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A Joyful Ode to Automatic Orchestration

FRANÇOIS PACHET, Sony Computer Science Laboratories - Paris

Most works in automatic music generation have addressed so far specific tasks. Such a reductionist approach
has been extremely successful and some of these tasks have been solved once and for all. However, few works
have addressed the issue of generating automatically fully fledged music material, of human-level quality. In
this article, we report on a specific experiment in holistic music generation: the reorchestration of Beethoven’s
Ode to Joy, the European anthem, in seven styles. These reorchestrations were produced with algorithms
developed in the Flow Machines project and within a short time frame. We stress the benefits of having had
such a challenging and unifying goal, and the interesting problems and challenges it raised along the way.
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1. INTRODUCTION

“Computer programs that compose music have been around almost as long as the
computers that run them” [Smoliar 1991]. Indeed, automatic music generation has been
a recurring theme of computer music research since the 1950s. The Illiac suite [Hiller
and Issacson 1959] showed that simple Markov models could capture surprisingly well
local features of music melodies. The program designed and implemented by Kemal
Ebcioglu to generate Bach chorales using a hand-made rule system [Ebcioglu 1990]
produced impressive results that remained a reference for years. David Cope’s work
on music style modeling [Cope 2005] showed that computers could produce models of
musical style to assist productively a composer (David Cope himself). Since then, the
domain of automatic music composition has grown substantially (see Fernández and
Vico [2013] for a comprehensive survey).

The general trend has been to apply reductionist approaches: many problems consid-
ered initially as minor ones have been isolated from their context and addressed using
increasingly sophisticated technologies. With the progress of artificial intelligence no-
tably, music generation has progressively turned from a subdomain of computer music
addressing ill-defined problems to a fully fledged area of machine learning. As an ex-
ample, we can consider the problem of identifying the underlying tonalities of a chord
sequence. This problem is of little musical interest in itself, but it makes sense in the
context of improvisation, as it enables the musician to find interesting scales to use for
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building up a musical discourse. This problem was addressed with an ad hoc, island-
growing approach [Ulrich 1977] and validated by a single eight-bar example. What
was a small subtask deserving a few paragraphs in 1977 is now the subject of specific
studies that focus on the problem as such, with an increased level of sophistication
(see, e.g., Granroth-Wilding and Steedman [2014]). Obviously, by becoming context in-
dependent, these works also tend to forget their raison d’être (in that case, guide a
music generator to produce better improvisations).

Such a scheme has been at stake in virtually all domains of music generation. As
a result, several subtasks have been formulated as well-defined, general AI problems,
and some of them have been actually solved. For instance, the problem of sampling
sequences from a Markov model under various types of local and global constraints
has been repeatedly mentioned as a stumbling block in statistical music generation,
since the first results in musical Markov chains [Hiller and Issacson 1959]. After
many attempts using generate-and-test methods, the problem has recently been solved
once and for all, with a polynomial complexity solution, involving a mix of constraint
programming, automata theory, and belief propagation [Papadopoulos et al. 2015].

However, holistic approaches to music generation are still rare. The problem of gener-
ating music material of human-level quality by addressing all the dimensions at once,
and not only specific ones, has made arguably little progress. This article describes
such a recent attempt in music generation using models and techniques developed in
machine learning, statistical inference, and computer music, and through a specific
experiment in automatic reorchestration.

2. A COMMISSION FROM THE COMMISSION

Most of the research described here is conducted in the Flow Machines project,1 which
aims at designing and studying systems able to generate music and text in the style of
an author, under various user constraints [Pachet 2015]. The experiment also includes
contributions from the Lrn2Cre8 project,2 which aims at producing computational
models of musical creativity.

At about the midterm of the Flow Machines project, we were asked by the European
Commission if our style imitation software could be used to reorchestrate the European
anthem, to be played at the European Parliament.3 Such a request could not be turned
down, so we agreed. We had a couple of weeks.

Of course, we did not have ready-to-use software for this task. We had bits and pieces:
some powerful but incomplete algorithms, mixing in novel ways of statistical inference
with combinatorial optimization, ideas and intuitions, and a lot of data (lead sheets
and audio recordings). We could generate nice but imperfect scores for specific cases.
Reductionism and the pressure to publish make it virtually impossible to publish an
article with several contributions, so a natural tendency is to cut the problem into
slices: melody, harmony, timbre, groove, and so forth and to solve each subproblem as
it comes, hoping that some day someone would put all the pieces together. That day
had come.

So we started working. The constraint was to orchestrate Beethoven’s Ode to Joy, in
several styles. We came up with a selection of seven styles, varied yet popular, all of
which raised different modeling challenges for music generation. The styles were as
follows:

1www.flow-machines.com.
2www.lrn2cre8.eu.
3For a ceremony to celebrate the 5,000th ERC grantee.

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 2, Article 18, Publication date: October 2016.

file:www.flow-machines.com
file:www.lrn2cre8.eu


A Joyful Ode to Automatic Orchestration 18:3

Fig. 1. The lead sheet of Ode to Joy from LSDB. This lead sheet was produced by ear as Beethoven did not
compose with lead sheets.

(1) Bach chorales. We wanted essentially to avoid the criticism “Your styles are all
fine, but what about Bach?” This style of music is a typical exercise, both for music
students and for computer music researchers. We had to address it somehow.

(2) Bossa nova. Brazilian music has long been a subject of study of the group
[Pachet and Cabral 2013], and the ongoing Brazyle project4 provided us with many
recordings of Brazilian guitarists.

(3) Jazz. We had been working on jazz modeling for a long time, and we wanted in
particular to imitate the style of the band Take 6, for which we happened to have a
set of 10 complete transcriptions.

(4) Lounge. We had an interest for chill-out lounge music from the 1990s as an ideal
target style to study multi-instrumental electronic music. We also had a set of
high-quality transcriptions of complete lounge pieces.

(5) Penny Lane by the Beatles. Relating research with a Beatles title has become a sort
of trademark of computer music research, and was an obvious choice.

(6) A commission officer asked for the style of Ennio Morricone. We picked up the piece
Chi Mai, discarding other tunes that do not have the same international coverage.

(7) Prayer in C. This song was released by pop duo Lilly Wood and the Prick in 2010.
German producer Robin Schulz released a remix of the song as a single, which
became a worldwide hit. We wanted to also target more recent styles and picked up
this song, easily identifiable by its guitar riff and enjoyed by younger generations
all over the world.

The goal was to generate music so that attendants would recognize easily both the
lead soprano (Ode to Joy) and the orchestration style. The only information we could
feed our software as input was the lead sheet of Ode to Joy, taken from the LSDB
database [Pachet et al. 2013] (see Figure 1), and containing the melody and chord
progression, as well as representative samples of the orchestration style. The resulting
orchestrations were produced in due time, played successfully during the ceremony,

4www.brazyle.net.
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and are available to readers,5 as is a more didactical video.6 The next sections describe
the main technical challenges and problems encountered along the way.

3. A MAX ENTROPY MODEL FOR BACH CHORALES

Bach chorales are known to be interesting for the inner movements of voices more than,
say, for their exotic harmonic modulations and digressions (as opposed to jazz, see later).
Modeling multivoice music is a big challenge in music representation. Departing from
the approach of Ebcioglu [1990], we built a model of Bach chorales from an automatic
analysis of existing chorales that could be constrained with the soprano to Ode to Joy.
Obviously, multivoice music cannot be modeled as Markov chains, so more elaborate
models of music had to be employed. Recent attempts at using deep learning models
[Boulanger-Lewandowski et al. 2012] are promising but not yet able to fit our needs,
so we had to look at other models.

Max entropy models are widely used in physics and biology, in particular to infer
probability distributions that satisfy observed pairwise correlations [Lezon et al. 2006].
Such models (see, for instance, Ekeberg et al. [2013]) are variations of the so-called Potts
model [Potts 1952] developed in statistical mechanics. The primary advantage of these
models, in our context, is precisely that they can capture faithfully the statistics of
binary correlations between events, either horizontally or vertically, and possibly for
long range, as opposed to Markov models.

In practice, we represent the sequence to be generated by a probability distribution on
a number of variables (for instance, representing the pitch of the notes): P(X1, . . . , XN).

Markov models assume that the probability of events depend only on a small number
(the order) of preceding events. Consequently, this probability can be written as a
product of probabilities for each event as follows (here for order 1):

P(X1, . . . , XN) = P(X1) ×
N∏

i=2

(P(Xi|Xi−1).

By contrast, the probability distribution of a sequence in the considered max entropy
models is represented as a Boltzmann-Gibbs distribution of the form

P(X1, . . . , XN) = 1
Z

e−H(X1,...,XN),

where H, the Hamiltonian, represents the energy of the system and is itself represented
as a sum of potentials, each corresponding to interactions between neighboring notes,
and Z is a normalization factor.

Following earlier works on the application of these models to monophonic music
[Sakellariou et al. 2015], Gaétan Hadjeres7 extended the basic model developed for
melodic patterns to handle specifically four-voice homo-rhythmic music (i.e., so that
each chord is composed of notes with the same duration).

The model for monophonic sequences was extended to handle four-voice music and
trained on a set of Bach chorales, which abound on the web. The model could generate
pretty impressive random chorales, which not only replicated the statistics of binary
correlations but also were able to create interesting new harmonic progressions, which
all sounded Bach-like, at least from the viewpoint of inner voice movements.

These models can be controlled in a number of ways, and in particular via so-called
local fields. Local fields are the probabilistic equivalent of unary constraints and can be

5www.flow-machines.com/OdeToJoy.
6AAAI 2016 best video award, http://aivideocompetition.org/aaai-video-competition-winner-2016/.
7He was the ideal person, being both a student at the conservatory and a PhD student in mathematics.
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Fig. 2. Ode to Joy in the style of Bach chorales (complete score).

imposed at arbitrary positions of the sequence in order to bias locally the probability
distribution of events (here notes at a specific position). Imposing Ode to Joy at the
soprano consisted of imposing a local field for each variable of the soprano to be the
corresponding note in Beethoven’s melody (i.e., forcing the probability of that note to 1
and the others to 0) and propagating the changes in the model. Interestingly, imposing
the harmony was not necessary in that case: coherent inner movements and harmonic
motion were naturally generated from the model without human intervention. The
generated scores, obtained by sampling the model and without adding any musical
knowledge, are surprisingly good (see Figure 2).

More work was done after the Ode to Joy project to assess precisely to which extent
these models actually produce novel chords and chord progressions, making them ideal
candidates for computational models of creativity [Hadjeres et al. 2016].

4. JAZZ WITH A FIORITURE-BASED MARKOV MODEL

The jazz orchestration also used a statistical model, but a different approach: jazz
arguably requires more digressive conduct than Bach chorales, and such a variety is
not well modeled (yet) by statistics only. We needed a model able to generate interesting
variations, especially harmony-wise, like a jazz pianist typically does when he or she
performs a well-known (and therefore slightly boring) tune: digressions, substitutions,
and side-slips [Pachet 2012] are the rule.

To achieve this goal, we used a corpus of 10 musical scores by a cappella band
Take 6 of six-voice harmonizations of standard gospel tunes. We then proceeded in two
phases. In a first phase, we built a chord sequence using dynamic programming, so
that each chord fitted optimally with the corresponding chord label of the lead sheet,
and so that chord transitions are smooth bass-wise (i.e., no big jumps). This chord

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 2, Article 18, Publication date: October 2016.



18:6 F. Pachet

Fig. 3. Ode to Joy in the style of Take 6, piano version (extract).

sequence provided a conformant harmonization of the lead sheet but did not include
any interesting deviation from the lead sheet, as a jazz musician would typically do.
To introduce such deviations and generate creative harmonization, we let the system
perform controlled random walks during long notes, called fioritures [Pachet and Roy
2014]. These random walks are performed in a Markov model of chord transitions
estimated from the corpus. Technically, we used a loose representation of chords (a
viewpoint consisting of only bass and soprano), so that the resulting model was not too
sparse.

This approach generated convincing six-voice harmonization in the style of Take 6
(see Figure 3). Interestingly, although this model does not have the ability to invent
new chords (as opposed to max entropy models), this approach turned out to be more
satisfactory for the jazz style. One reason is that the underlying Markov model of chords
was, in that case, sufficiently rich to produce interesting sequences. As a consequence,
its inability to invent new chords is hard to detect by ear without listening to many
hours of generated material. Note that the rhythms of the fioritures (see Figure 3)
are generated by sampling randomly compatible rhythms (i.e., rhythms with the same
metrical position and duration as the original note) from melodies taken from the LSDB
database [Pachet et al. 2013].

5. BOSSA NOVA AND GROOVE PRESERVATION

The bossa nova orchestration could not be MIDI based. Bossa nova is so deeply rooted
in the sound of acoustic guitar that we had to use an audio model to produce convincing
bossa nova guitar accompaniments. Bossa nova can be characterized by two features:
sophisticated harmonies and groovy rhythm patterns [Pachet and Cabral 2013]. We
used a concatenative synthesis approach [Maestre et al. 2009], which enabled us to
reuse real, high-quality, leadsheet-synchronized recordings of Brazilian guitarists, col-
lected a few months before during the Brazyle project.8

However, segments cut from human recordings raise problems because onsets are
never played exactly on the beat. They are often either slightly before (anticipations)
or after (delays), for instance, to create specific grooves. A smart gluing mechanism
(see Figure 5) ensures that these onset deviations are preserved and restituted during
generation, without producing glitches or perturbations of the overall groove [Ramona

8www.brazyle.net.
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Fig. 4. The lead sheet of Ode to Joy, jazzified.

et al. 2015]. We came up with a convincing guitar bossa nova track that fits with the
harmony of the song, as given by its lead sheet.

However, Beethoven’s chord progression is too simple to be musically interesting
when played in bossa nova style. So we designed a chord grid variation generator to
produce a more interesting, harmonically sophisticated version of the target lead sheet
(see Figure 4). This generator is based on dynamic programming.9 We then used this
jazzified lead sheet as a target for the concatenative synthesis engine. The resulting
generation was perfect to the ears of the guitar players of the team.

However, it still lacked something. Drums, bass, possibly violins, and someone to sing
or play the tune were needed to evoke songs like Girl from Ipanema. Now that we had a
concrete and convincing guitar accompaniment generator, the need for complementing
it with other instruments was blatant! We identified the missing ingredients: a simple
bass, a typical rim shot back up, and violins that come into the game at section B. We
implemented basic generators in ad hoc ways, guided by the specific goal of having
to evoke a bossa nova for a lay audience. Previous works have addressed the problem
of generating accompaniments for popular music styles, for example, with an HMM
[Simon et al. 2008] or other machine-learning techniques [Chuan and Chew 2007].
However, these works are difficult to reuse as ingredients of larger systems. Most
importantly, they are based on general assumptions about accompaniments, which did
not fit our needs. The violin part, for instance, was better modeled as a monophonic line
played across chord changes so as to minimize intervals and maximize the use of thirds
and fifths of the underlying chords.10 In any case, this approach worked perfectly for
this particular context. The result sounds great to our ears.

9Similarly to the chord sequence analysis problem mentioned in the introduction, this variation generation
problem could be isolated from its context and treated as such, probably with more sophisticated techniques
and results.
10Another example of a problem that could be worth extracting from this specific context and addressing
with better tools...
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18:8 F. Pachet

Fig. 5. Groove-preserving concatenative synthesis to generate a convincing bossa nova accompaniment of
Ode to Joy (extract). Segments of the source audio file (top) are reused, modified, transposed, and stretched
to generate the target (bottom).

6. SONG-SPECIFIC STYLES

Three of our seven styles were not styles per se but individual, popular songs. For the
Penny Lane (the Beatles), Chi Mai (Ennio Morricone), and Prayer in C (Lilly Wood
and the Prick) styles, we first asked a pop artist and arranger (Benoit Carré) to pro-
duce multitrack recordings of the original songs. We then fed these multitracks to
FlowAudio, a constraint-based audio generator developed by Marco Marchini, based
on the meter constraint [Roy and Pachet 2013]. FlowAudio models audio sequences as
a finite-domain constraint satisfaction problem, to which various Markov constraints
are applied to enforce metrical and synchronization relations.

However, it did not work at all! Not because the system had bugs (it also had bugs),
but because it was not designed to handle the myriad details that turned out to be
crucial to generate a convincing piece. For example, we did not deal at all with the
structure: the fact that a song has several parts, and the transition from one part to
another one usually corresponds to different orchestrations.

So we had to design and implement urgently these features in the system. The basic
mechanisms underlying FlowAudio were kept, but we added provisions and GUI, for
example, for setting all the required parameters for each part, in a sort of extreme
programming [Beck 2000] atmosphere. Eventually, convincing multitrack generations
were produced for each of the three song-specific styles (see Figure 6). However, the
combinatorial nature of the problem was not treated satisfactorily (generations were
obtained by simplifying the problem and cutting it into several phases, thereby lim-
iting the number of solutions). Again, this exercise helped us identify a new class
of scheduling problems, involving precisely vertical constraints defined metrically be-
tween various time series [Roy et al. 2016].
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Fig. 6. Ode to Joy in the style of the song Prayer in C (Lilly Wood and the Prick). Each track (piano, bass,
drums) is segmented into chunks (musical events) using an onset detector. Chunks are then reorganized
using Markov constraints to fit with the chord progression and structure of the lead sheet, scheduled and
mixed to produce the final output.

7. PRODUCTION

Generating the basic music material was not enough. Our goal called for a good pro-
duction. The following section describes the main production operations conducted to
deliver audio files that could be rendered in a real-world setting. During production,
the musical content of the generated material was not modified by hand; only the ren-
derings and mix were done manually. These indications are given here as examples
and possible use cases for a yet-to-be-designed automatic production engine.

7.1. Bach

Preliminary renderings of the four-voice Bach chorale showed that the melody was
not sufficiently prominent to be recognizable. Simply raising the level of the soprano
did not produce convincing results. Using human voices was discarded, since singing
voice technologies are not able to produce perfect voices yet, and we wanted to avoid
attention being drawn to deciding whether the voice sounded natural or not. Eventually
we decided to use two different sounds for the soprano and for the other voices.

The choice of an organ sound for the other voices came quickly, to remain in the
style of Bach as much as possible. The sound had to be such that the three voices were
intelligible, that is:

(1) Sound should not have too many resonances in any particular spectral zone.
(2) Sound should have short attack and release times.
(3) Sound should be bright enough so that at least some frequencies get into the ear’s

most sensitive spectral zone (1–4 kHz).

We finally picked up an oboe sound for the melody. However, we could not find a good
enough sound in our sound libraries, so we eventually recorded a human musician
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(Anne Régnier). The sound was slightly reverberated, to evoke an acoustic space similar
to the organs (i.e., not direct).

7.2. Bossa

For the bossa nova, the goal was to evoke sounds of the 1960s, easily recognizable by
a large audience thanks to hits such as Desafinado or Girl from Ipanema. We chose
a piano sound, to evoke Tom Jobim’s recordings (such as Jobim [1967]), in which he
plays the melody with a sense of restraint and minimalism, similar to the scarce piano
interventions of Count Basie.

The piano sound was chosen to also sound like the 1960s: medium with soft attacks.
The sound was doubled to the upper octave, such a treatment being possible by the
low note density of the piece. We added compression and large room reverb, a standard
practice in pop.

Finally, and although guitar accompaniment was the main focus of this generation,
we realized we needed some percussion to complete the picture. We added a simple
drum track consisting of a repeated two-bar bossa nova pattern. The track was equal-
ized to emphasize its percussive side: high mediums and basses were added. We used a
mix of virtual instruments (bass drum) and real ones (rim shot, brush loop, and hi hat).
We also added a triangle, as an additional hint to the 1960s. We applied compression,
large room reverb, and damped frequencies above 10kHz.

7.3. Jazz

After trying many renderings of the generated score for Take 6, we realized we had
two issues:

(1) Intelligibility. To be intelligible, each voice had to have short attack and release
times, hence the choice of a piano sound. The sound itself was chosen to reach a
compromise between realism, brightness (so that the most sensitive spectral zones
of the ear are used), and roundness (i.e., lower frequencies to smoothen the sound).

(2) Expressiveness. The generated score sounded too mechanical when rendered with
a polyphonic sound. Expressiveness was added manually, with subtle-onset devia-
tions and dynamics. Onset modification was synchronous on all parts to preserve
intelligibility. Note that the automatic generation of expressive performance is one
of the targets of the Lrn2Cre8 project, and this is a task that could be automated.

Finally, the bass voice was doubled to balance the overall spectral profile.

7.4. Penny Lane

The main concern for the Penny Lane production was to recreate a sound from the mid-
1960s, early Beatles period. Taking inspiration from Milner [2009] and Kehew and
Ryan [2006, pp. 132–137], we ensured that the mix (1) did not contain too many very
high or very low frequencies, to reproduce the limitations of the recording equipments
of that period, and (2) applied an amount of compression comparable to the one used
during this period (a crest factor of about 12db and no brickwall digital limiting, as
described in Deruty and Pachet [2015]). One can hear in the result that such a concern
hampered the intelligibility (by today’s standards) of the rhythm track, which is at
times intentionally muddy.

We chose an English horn sound for the lead soprano because of its rather medium
frequencies (as opposed to oboe, for instance). Basic equalization and compression
made it sound like a trumpet, as a reference to the original Penny Lane mix. A high-
pitched recorder was used to add some missing high frequencies to the horn. Both were
synchronized to sound as a unique instrument.

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 2, Article 18, Publication date: October 2016.
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7.5. Prayer in C

As described earlier, the original song was re-recorded to get three individual tracks
(guitar, bass, drums). This task was challenging because the sounds in this music
genre are most of the time obtained through complex combinations of various synthe-
sizers. For instance, the hi hat contains a TR808 sound, probably mixed with other,
unidentified sound sources.

For the soprano, we recorded an acoustic guitar, which distinguishes itself nicely
from the basic riff while retaining a clear guitar-like quality (a challenge). Guitar
was produced with reverberation and delay. Equalization was applied as an insert to
brighten the sound.

An important aspect of the mix was to use side-chain compression, which highlights
the kick drum while making the whole mix more compact (a method heavily used by
bands such as Daft Punk). Finally, the mix had to be bright, large (pan-wise), and
dynamically limited to sound like the original.

7.6. Mastering

Mastering had to address two issues: (1) handle disparate pieces, from Bach to lounge
music, and (2) enable a rendering fit for a noisy environment. For (1), we equalized
each piece to make them sound closer to each other than initially. For (2), we controlled
the dynamics with a limiter to ensure a constant level. Since people were supposed to
talk during the playback, we emphasized medium high frequencies (the frequencies of
speech). As a summary: the master could not sound beautiful, so it had at least to be
audible!

8. CONCLUSIONS

Regardless of the various outcomes, this experiment was above all an experiment
in holistic research. The main lesson learned is that focusing on one dimension of
music only (be it the melody, chords, harmony, rhythm, timbre, etc.) is not enough to
generate anything convincing to a wide audience. The beauty (and difficulty) of music
is precisely that it requires a simultaneous consideration of all its dimensions at once
to make sense.

By having to put together several ingredients of music generation, we identified new
problems we had not thought of, some of which are mentioned in this article. Another
interesting problem we found is: “how to remove notes in a melody so that you can still
recognize it?” This process is at play with the melody used for the lounge style: almost
all notes of the original theme were removed, but it is still somehow recognizable. This
was done by hand in this project, but the question remains: how to design an algorithm
that strips out notes and keeps only the essential ones so that the melody can still be
recognized?

A more general problem that became apparent is that if the goal is to produce music
to be played to a standard audience, expressiveness was eventually more important
than content: a bad score can sound great if rendered the right way. A great score
can be destroyed by a mechanical interpretation. Automatic generation of expressive
performance has so far mainly focused on classical music, but this domain is progressing
fast (see, e.g. Widmer [2016]).

A yet unaddressed and fascinating issue is the interplay between expressiveness,
timbre, and symbolic content, which obviously plays a central role in human composi-
tion. In particular, pop music is not composed, then rendered, then produced: everything
is done concurrently, but we do not yet have good models of this process.

While reductionism produces regularly beautiful scientific results, it is not suffi-
cient to achieve the dream of automatic music generation. Integration is not just about
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18:12 F. Pachet

putting modules together; it is also a way to look at the problem from a listener-oriented
viewpoint, and we claim such a position is key to identify interesting, grounded, mean-
ingful new problems. We hope that this project can motivate other projects of this kind
in the future.
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