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Abstract
Many systems use Markov models to generate
finite-length sequences that imitate a given style.
These systems often need to enforce specific con-
trol constraints on the sequences to generate. Un-
fortunately, control constraints are not compatible
with Markov models, as they induce long-range de-
pendencies that violate the Markov hypothesis of
limited memory. Attempts to solve this issue us-
ing heuristic search do not give any guarantee on
the nature and probability of the sequences gener-
ated. We propose a novel and efficient approach to
controlled Markov generation for a specific class of
control constraints that 1) guarantees that generated
sequences satisfy control constraints and 2) fol-
low the statistical distribution of the initial Markov
model. Revisiting Markov generation in the frame-
work of constraint satisfaction, we show how con-
straints can be compiled into a non-homogeneous
Markov model, using arc-consistency techniques
and renormalization. We illustrate the approach on
a melody generation problem and sketch some real-
time applications in which control constraints are
given by gesture controllers.

1 Introduction
Markov processes are a popular modeling tool used in con-
tent generation applications, such as text generation, music
composition and interaction. Markov processes are based on
the “Markov hypothesis” which states that the future state of
a sequence depends only on the last state, i.e.,

p(si|s1, . . . , si−1) = p(si|si−1).

The Markovian aspects of musical sequences have long
been acknowledged, see e.g. [Brooks et al., 1992]. Many
attempts to model musical style have therefore exploited
Markov chains in various ways [Nierhaus, 2009], notably se-
quence generation.

In practice, Markov models are often estimated by count-
ing occurrences and transitions in a corpus of training se-
quences. Once the model is learn, sequences can be generated
simply by random walk: the first item is chosen randomly us-
ing the prior probabilities; then, a continuation is drawn using

the model, and appended to the first item. This is iterated to
produce a sequence of length L. This process has the advan-
tage of being simple to implement and efficient.

For instance, the Continuator [Pachet, 2002] uses a Markov
model to react interactively to music input. Its success was
largely due to its capacity to faithfully imitate arbitrary musi-
cal styles, at least for relatively short time frames. Indeed, the
Markov hypothesis basically holds for most melodies played
by users (from children to professionals) in many styles of
tonal music (classical, jazz, pop, etc.). The other reason of
its success is the variety of outputs produced for a given in-
put. All continuations produced are stylistically convincing,
thereby giving the sense that the system creates infinite, but
plausible, possibilities from the user’s style.

With the Continuator, a user typically plays a musical
phrase using a MIDI keyboard. The phrase is then converted
into a sequence of symbols, representing a given dimension
of music, such as pitch, duration, or velocity. The sequence
is then analyzed by the system to update the Markov model.
When the phrase is finished, typically after a certain tempo-
ral threshold has passed, the system generates a new phrase
using the model built so far. The user can then play another
phrase, or interrupt the phrase being played, depending on the
chosen interaction mode. It was shown that such incremental
learning creates engaging dialogs with users, both with pro-
fessional musicians and children [Addessi and Pachet, 2005].
Other systems such as Omax [Cont et al., 2007] followed the
same principle with similar results.

In such interactive contexts, the control problem manifests
itself under different forms:

• The so-called zero-frequency problem arises during ran-
dom walk, when an item with no continuation is cho-
sen (see, e.g. [Chordia et al., 2010]). Many strategies
have been devised to circumvent this problem, including
restarting the walk from scratch [Dubnov et al., 2003].

• The end point or drift problems [Davismoon and Eccles,
2010] concern the fact that the generated sequence can
violate musical constraints holding, e.g., on the pitch
range of the melody.

• User control constraints. In a musical context, the user
may want the sequence to be globally ascending, pitch-
wise, or to follow an arbitrary pitch contour. These con-
straints can be a consequence of a particular gesture, de-
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tected, e.g., by input sensors. For instance, it may be
interesting to improvise a melody that ends on a partic-
ular note. This is a striking effect used in Hard-Rock
guitar virtuoso improvisations, which often consist of a
frantic sequence of notes ending gracefully on a note of
the triad (e.g. the tonic of the underlying chord).

Most approaches proposed to deal with these issues con-
sist in grafting heuristic search on top of random walk: sim-
ulated annealing [Davismoon and Eccles, 2010], case-based
reasoning [Eigenfield and Pasquier, 2010], generate-and-test
[Dubnov et al., 2003]. However, these methods do not offer
any guarantee that a solution will be found. Moreover, the so-
lutions found are not consistent with the underlying Markov
model, i.e., the probability to draw them is not the Markov
probability. Lastly, these methods are not efficient enough
for interactive, real-time applications.

Mixed Networks [Dechter and Mateescu, 2004], a special
case of graphical models, combine constraints and probabili-
ties in a coherent manner. However the problem addressed is
different: infer the posterior probabilities of the new model
obtained mixing constraints and probabilities. Instead we
generate a new model that, when combined with the con-
straints, is equivalent, probability-wise, to the initial Markov
model.

It is important to note that Hidden Markov Models (HMM)
cannot be applied, because in our context the Bellman princi-
ple does not hold. Control constraints cannot be modeled as
cumulative cost functions: even anchor constraints (imposing
a fixed value at a specific position) may have implications on
the whole sequence, as we show below.

As outlined by [Pachet and Roy, 2011], control constraints
raise a fundamental issue since they establish relationships
between items that violate the Markov hypothesis: obviously
as soon as the constraint scope (the variables on which the
constraint holds) is larger than the Markov scope, the infor-
mation cannot be represented in a Markov model. However,
even constraints that remain within the Markov scope (e.g.,
unary constraints) create implicit dependencies that violate
the Markov hypothesis.

[Pachet and Roy, 2011] show that the reformulation of the
problem as a constraint satisfaction problem allows, for arbi-
trary sets of control constraints, to compute optimal, singular
solutions, i.e., sequences that satisfy control constraints while
being optimally probable. However, what is often needed in
practice is a distribution of good sequences. We cannot use
the approach of [Pachet and Roy, 2011], as it does not pro-
duce a distribution of sequences, but only optimal solutions.
Furthermore, it involves a complete search-optimization al-
gorithm, which limits real-time use.

In this paper, we show that when control constraints do
not exceed the Markov scope (unary and binary adjacent for
order-1, as defined below) they can be “compiled” into a new
Markov model that is statistically equivalent to the initial one.
This yields the advantage of retaining the simplicity of ran-
dom walk, while ensuring that control constraints are satis-
fied. This result is obtained by establishing yet another bridge
between Markov generation and constraint satisfaction.

Section 2 introduces an example to illustrate our problem,
Section 3 states the problem in the framework of constraint

Figure 1: The two input melodies used to estimate M .

Melodies Probabilities Melodies Probabilities
CCCD 1/ 32 EECD 1/ 96
CCED 1/ 64 EEED 1/ 192
CECD 1/ 64 EDCD 1/ 96
CEED 1/ 128 EDED 1/ 96
CDCD 1/ 64 DCCD 1/ 96
CDED 1/ 64 DCED 1/ 192
ECCD 1/ 48 DECD 1/ 96
ECED 1/ 96 DEED 1/ 192

Table 1: The 16 4-note melodies satisfying the control con-
straint and their probabilities in M . The sum of probabilities
for these sequences, σ = 77/384, is not 1 because M gener-
ates sequences that do not satisfy the constraint.

satisfaction, Section 4 describes how to build the new model
and Section 5 sketches some applications.

2 A Melody Generation Example
Let us consider a Markov model M estimated from the two
sequences (melodies) shown in Figure 1.

The prior vector of M is:

C D E
(1/2 1/6 1/3)

The transition probabilities of M are:

C D E
C
D
E

(
1/2 1/4 1/4
1/2 0 1/2
1/2 1/4 1/4

)

We consider the problem of generating 4-note melodies.
There are 60 possible such melodies with non-zero probabil-
ities. For instance, sequence CDED has probability:

pM (CDED) = pM (C)pM (D|C) pM (E|D) pM (D|E) =
1

64
.

We then add the control constraint that the last pitch be a
D. There are only 16 such sequences (see Table 1).

Our goal is to build a Markov process M̃ that generates
exactly these 16 melodies with the same probability distribu-
tion. In general, of course, the solutions and their probabili-
ties are not known. We show here how to build M̃ given M
and control constraints, for a particular class of constraints.

3 Problem Statement
We are interested in generating fixed-length sequences from
a Markov process M that satisfy control constraints. To use
a random walk approach, we need a Markov process M̃ that
generates exactly the sequences satisfying the control con-
straints with the probability distribution defined by M . In
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general, it is not possible to find such a Markov process be-
cause control constraints violate the Markov property, as out-
lined by [Pachet and Roy, 2011]. However, when control con-
straints remain within the Markov scope, we show that such
a model exists and can be created with a low complexity.

For the sake of simplicity, we consider only order-1
Markov processes, defined by a stochastic transition matrix
(i.e., each row sums up to 1). Generalization to higher and
variable orders is discussed in Section 4.5.

A Markov process M is defined over a finite state space
A = {a1, . . . , an}. A sequence s of length L is denoted by
s = s1, . . . , sL with si ∈ A. S is the set of all sequences of
length L generated by M with a non-zero probability:

pM (s) = pM (s1) · pM (s2|s1) · · · pM (sL|sL−1).

Following [Pachet and Roy, 2011], we represent the se-
quence to generate as a sequence of finite-domain constrained
variables {V1, . . . , VL}, each with domain A, and Markov
properties as Markov constraints on these variables, defined
below. Control constraints are also represented as finite-
domain constraints. The induced CSP is denoted by P and
the set of solutions SC . Given these notations, M̃ should ver-
ify:

(I) pM̃ (s) = 0 for s /∈ SC ,

(II) pM̃ (s) = pM (s|s ∈ SC) otherwise.

These properties state that M̃ generates exactly the se-
quences s ∈ SC . Most importantly, sequences in SC have
the same probabilities in M and M̃ up to a constant factor
α = pM (s ∈ SC), i.e., ∀s ∈ SC , pM̃ (s) = 1/α · pM (s). In
the running example, α = σ.

Our main result is that for a certain class of induced CSPs,
hereafter referred to as Binary-Sequential CSPs(BSC), there
exists a non-homogeneous Markov process M̃ that satisfies
(I) and (II). We define the scope of a constraint as the inter-
val between its leftmost and rightmost variables. A Binary-
Sequential CSP is a CSP that contains only constraints whose
scope remains within the scope of the Markov order. With a
Markov order of 1, these constraints consist in 1) unary con-
straints and 2) binary constraints among adjacent variables
(see Section 4.1).

A non-homogeneous Markov process (NHM) is a Markov
process whose transition matrices change over time [Kolarov
and Sinai, 2007]. A NHM of length L is defined as a series
of transition matrices M̃ (i), i = 0, . . . , L− 1.

We now describe how to build M̃ from M and its induced
BSC, and show that M̃ achieves the desired properties.

4 Construction of M̃
M̃ is obtained by applying two successive transformations
to the initial model M . The first transformation exploits the
induced CSP to filter out state transitions that are explicitly
or implicitly forbidden by the constraints. This is achieved
by replacing the corresponding transition probabilities by ze-
ros in the initial transition matrices. A side-effect is that the
transition matrices are not stochastic anymore (rows do not

sum up to 1 any longer). The second transformation con-
sists in renormalizing those matrices to obtain a proper (non-
homogeneous) Markov model, a step which turns out to be
non trivial. We prove that this model satisfies (I) and (II).

4.1 Induced CSPs
We consider a BSC with unary control constraints
U1, . . . , UL and binary constraints B1, . . . , BL−1. Ui defines
the states that can be used at position i in the sequence. Bi

defines the allowed state transitions between positions i and
i + 1. Markov constraints, denoted by K1, . . . ,KL−1, are
posted on all pairs of adjacent variables. Markov constraints
represent the following relation:

∀i, ∀a, b ∈ A,Ki = true ⇔ pM (b|a) > 0.

The CSP induced by our running example is the following:

V1
{C,D,E}

K1−→ V2
{C,D,E}

K2−→ V3
{C,D,E}

K3−→ V4
{C,D,E}← U4

V4={D}

The first step of our process is to make P arc-consistent.
Arc-consistency consists in propagating the constraints in the
whole CSP, through a fixed-point algorithm that considers
constraints individually [Bessière et al., 1995]. This ensures
that each constraint c holding on variables Vi and Vj satisfies:

∀x ∈ D(Vi), ∃y ∈ D(Vj) such that c(x, y) = true.

General algorithms for achieving arc-consistency were
proposed [Mackworth, 1977] but specific constraints can be
filtered more efficiently [Bessière et al., 1999]. Specific filter-
ing methods for Markov constraints are described in the next
section.

It is important to note here that enforcing arc-consistency
on a BSC P is sufficient to allow the computation of the tran-
sition matrices once for all, prior to the generation, with no
additional propagation. This can be shown as follows:

Proposition: If P is arc-consistent, then for all consis-
tent partial sequences s1 . . . si (i.e., sequences that satisfy all
the constraints between variables V1, . . . , Vi), the following
properties hold:

(P1) ∃si+1 ∈ D(Vi+1) such that s1 . . . sisi+1 is consistent.

(P2) s1 . . . sisi+1 is consistent ⇔ sisi+1 is consistent.

Proof. P is of width 2 as its constraint network is a
tree; [Freuder, 1982] proved that arc-consistency enables a
backtrack-free resolution of a CSP of width 2, therefore ev-
ery partial consistent sequence can be extended to a solution,
which is equivalent to P1. The condition in P2 is obviously
sufficient; it is also necessary as no constraint links Vi+1 back
to any other variable than Vi.

P1 and P2 ensure that the domains of variables after arc-
consistency contain exactly the valid prefixes and suffixes of
the corresponding transitions. The next step is to extract the
matrices from the domains, as described in Section 4.3.
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4.2 Enforcing arc-consistency of P
Arc-consistency of the Markov constraints Ki can be
achieved efficiently with the following propagators:

On instantiation: If Vi is instantiated with a ∈ A, remove
every b ∈ A such that pM (b|a) = 0 from the domain of Vi+1.
Conversely, if Vi+1 is instantiated with b ∈ A, remove all the
a ∈ A such that pM (b|a) = 0 from the domain of Vi.

On removal: If a ∈ A is removed from the domain of Vi,
remove all the b ∈ A such that pM (b|c) = 0, ∀c �= a from the
domain of Vi+1. The same strategy is applied when a value is
removed from the domain of Vi+1. This can be implemented
efficiently by associating a support counter with each value in
the domain of Vi+1.

Arc-consistency of binary control constraints can be imple-
mented with a general binary arc-consistency algorithm or a
specific one, depending on the nature of the constraint.

Arc-consistency of P necessitates enforcing arc-
consistency of all constraints until a fixed-point is reached,
i.e., no more values are removed.

In our example, arc-consistency removes D from the do-
main of V3 yielding the following domains:

V1
{C,D,E}

K1−→ V2
{C,D,E}

K2−→ V3
{C,E}

K3−→ V4
{D}

Note that arc-consistency of Markov constraints as such
solves the zero-frequency problem, regardless of control con-
straints: no choice made during the random walk can lead to
a zero-frequency prefix.

In the case where arc-consistency detects the unsatisfiabil-
ity of P , i.e., the solution space SC is empty, we can apply
constraint relaxation techniques.

The next step is to extract the matrices from the domains.

4.3 Extraction of the Matrices
Recall that our goal is to generate a non-homogeneous
Markov model, represented by a series of transition matri-
ces. An intermediary series of L matrices Z(0), . . . , Z(L−1)

are obtained by zeroing, in the initial matrix, the elements that
correspond to values or transitions that were removed during
arc consistency. More precisely, the algorithm is:

• Inizialization:
Z(0) ← M0 (the prior probabilities of M ),
Z(i) ← M , ∀i = 1, . . . , L− 1 (the transitions).

• For each ak ∈ A removed from the domain of Vi:
Z

(i)
j,k ← 0, ∀j = 1, . . . , n (set the k-th column to zero).

• All forbidden transitions in the binary constraints should
also be removed from the matrices:
Z

(i)
j,k ← 0, ∀i, j, k such that Bi(aj , ak) = false.

The matrices obtained for our example are the following:

Z(0) = ( 1/2 1/6 1/3 )Z(1) =

(
1/2 1/4 1/4
1/2 0 1/2
1/2 1/4 1/4

)

Z(2) =

(
1/2 0 1/4
1/2 0 1/2
1/2 0 1/4

)
Z(3) =

(
0 1/4 0
0 0 0
0 1/4 0

)

Modifying the initial matrix makes it non stochastic any-
more. The next section describes how to renormalize the ma-
trices to satisfy property (II).

4.4 Renormalization
We build the final transition matrices M̃ (i) of M̃ from the in-
termediary matrices Z(i). Transition matrices could be renor-
malized individually, i.e., by dividing each row by its sum.
This would indeed produce an non-homogeneous Markov
model, but this model does not satisfy property (II) above,
as it generates sequences with a different probability distribu-
tion than M .

For our example, the matrices after individual normaliza-
tion are:

Z̃(0) = ( 1/2 1/6 1/3 ) Z̃(1) =

(
1/2 1/4 1/4
1/2 0 1/2
1/2 1/4 1/4

)

Z̃(2) =

(
2/3 0 1/3
1/2 0 1/2
2/3 0 1/3

)
Z̃(3) =

(
0 1 0
0 0 0
0 1 0

)

In this model, pZ̃(CCCD) = 1/6 and pZ̃(CDCD) =
1/16. The ratio between these 2 probabilities (16/6) is differ-
ent from the original ratio (64/32=2).

The normalization process should indeed maintain the ini-
tial probability distribution. It turns out that a simple right-
to-left process can precisely achieve that. The idea is to back
propagate the perturbations in the matrices induced by indi-
vidual normalization, starting from the right-most one.

To do this, we first normalize individually the last matrix
Z(L−1). We then propagate the normalization from right to
left, up to the prior vector Z(0). The elements of the matrices
M̃ (i) and the prior vector M̃ (0) are given by the following
recurrence relations:

m̃
(L−1)
j,k =

z
(L−1)

j,k

α
(L−1)
j

, α
(L−1)
j =

n∑
k=1

z
(L−1)
j,k

m̃
(i)
j,k =

α
(i+1)

k
z
(i)

j,k

α
(i)
j

, α
(i)
j =

n∑
k=1

α
(i+1)
k z

(i)
j,k 0 < i < L− 1

m̃
(0)
k =

α
(1)

k
z
(0)

k

α(0) , α(0) =
n∑

k=1

α
(1)
k z

(0)
k

By construction, when α
(i)
j = 0, the j-th columns of the

preceding Z(i) contain only 0 as well. By convention, the di-
vision yields 0 since there is no normalization to back propa-
gate. These coefficients can be computed in O(L × n2). We
now show that this model satisfies the 2 desired properties.

Proposition: The M̃ (i) are stochastic matrices and the non-
homogeneous Markov process M̃ defined by the M̃ (i) matri-
ces and the prior vector M̃ (i) satisfies (I) and (II).

Proof. The M̃ (i) matrices are stochastic by construction, i.e.,
each row sums up to 1. The probability of a sequence s =
s1 . . . sL to be generated by M̃ is:

pM̃ (s) = pM̃ (s1) · pM̃ (s2|s1) · . . . · pM̃ (sL|sL−1)

= m̃
(0)
k1

· m̃(1)
k1,k2

· . . . · m̃(L−1)
kL−1,kL

= 1
α(0) · z(0)k1

· z(1)k1,k2
· . . . · z(L−1)

kL−1,kL
,

where ki is the index of si in A. Hence, by construction of
Z(i):
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Melodies Probabilities Melodies Probabilities
CCCD 12/77 (1/ 32) EECD 4/77 (1/ 96)
CCED 6/77 (1/ 64) EEED 2/77 (1/ 192)
CECD 6/77 (1/ 64) EDCD 4/77 (1/ 96)
CEED 3/77 (1/ 128) EDED 4/77 (1/ 96)
CDCD 6/77 (1/ 64) DCCD 4/77 (1/ 96)
CDED 6/77 (1/ 64) DCED 2/77 (1/ 192)
ECCD 8/77 (1/ 48) DECD 4/77 (1/ 96)
ECED 4/77 (1/ 96) DEED 2/77 (1/ 192)

Table 2: The probabilities of SC sequences in M̃ and M
(between parenthesis). The ratio of probabilities is constant:
α(0) = 77/384.

Figure 2: Performance of the algorithm as a function of the
sequence length L; the computation time needed to create M̃
(solid line) and the computation time needed to generate one
sequence (dashed line) both grow linearly with L.

(I) pM̃ = 0 for s /∈ SC ,

(II) pM̃ = 1/α(0) · pM (s) otherwise.

α(0) is precisely the probability for sequences in M of sat-
isfying the control constraints, i.e., α(0) = pM (SC).

The final matrices for the running example are the follow-
ing:

M̃ (0) =
(

39
77

12
77

26
77

)
M̃ (1) =

(
6/13 4/13 3/13
1/2 0 1/2
6/13 4/13 3/13

)

M̃ (2) =

(
2/3 0 1/3
1/2 0 1/2
2/3 0 1/3

)
M̃ (3) =

(
0 1 0
0 0 0
0 1 0

)

It is interesting to observe that even the addition of a sim-
ple unary constraint (here, last item = D) has an impact that
propagates back to priors. In our example, pM̃ (C) is slightly
increased (from .5 to .506), pM̃ (D) is decreased (from .1666
to .1558) and pM̃ (E) increased (from .333 to .337). Table 2
shows the M̃ probabilities of all sequences in SC . These
probabilities are indeed equal to the initial probabilities, to
the constant multiplicative factor α(0).

Figure 3: Performance of the algorithm as a function of the
size of the alphabet n; the computation time needed to com-
pute M̃ (solid line) is a quadratic function of n; the com-
putation time needed to generate one sequence (dashed line)
grows linearly with n.

4.5 Discussion
Our algorithm generates a model that satisfies the desired
properties. Its complexity is low, as it involves only perform-
ing arc-consistency once on the induced CSP, and a renormal-
ization in O(L×n2). This theoretical worst-case complexity
is confirmed experimentally, see Figure 2 and Figure 3.

As shown in our example, renormalization may have a
small impact on the transition matrices, although a difficult
one to quantify precisely. In practice, it may be interesting
to sacrifice accuracy and skip the renormalization step (i.e.,
use individual normalization): in that case, a larger class of
constraints can be handled. A necessary and sufficient condi-
tion is that the induced CSP should be made backtrack-free,
to ensure that any choice performed during the random walk
leads to a sequence in SC . Property 2 of BSCs (see Sec-
tion 4.1) is no longer true, so propagation is needed after each
instantiation during the random walk to filter out values made
incompatible with the current choice. Additionally, the algo-
rithm is considerably simplified: transition matrices need not
be constructed explicitly since their only use is to propagate
the normalization. Instead, variable domains can be used di-
rectly to perform a random draw at each step of the random
walk, with a prior individual normalization of the initial ma-
trix M , i.e., arc-consistency does most of the job, which is to
propagate the local effects of control constraints throughout
the CSP.

As an illustration, let us consider our example in which the
control constraint is changed to: “any three consecutive item
should be different”. This can be implemented by posting
an AllDiff constraint [Régin, 1994] on all consecutive triplets
of variables. Such a constraint exceeds the Markov scope
(order 1 here) so the induced CSP is not a BSC. However, we
can make the induced CSP backtrack-free by applying path-
consistency (strong-3 consistency, see [Freuder, 1982]), with
a complexity of O(n3). In our example, it turns out that the
CSP is already path-consistent so no value is removed. SC

now contains 6 sequences, whose probabilities are shown in
Table 3. The probabilities are not equivalent to those in M but

639



Melodies Probabilities Melodies Probabilities
CDEC 1/4 (1/ 48) = 12:1 DECD 1/12 (1/ 48) = 4:1
CEDC 1/4 (1/ 96) = 24:1 ECDE 2/9 (1/ 48) = 10.6:1
DCED 1/12 (1/ 96) = 8:1 EDCE 1/9 (1/ 96) = 10.6:1

Table 3: Sequences satisfying a moving ternary AllDiff con-
straint with their probability using individual renormalization
and their initial probabilities. The proportions of probabili-
ties are not constant, i.e., sequences are not generated with
the right probabilities.

this approximation is the price to pay to get a random walk
that satisfy those ternary constraints.

We have described our solution for fixed order-1 Markov
models. Generalization to order d consists in 1) introducing
order-d Markov constraints (this step is straightforward), and
2) applying the rest of the method to nd × n transition ma-
trices (rows are d-grams and columns are the state) instead
of the n × n transition matrices described here. In practice,
most d-grams have no continuation, so sparse representations
(graphs, oracles) are more appropriate than matrices.

In the case where proper normalization can be sacrificed,
performing arc-consistency with an order-1 model allows to
use variable-order random walk, provided the CSP is a BSC.
This is achieved by adding to the basic order-1 procedure a
phase consisting in removing higher order prefixes that con-
tain a removed prefix of order 1. This is because all pre-
fixes of length > 1 are also prefixes of length 1. This ensures
that all solutions with longer prefixes will be found and only
them. Contrarily to the approach of [Pachet and Roy, 2011]
our approach scales-up well so composition applications can
be envisaged. Once M̃ is built, the generation of a sequence
does not require any computation other than a standard ran-
dom walk algorithm whose complexity is a linear function of
both the size of the alphabet n and the length of the sequence
to generate L, i.e., O(L × n), as can be seen in Figure 2 and
Figure 3 .

5 Applications
This method applies in general to style-imitation sequence
generation requiring control constraints on individual items at
arbitrary positions. A text generation application is currently
developped, to generate text in the style of X, with additional
constraints on rhymes, phrase structure and semantics. We
describe below two musical applications.

5.1 Representing Musical Intentions
Unary constraints can be used to represent various musical
intentions, when producing an melody from a Markov model
M , and an input melody provided in real-time. For instance,
we can define the following types of melodic output:

Continuation: input is continued to produce a sequence of
the same size. A constraint is posted on the last note to en-
sure that it is “terminal”, i.e., occurred at the end of an input
melody, to produce a coherent ending.

Variation: is generated by adding two unary constraints
that the first and last notes should be the same, respectively,
as the first and last notes of the input.

Figure 4: A melody taken as a training sequence.

Figure 5: Examples of continuations (C), variations (V) and
answers (A) generated from the input melody (I).

Answer: is like a Continuation, but the last note should be
the same as the first input note. This creates a phrase that
resolves to the beginning, producing a sense of closure.

For all types, unary constraints are posted on each interme-
diary note that they should not be initial nor final, to avoid
false starts/ends within the melody.

Figure 4 shows a melody, taken from [Davismoon and Ec-
cles, 2010] from which we build a Markov model M . Fig-
ure 5 shows examples of continuations, variations and an-
swers, built from M and the constraints corresponding to
each melody type, from an input (I). It is clear that these
melodies belong to the corresponding musical categories.
Continuations end naturally, with the same 3 notes as the in-
put (a consequence of the constraint on the last note); vari-
ations sound similar to the input; and answers sound as re-
sponses to the input. This shows how unary constraints
can have a global effect on the structure of the generated
melodies.

5.2 Generating Virtuoso Melodies
Our approach trivially extends to non-homogeneous Markov
models (M ). In practice, this enables a simple representation
of non-constant harmonic contexts. In the case of melodies
spanning different tonalities, each transition between two
notes belongs to the model of the corresponding tonality. As
an example, let us consider the melody extracted from an im-
provisation performed by jazz guitarist John McLaughlin dur-
ing a famous concert [GuitarTrio, 1977]. This melody con-
sists of 43 notes played on a sequence of three chords (see
Figure 6). The 8 first notes belong to the harmonic context
of Gmin7�5, the 20 next to C7�9, and the remaining 15 to
Fmin.

Negotiating such chord transitions fast is precisely one of
the most sought after skills of virtuoso jazz improvisers. Our
technique can easily produce such melodies in real-time. To
do so, we consider a training set made of typical jazz scales,
as used in jazz training. As a simple example we consider
the scales described in [Leavitt, 2005]: so-called “staircase”
melodies, in all tonalities (for each key and each chord type).
Figure 8 shows the staircase melody for C minor.
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Figure 6: The original melody improvized by jazz guitarist John McLaughlin. The chords are written above the music: the first
8 notes are in Gmin7�5, the 20 next to C7�9, and the remaining 15 to Fmin.

Figure 7: The melody generated by the system: the three notes marked with anchors are constrained to be the same as that of
the original melody.

Figure 8: The training melodies consists in “staircase” scales,
transposed in all tonalities. The figure shows parts of the
Cmin scale.

The sequence to generate can be seen as produced by a
non-homogeneous Markov model, whose transition matrices
change according the changes in tonality. To further illustrate
our approach, we add three constraints stating that the first,
middle, and last notes should be the ones played by John
McLaughlin. Figure 7 shows one melody generated by the
system. It can be observed that the melody is indeed 1) a
concatenation of “staircase” chunks, 2) complies with the har-
monic context, and 3) satisfies the three anchor constraints.
Such melodies are generated in less than a millisecond.

This idea was used to implement an augmented in-
strument, called Virtuoso. With Virtuoso, the user
plays bebop melodies by targeting specific notes ahead of
time. These targets are selected using a gesture controller
and transformed into unary constraints, e.g., on the last
note. The underlying harmony is provided in real time
by an mp3 file previously analyzed, from which time-
lined harmonic metadata is extracted. Videos are avail-
able online (www.youtube.com/watch?v=9f3caQNgxmI,
/watch?v=GLUPcWT3tjc, /watch?v=LuvfWI7iMH4).

6 Conclusion
We propose a general solution to the issue of generating
finite-length Markov chains with control constraints. The so-
lution exploits the fruitful connection between Markov pro-
cesses and constraint satisfaction, initiated in [Pachet and
Roy, 2011] but in a random walk setting, i.e., without search.
We have shown that for constraints that remain within the
Markov scope, arc-consistency enables us to solve the zero-
frequency problem, as well as to compile control constraints

in the form of a non-homogeneous Markov model. This
model can in turn be used straightforwardly with random
walk to generate sequences that satisfy the constraints with
their original probabilities.

More complex constraints can be handled provided they
can be filtered to obtain backtrack-free CSPs, at the cost of
inaccurate probabilities. The approach generates all the se-
quences satisfying the constraints with no search, so is suit-
able for real-time, interactive applications.
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