularly true for items that are “outside”
the hyperplane, namely, that are not classified as
belonging to the class under consideration.

A Combinatorial Generator

The task of the combinatorial generator is to gener-
ate variations of an object that maximize two prop-
erties: being as close as possible to the initial object,
and increasing (or decreasing) the probability of a
given tag/classifier by a given ratio. A naı̈ve, combi-
natorial version of this algorithm is given in Figure 2.

The generation of variations is domain-specific.
We describe a simple variation generator for

melodies herein. Increasing the probability of the
variation to belong to the class represented by the
tag is done in our case by exploiting the probability
given by the SVM, as described in the previous
section. Sorting generated variations according to
the distance to the initial object is a crucial step,
as it ensures that the resulting variation will be as
close as possible to the starting object.

There are several ways to implement such a
distance. One is to use the feature set described
in the previous section, which defines a natural
distance between two objects (e.g., a Euclidean
distance). The feature space can also be transformed,
e.g., by the kernel used for classification. In our
example, a standard radial basis function kernel
was used. However, the distance between two items
given by the SVM is not necessarily appropriate, as
kernel transforms aim primarily at optimizing class
separation and not at defining a meaningful distance
between items of the training set.

A better option is to introduce a domain-
dependent distance. In the case of melodies, we
use a Levenshtein (1965) distance on the pitch
sequence, as described subsequently. A simple ex-
tension of this algorithm is the use of “compound
commands.” Arbitrary Boolean expressions can be
formed from basic “more” or “less” commands,
such as “more T1 AND less T2 AND as T3.” (The
tags Tn are typically adjectives.) Such an extended
Boolean expression can be easily substituted to the
test of line 6 in the pseudo code of Figure 2. An
example is given in the section entitled “Stretching
a Tonal Melody,” where we generate a “more long
AND as tonal” melody.

We will now describe an application of our
scheme to the construction of melodies.

The Case of Unaccompanied Melodies

Melodies are a good example to illustrate our
approach because they are both technical objects
and subjective ones.

Five Types of Melodies

There are many known technical features to
describe melodies, notably related to pitch

58 Computer Music Journal



Figure 2. The
combinatorial search
algorithm. The “FindLess”
algorithm is similar, and
extension to compound

commands is
straightforward. Here, N is
a predetermined number
of variations to be
generated.

Figure 2

distribution, repetition, or tonality. There are also
many subjective appreciations one can think about
to talk about melodies (simple, jumpy, linear,
annoying, dissonant, etc.). There is, furthermore,
no simple way to associate these subjective
expressions to the technical features, especially for
non-musicians. Even for trained musicians, finding
the “right melody” can sometimes be an extremely
difficult task. So melodies are an ideal playground
for description-based design.

In this experiment, we restrict ourselves to the
composition of four-bar unaccompanied melodies,
with a maximum of four possible note durations
(quarter, half, dotted half, and whole notes) and
a pitch range of [60, 80] (in MIDI pitch). Figure 3
gives an example of such a melody. Although these
restrictions may appear drastic compared to real
melodies, these constraints still define a search
space of more than 2016 possible items, large enough
to justify the use of our framework.

The aim of the experiment described here is
to demonstrate that the algorithm proposed and
described previously essentially works, i.e., does
produce “close variations” that increase the proba-
bilities of melodies to be of an arbitrary subjective

Figure 3. A typical tonal
melody (My Rifle, My
Pony and Me, originally
sung by Dean Martin and
Ricky Nelson), here,
stylized.

Figure 3

category. To this end, we chose not to consider
arbitrary subjective categories, but limit the ex-
periment to five “controlled” categories: tonal,
brown, and serial, as well as long and short. The
justification for this choice comes from the clarity
of the definition of each of them, which allows us
to test the results non-ambiguously. More precisely,
we introduce the following (possibly overlapping)
categories.

Tonal Melodies

Tonal melodies are melodies having a clear tonal
center. Although the notion of tonality has long
been an object of debate in musicology as well
as in cognitive science (Temperley 2007), it is
quite easy to produce melodies with a clear tonal
center, and we give a simple algorithm to do so
herein. An example of a tonal melody is given in
Figure 3.

Pachet 59



Figure 4. The melody of
With a Little Help from
My Friends (here, stylized)
is a typical brown melody.

Figure 4

Figure 5. Examples of (a)
tonal, (b) serial, and (c)
brown melodies generated
by our three generators.

Figure 5

Brown Melodies

Brown melodies are melodies with only small
intervals. The “brown” term is borrowed from the
famous experiment of Voss and Clarke (1978), who
compared random, Brownian, and 1/ f melodies. We
give later the description of a simple algorithm that
generates brown melodies. A typical example of a
brown melody is the song With a Little Help from
My Friends by John Lennon and Paul McCartney
(see Figure 4).

Serial Melodies

Serial melodies are defined here to be melodies in
which all pitches occur with equal frequency. Serial
melodies are rarely used in popular music, but this
category is useful for our demonstration, as it bears
an unambiguous definition. Typical serial melodies
are dodecaphonic melodies in which all twelve pitch
classes are used.

Additionally, we introduce two categories: long
and short. These categories are simply related to the
number of notes. Like the preceding ones, they will
be defined only by a set of examples.

Simple Experiment

We generated 72 examples of each of the three
primary categories (tonal, serial, and brown)

and provided them to the system with their
corresponding tags. Examples of these gener-
ated melodies are given in Figure 5. The gen-
erators are defined as follows. For each genera-
tor, the basic operation described is repeated nb
times, where nb is a random number between 0
and 16.

The tonal generator randomly draws notes from
a random scale (e.g., C major). Each note falling on
a beat is chosen from the triad of the scale. The
other notes are chosen randomly from the scale.
The duration of each note is randomly selected
among quarter and half notes. The serial generator
randomly draws a pitch from an initial list of all
possible pitches. It then removes it from the list
and repeats the operation. When the list is empty,
the list is filled again. This ensures a “maximally”
serial melody given the pitch range. The brown
generator starts from a random pitch. It then
randomly draws an interval in [−1, +1] and adds it
to the preceding pitch. In all three cases, the notes’
MIDI velocities values (corresponding roughly to
loudness) are random integers taken in the range
[70, 100].

The variation generator we use is a deliberately
simple algorithm. Starting from a set containing
only the initial melody, it generates a variation by
randomly applying one of the following three modi-
fications: (1) modify the pitch of a randomly selected
note; (2) insert a random note with a random pitch
and velocity; or (3) remove a randomly selected
note.

The resulting variation is then added to the set,
and the process is repeated by randomly applying
a new “seed” melody from the updated set. This
procedure creates, by definition, variations of various
“depths,” i.e., similar as well as different melodies.
In the experiments described here, the number of
variations produced and explored is set to 20,000.
The set of features we use for describing melodies is
shown in Table 1.

Many other melody features could be introduced,
but we restrict ourselves to this list in the context
of this experiment. As we will see subsequently,
the velocity feature is not used in this particular
experiment and is inserted here just to show
the robustness of the algorithm. As mentioned

60 Computer Music Journal



Table 1. The Set of Features Used to Represent and Learn Melodies

Feature Notes

Number of notes
Mean value of the pitch sequence
Mean value of the “pitch interval” sequence
Mean value of the velocity (MIDI information)
Tonal weight This feature gives an indication of how tonal a melody is. It is

computed using a “pitch profile” algorithm (Krumhansl 1990): For
each of the possible twelve major scales, it counts the number of
notes of the melody that are in this scale. It returns the maximum
value of this count.

Pitch compressibility ratio This feature gives an indication of how repetitive a melody is. It uses
a data-compression algorithm as used in the Continuator (Pachet
2004). Its value lies between 0 (no repetition at all) and 1 (a
sequence with the same note repeated throughout).

Interval compressibility ratio This feature is the same as the previous one, but applied to the
sequence of intervals rather than pitches.

Table 2. The Feature-Selection Mechanism Applied to Our Five Categories

Tonal Brown Serial Long Short

1 0.791 1 0.795 1 1
meanPitch meanPitchInterval meanPitch nbNotes nbNotes

2 0.788 0.948 0.649 0.67 0.75
tonalWeight intervalCompRatio pitchCompRatio meanPitch intervalCompRatio

3 0.546 0.437 0.489 0.586 0.723
meanPitchInterval meanPitch meanPitchInterval tonalWeight meanPitchInterval

4 0.49 0.139 0.399 0.264 0.634
pitchCompRatio tonalWeight tonalWeight pitchCompRatio meanPitch

previously, a feature-selection algorithm is applied
on the feature set prior to learning to select the
most meaningful features given the set of examples
and counterexamples for a given tag. This feature
selection has the extra advantage of giving an
indication about how the classifier has generalized
from the examples.

Experiments

We first generate a set of examples using our three
primary melody generators: tonal, serial, and brown.
We then train the corresponding classifiers on
these examples. Then, we introduce the “long” and

Figure 6. Initial melody
created by the serial
melody generator. The
melody is perfectly serial
according to our definition
(all pitches are different,

though here not all pitch
classes). The serial
classifier yields a
probability of 1.0. The
tonal classifier yields a
probability of 8 × 10−3.

Figure 6

“short” categories by tagging the generated melodies
accordingly, and we also train the corresponding long
and short classifiers. After this step, the system is
able to predict each of these five categories for
any (possibly untagged) melody. We then perform
a series of experiments using these generated
melodies as starting points and the classifiers as
modifiers.

Pachet 61



Figure 7. The same
melody, a bit “more
tonal.” The differences are
highlighted. The tonal
classifier has increased its
probability to 5.7 × 10−2.

Figure 7

Figure 8. Still a bit “more
tonal.” Probability is now
1.4 × 10−1.

Figure 8

Training Phase

After the training phase, each of the five categories
has been trained on approximately 72 positive
examples and 72 negative examples. The negative
examples are chosen automatically for the system,
for the brown, tonal, and serial categories, by
picking up random melodies which are not tagged
with the corresponding tag. In the case of the long
and short categories, we help the system in telling
it to use long examples as negative examples for
short, and conversely. This trick is used to avoid
having “bad” counterexamples, as some generated
melodies could turn out to be long (or short) without
being tagged as such.

As a result, we give here the result of the feature-
selection process applied for each tag. (Only the first
four most-significant features are kept.) This gives
an indication of which features were selected by the
classifier and with which weight. These numbers
indicate how “well” the classifiers have understood
the semantics of each generator. The most important
features for brown, long, and short do fit with the
corresponding semantics of the generator. It can
be observed that the “tonal” classifier did use the
feature “tonalWeight,” but not in the first position.
This slight discrepancy is owing to the limited
number of examples given for training. It has a small
incidence on the process, as shown in Table 2.

In a second step, we now consider a series of test
cases, illustrating the use of classifiers as melody
constructors using the description-based algorithm.
In particular, we show that the algorithm is able to
produce variations that would otherwise be found
only by very specific programs.

Figure 9. Again, “more
tonal.” Probability is now
3.11 × 10−1.

Figure 9

Figure 10. “More tonal,”
again. Probability is
5.3 × 10−1.

Figure 10

Figure 11. Probability is
now 7.7 × 10−1.

Figure 11

“Tonalizing” a Serial Melody

The first example consists in starting from a serial
melody (see Figure 6) and making it progressively
more tonal. Figures 7–13 illustrate the process step-
by-step. At each step, a new melody is generated
that is both similar to the preceding one and slightly
more tonal. The initial melody is generated with
the serial generator. The last one is optimally tonal
while being still “close” to the original. We indicate
the probability of each classifier (tonal and serial) as
well as the effective measure of “tonalness.” Note
that such a measure is usually impossible to get with
arbitrary categories, hence the use of control cate-
gories for this experiment. These figures and the re-
sulting melodies indicate clearly that the system has
correctly learned the notion of tonal and serial, and,
more importantly, that it is able to use these classi-
fiers as melody generators controlled by the tags.

Table 3 indicates the progressive increase in
“tonalness” at each step of the process. This increase
is confirmed by the increase of real “tonalness” of
the melody as computed by the tonalWeight feature
(described in Table 1).

Stretching a Tonal Melody

The second experiment consists of using
description-based design to stretch a melody, i.e.,
adding more notes. Of course, an easy solution to

62 Computer Music Journal



Figure 12. Final step; the
melody is now perfectly
tonal (in B-flat major,
when notes are spelled
enharmonically, with a
probability of the tonal
classifier of 9.6 × 10−1), yet

“similar” to the initial
serial melody. The
accidentals are displayed
without correction and
thus do not reflect the
tonality, which contains
flats rather than sharps.

this problem consists of explicitly programming a
function to add notes to a given melody. But we can
again avoid the use of such explicit programming.
Instead, we can reuse the two tags long and short,
trained with examples generated with the other
three generators. By convention, we tag melodies
with fewer than eight notes as short, and melodies
with greater than twelve notes as long. As a
consequence, the system automatically learns long
and short, with examples coming from all three
generators. We can check that the system has cor-
rectly learned the tags long and short by observing
the selected features, as indicated in Table 2.

The feature “number of notes” was selected as
a primary feature for long and short. This feature-
selection process also shows incidentally that the
system has however not simply associated long and
short to the number of notes, but rather to a more
complex configuration of features. For instance,
it turns out that most of the long melodies also
have more repetition in their interval sequence.
The system has no way to generalize better in
our context (“better” would be to consider only
the feature nbNotes). But as we will see, this
approximation does not prevent it from producing
“meaningful” variations.

We now consider a melody that is tagged both
as tonal and short, illustrated in Figure 14 (the first
melody). In a first step we will make it longer as in
the previous experiment, i.e., through the command
more long. As we can observe, this command indeed
results in a similar melody, with more notes. The
sequence of “more long” commands is illustrated
in Figure 14, and it can be noted that the melodies
have all indeed progressively more notes (from seven
initially up to ten).

However, it can also be noted that the notes that
have been added to the melody by the combinatorial
algorithm make it not tonal any longer: The initial
melody is in C major, but added notes (D-sharp, C-
sharp, and F-sharp) are not in the C-major scale. This

Figure 13. A slightly more
tonal version of the
melody. The melody is,
strictly speaking, not more
tonal than the preceding
one. However, because the
notion of “tonalness” was

not learned perfectly by
the classifier, the
algorithm found an
artificial way of improving
its “understanding” of
“tonalness” by reducing
the number of notes.

is highlighted by the fact that the corresponding
probabilities of being tonal have shifted from 0.99
to 0.07 (see Table 4). This phenomenon is not unex-
pected, however, as the system has just been asked to
make the melody “more long,” but it was not given
any constraint on tonality or any other property.

A natural way to address this problem consists
in issuing a compound conjunctive command of the
form “more long AND as tonal.” Such a query is
made by selecting the tags and the corresponding
modifiers through a specific interface (see Figure 15).
In this case, starting from the same melody, we
obtain the melodies in Figure 16. We can observe
that the algorithm has now progressively added
only tonal notes (F and G). Most importantly, these
added notes have been chosen as a “side effect”
of the compound command, and not through the
introduction of an explicit representation of tonality
in the program.

Note that this compound query triggers a non
trivial search. Figure 17 illustrates the search process
corresponding to a “more long AND as tonal”
query. At each iteration (x axis), the probabilities
for tags long (dashed line) and tonal (plain line)
are displayed. A solution is found when the tonal
plain line is within the two horizontal dashed
lines (which represent the bounds ± 10 percent of
the starting “tonalness”) and simultaneously the
long (dashed) line is above the horizontal large line
(which represents “more long” by 15 percent). It can
be seen that the system explores about 300 melodies
before finding a solution.

Making a Tonal Melody More Brown

The last example starts from a tonal melody that is
progressively made more brown. We illustrate again
the process step-by-step in Figure 18; note also the
increase in brownness in Table 5.

Pachet 63



Figure 14

Figure 15

Table 3. The Progressive Increase in “Tonalness” at Each Step of the Process Leading to Sequences in
Figures 7–14

Melody Versions Serial Classifier Tonal Classifier “Tonalness”

1: Initial 1.0 8 × 10−3 0.54
2: More tonal 1.0 5.7 × 10−2 0.625
3: More tonal 1.0 1.4 × 10−1 0.66
4: More tonal 9.95 × 10−1 3.11 × 10−1 0.70
5: More tonal 8.15 × 10−1 8.15 × 10−1 0.75
6: More tonal 1.82 × 10−2 7.7 × 10−1 0.79
7: More tonal 3.87 × 10−5 9.63 × 10−1 0.87
8: More tonal 1.72 × 10−7 9.98 × 10−1 1.0

Figure 14. A short and
tonal melody as a starting
point for repeated
“stretching” operations.
The probability of being
long is initially (a)
1.06 × 10−7. Successive

probabilities of being long
are (b) 1.25 × 10−3, (c)
9.77 × 10−1, and (d) 1.0.
The latest melody cannot
be stretched any further, as
its probability of being
long is 1.0.

This experiment again shows that the probability
of a given tag (here, brown) does increase after
each modification query. It can be observed that
the resulting melody is indeed more Brownian
in the sense that intervals are getting smaller on
average. There is a limit obtained by the system that
cannot increase brownness further after step 12,
as the probability reaches 1.0, although one could
imagine further small modifications of the melody
to make it more Brownian (e.g., lowering the initial
G-sharp). This can be explained by the fact that
the brown classifier either has too few examples
(and counter-examples), or that the features chosen

Figure 15. An interface for
specifying conjunctive
compound queries holding
on several tags
simultaneously. For each
tag the user can specify the
type of action (as, more,

less, or ignore) and the
corresponding ratios. Here,
a query to produce an item
that is “more long by 15
percent AND as tonal by
10 percent,” while the
other tags are ignored.

in this experiment are not able to fully grasp the
notion of brownness. However, the classifier learns
enough to produce meaningful “small variations.”
Furthermore, the user can tag at any step the
resulting new melodies and retrain the classifiers to
continuously fine-tune the system.

Discussion

We have introduced description-based design as a
novel way of building musical objects that does not
require any form of programming knowledge

64 Computer Music Journal



Figure 16

Table 4. Variations on the Starting “Short and Tonal” Melody

Melody Versions long tonal Number of Notes

1: Short and tonal 1.0 × 10−7 9.9 × 10−1 7
2: 1 More long 1.25 × 10−3 9.2 × 10−1 8
3: 2 More long 9.77 × 10−1 6.13 × 10−1 9
4: 3 More long 1.0 7.0 × 10−2 10
5: 1 more long AND as tonal 3.8 × 10−5 9.9 8
6: 5 more long AND as tonal 1.4 × 10−1 9.96 × 10−1 9
7: 6 more long AND as tonal 1.0 9.87 × 10−1 10

Variations 2–4 are obtained by applying the “more long” command. Variations 5–7 are obtained by applying the “more long AND as
tonal” command to the same initial melody.

from the user. The only programming constraint
lies in the variation generators: They must be
designed in such a way that they generate at least
the target objects (together with possibly many
unwanted objects). However, this is a relatively
weak constraint, as these generators can be designed
once for all, for a particular domain (here, melodies).
Of course, more- or less-efficient generators could
be considered, but default naı̈ve generators are easy
to design.

This article only aims at demonstrating the nature
of the underlying algorithm using simple, well
understood examples. The experiment presented
here used controlled categories to illustrate the
algorithm and to show its capacity to produce

Figure 16. The (a) short
and tonal melody now
progressively made “more
long and as tonal.”
Respective probabilities of
being long and tonal are

given in Table 4. The final
melody is (b) close to the
original, (c) longer, and (d)
still as tonal as the starting
one.

musical objects without explicit programming or
editing. The approach is, in essence, more suited to
the use of subjective, non-controlled descriptions,
and reaches its full potential when these descriptions
are collected massively from social tagging systems.
Such an experiment is currently under way, using
tags collected from a melody competition Web site.
In this context, users can produce melodies, tag the
melodies of others, and reuse tags for modifying
melodies. Another application of this paradigm is
to use the system to control the generation of jazz
improvisations as an extension of the Continuator
system (Pachet 2004). In this latter case, subjective
tags are used as control handles to influence, in real
time, the quality of generated solos.

Pachet 65



Figure 17. The evolution of
the search process during
the “more long by 15
percent AND as tonal by
10 percent” query.

Figure 17

Table 5. The Progressive Increase in Brownness,
Starting from an Initial Tonal Melody

Melody Versions Brown

1: tonal 0.0
2: 1 More brown 0.0
3: 2 More brown 6.65 × 10−35

4: 3 More brown 4.67 × 10−33

5: 4 More brown 4.14 × 10−32

6: 5 More brown 1.15 × 10−29

7: 6 More brown 2.88 × 10−28

8: 7 More brown 4.71 × 10−22

9: 8 More brown 3.31 × 10−20

10: 9 More brown 1.41 × 10−8

11: 10 More brown 9.95 × 10−1

12: 11 More brown 1.0

Note that the working example showed here is
based on the SVM, but other classifiers could be
used. Decision trees, for instance, have been shown
recently to exhibit better geometrical properties than

SVMs (Alvarez, Bernard, and Deffuant 2007). They
could be substituted for SVMs without changing the
framework described here.

The algorithm we propose is blind, bearing some
similarity with other blind search algorithms like
genetic algorithms (GAs), often used in music gener-
ation (Biles 1994). GAs could indeed be used to build
our variations, instead of specifically designed ran-
dom generators. However, GAs are more difficult to
control than random generators. Most importantly,
we believe that our naı̈ve search algorithm can
be optimized by exploiting information about the
features used by the classifier, and this constitutes a
current avenue of research. Such an optimization is
not possible by definition in GAs, which operate on
chromosomes, which are independent of the feature
sets used by the classifiers.

Description-based design attempts to bridge
the gap between description and construction,
thereby reducing the need for users to learn the
technical languages of the objects they have “in

66 Computer Music Journal



Figure 18. Various steps in
making a tonal melody
“more brown.” Note that
at (f), the algorithm finds
no other solution to
increase brownness than

to remove a note, to later
add another note back (h).
At the last step (l), the
only way to improve
(slight brownness) is to
remove a note.

mind.” This approach is well suited to domains in
which the features to describe objects are known
and accurate, and users have the capacity to easily
express subjective judgments in a consistent way.
This applies to most of the musical objects created
in the context of computer-assisted composition.
For instance, description-based design is currently
being applied to other types of musical objects, in
particular, chords, chord sequences, and harmonized
melodies.

Audio synthesis is also being investigated.
For instance, programming FM sounds requires
notoriously complex knowledge of FM synthesis.
Several approaches have attempted to provide users
with more subjective means of programming sound
synthesizers (Rolland and Pachet 1996; Sarkar,
Vercoe, and Yang 2007). But these approaches are
always based on a fixed, pre-programmed represen-
tation of supposedly universal subjective judgments.
Description-based design allows users to express
personal subjective judgments about sound textures
and reuse these judgments to explore sound spaces
in an intuitive and personal way. In the case of audio
loops, our approach can benefit from two sets of tech-
nologies: The large corpus of studies in the domain
of audio features that yield efficient representations
of audio objects, and the emerging technologies
of concatenative sound synthesis (Schwartz 2006),
which provide us with the variation generators
needed for description-based design.

References

Addessi, A.-R., and F. Pachet. 2005. “Experiments with
a Musical Machine: Musical Style Replication in 3/5
Year Old Children.” British Journal of Music Education
22(1):21–46.

Alvarez, I., S. Bernard, and G. Deffuant. 2007. “Keep the
Decision Tree and Estimate the Class Probabilities
Using Its Decision Boundary.” Proceedings of the 20th
IJCAI. Rochester Hills, Michigan: International Joint
Conferences on Artificial Intelligence, pp. 654–659.

Assayag, G., et al. 1999. “Computer Assisted Composition
at IRCAM: PatchWork and OpenMusic.” Computer
Music Journal 23(3):59–72.

Biles, J. 1994. “GenJam: A Genetic Algorithm for Gen-
erating Jazz Solos.” Proceedings of the 1994 Interna-
tional Computer Music Conference. San Francisco,

Pachet 67



California: International Computer Music Association,
pp. 131–137.

Burges, C. J. C. 1998. “A Tutorial on Support Vector
Machines for Pattern Recognition.” Data Mining and
Knowledge Discovery 2:121–167.

Hamanaka, M., K. Hirata, and S. Tojo. 2008. “Melody
Morphing Method Based on GTTM.” Proceedings
of ISMIR 2008. Philadelphia, Pennsylvania: Morgan
Kauffman, pp. 107–112.

Krumhansl, C. 1990. Cognitive Foundations of Musical
Pitch. New York: Oxford University Press.

Lerdahl, F., and R. Jackendoff. 1983. A Generative Theory
of Tonal Music. Cambridge, Massachusetts: MIT Press.

Letz, S., Y. Orlarey, and D. Fober. 1998. “The Role of
Lambda-Abstraction in Elody.” Proceedings of the
1998 International Computer Music Conference. San
Francisco, California: International Computer Music
Association, pp. 377–384.

Levenshtein, V. I. 1965. “Binary Codes Capable of
Correcting Deletions, Insertions, and Reversals.”
Cybernetics and Control Theory 10(8):707–710.

Mandel, M., G. Poliner, and D. Ellis. 2006. “Support
Vector Machine Active Learning for Music Retrieval.”
Multimedia Systems 12(1):3–13.

Pachet, F. 2004 “Beyond the Cybernetic Jam Fantasy:
The Continuator.” IEEE Computer Graphics and
Applications 4(1):31–35.

Pachet, F. 2008. “The Future of Content Is in Ourselves.”
ACM Computers in Entertainment 6(3). Available at
www.acm.org/pubs/cie/.

Quinlan, J. R. 1993. Programs for Machine Learning. Los
Altos, California: Morgan Kaufmann.

Rolland, P.-Y., and F. Pachet. 1996. “A Framework for Rep-
resenting Knowledge about Synthesizer Programming.”
Computer Music Journal 20(3):47–58.

Sarkar, M., B. Vercoe, and Y. Yang. 2007. “Words that
Describe Timbre: A Study of Auditory Perception
Through Language.” Paper presented at the Language
and Music as Cognitive Systems Conference (LMCS-
2007), Cambridge, UK, 11–13 May.

Schwartz, D. 2006. “Concatenative Synthesis: The
Early Years.” Journal of New Music Research 35(1):3–
22.

Temperley, D. 2007. Music and Probability. Cambridge,
Massachusetts: MIT Press.

Voss, R. F., and J. Clarke. 1978. “1/ f Noise in Music:
Music From 1/ f Noise.” Journal of the Acoustical
Society of America 63(1):258–261.

68 Computer Music Journal


