A Practical use of Metaclasses

Francois Pachet

LAFORIA
Université Paris VI
Tour 45-46
4, Place Jussieu
75252 Paris Cedex 05
fdpelitp.ibp fr

Juillet 1989

233

TOOLS ’89

abstract

in Object-Oriented Programming
fanguages, metaclasses, when they
exist and when the programmer
have access to them, are mostly used
for implementation sake [5} [6] or
to ensure the uniformity of the
underlying model [2] [3] [4]. They
are hardly ever used for design
purposes, i.e. for describing
specific behaviors of an
application's classes, apart from
basic initialization behaviors. Thevy
are rather seen as a mean of
language description or as a toc¢l for
hypothetic demanding
programmers who would want to
pervert the system’'s kernel to fit
their exiravagant needs.

We introduce and comment here
two examples taken from a real-
world application, part of the

SAGESSE project! and discuss their
various possible implementations in
Smalltalk., We show how the
implementations using metaclasses
are "better” than those simply
using the <c¢lass hierarchy and
instance methods.

We finally draw some conclusions
about Object Oriented design
methodology and the good use of
metaclasses.

1 Introduction

The definition of metaclasses
derives wvery simply from the
definition of classes (i.e. the
description of the instances
structure and behavior) and the
principle of uniformity (ie every
object is an instance of a class)
Thus, a metaclass is simply a class
whose instances are classes,

In Smailtalk, classes are
defined by subciassing as opposed 10
instantiation. Metaclasses are thus
created automatically by the system.
This is a limitation, since all

I A Simulation Svstem for decision-
making in crisis situation, for the
French Ministére de I'Intérieur

234

metaclasses are instances of the
Abstract class Metaclass, and the
environment does not provide any
documented means of changing
this, although it has been shown
that minor %kernel additions could

provide explicit creation of
metaclasses [3].

Nevertheless, metaclasses are
accessible, and it is possible 1o

specify structures (variable names)
and behavior {methods) for them.
Browsing the Smalltalk system's
class descriptions and methods, we
find two main uses of metaclasses,
apart from general class
descriptions, as found in Behavior
subclasses:

methods found in metaclasses
allow initializations of

constant tables, class variables
or global variables
{controllers initializing
menus, Character defining

ascii constants) .2
- Instance creation methods3:
A great amount of classes
redefine their instance
creation methods, generally
“in order to specialize
initializations (i.e. View, Point,
metaclasses ...}
In particular no system metaclass
has instance wvarijable their
specificity is defined only by
methods,
This is
number

clearly a mistake in a
of cases. One of the most
obvicus is the way menus are
defined in controllers, namely
StandardSystemContiroller the
vellow and blue button menus are

2 1t is interesting to note that the
Smalltalk methods that implement

the fileOut mechanism

automatically insert initialization

messages to the metaclasses that

implement an initialize method,

This tends to show that these

methods have only a side-effect role

in an application description.

3 The only serious reason for a class
to have a name is the fact that one

has to create instances out of it by

sending it nominatively a message

defined as clas wvariables, thus
accessible by al sub-instances of
the class, When a subclass redefines
those menus, it has to declare two
additional c¢lass wvariables, and

change the initialization message
used at instance c¢reation time,
Using class instance wvariables

would have been more coherent
(the actual menus would not have
been inherited by the subclasses),

more readable {redefining
carelessly those menus in a subclass
would mess up all existing
controllers}, and less space
consuming.

Using two real-world examples, we
advocate here a more general use of
system description using
metaclasses, to achieve more
ccherence and readability.

2 First example A declarative
solution for remanent objects

In our application, we were faced
with the problem of saving objects
that represent networks (in our
case a region with all kinds of
nodes (cities, wvillages) and links
(roads, motorways) between them).
In such cases, the defauli
mechanism provided by the
Smalltalk environment (namely the

method storeon: 1) would not work

since networks are thoroughiy

recursive objects :
- as soon as the network is not
acyclic, there are mnodes
peointing itowards nodes that
point to themselves,
~ the links between the nodes
are objects themselves
(instances of wvarious
subclasses of Link such as
Road, Lane, Railway ..}, so a
node will point to a link that
points back to itself,

1 We should say the methods
storeQOn: since storeOn: is redefined
by most of the system classes. By
using the singufar, we certainly
mean a Kind of absiraction of these
methods 7

235

There are solutions to this [11]
which consist in writing a method
storeCn:using: (and conversely
readStructureFrom:using:) that
simply keeps track of the wvariocus
objects encountered, in order to
avoid recursion, and to preserve
shared objects 2

The method storeOn:using: 1§ an
instance method of Object, and the
method readStructureFrom:using is
a method of Object cilass,
Subclasses redefine those methods
for specific behavior (e.g. Number),

This solution works but has two
major drawbacks :

I - It saves possibly unwanted
objects, since it saves the
whole network of objects
pointed by the saved objects.

2 At reconsiruction time,
specific initialization methods
could be required. The current
reconstruction consists in an
allocation {creation of an
instance of the class with a
basicNew (or basicNew:))
followed by assignements of
instance wvariables t¢ the
saved objects (with
instVaraAt:put: oOr basicAt:

Put:). It may lead to sirange
results when applied 1to
complex objects such as
views,

In fact it assumes that the siructure
that must be saved is the actual
structure defined by the class {ie.
all instance variables, including
the superclasses's ones).

The idea is then to have the
possibility of defining, for a given

class, which instance variables will

2 an object having two instance
variables x and y, whose values are
the same object, say a Point, is not
circular, but the evaluation of the
result of the standard storeOn:
method sent to this object will
creaie a object whose x and y will

point to physically different,
though identical, instances of
Points.

have 1o be saved, and how the some
others will be reconsiructed.
We show in the next three sections
three possible implementations of
this feature, respectively based on a
class method, an instance method
and finaliy a metaclass structure.

2.1 a method
implementation

class

The first solution that comes to

mind is to simply write a Class
method, say goodFields, that
returns the list of the instance .

variable names liable 1o be saved. A
defauit method in Obdect class (or
Class, of Behavior) would return
the set of all instance wvariable
names

10bject class methodsFor:

Tsaving !

goodFields
~allInstVarNames

And any class needing to specify
the fields to be saved would redefine
this method,

For example, for

Network holding
instance variables :

a class named
the following

Network

instanceVariableNames:
"nodes links listOfProcesses
currentState’

plus superclasses
names

variables

We could decide to save only the
topologic fieids i.e. nodes and links

INetwork class methodsFor:

'saving'!

goodFields

~¥ (nodes links)

This solution works, but is not
satisfactory, since it lies on the
Smalltalk specificity i.e. all
metaclasses have only one instance.
Using this particularity, it is
possible to specify class methods
specific to the metaclass’'s sole
instance. In a more general
framework, where metaciasses

236

could have several instances, this
methodology would not hold any
fonger,

2.2 a solution based on
an instance method.
One may then want just to
implement the method as an

instance method, since the saving
method is itself an instance methed.
But this is not satisfactory either,
since the class then has no natural
way of knowing which of ijts
instance wvariables are saveable or
not.

Clearly, the information provided
by goodFields is an information
about the structure of the class (as

well as the instance variable
names), and thus must be specified
by the metaclass. But this

information must be specific to the
class,
The only coherent implementation

is thus described by the next
section.

2.3 a metaclass instance
variable.

goodFields must be an instance
variable of the metaclass and thus
its value will be specific to the class.
In order to accomplish this, we
define a root class, say RemanClass,
whose metaclass (RemanClass class)
defines an instance variable
goodField:

RemanClass class

instancevVariableNames:
tgoodFieids!

At class creation time, the value of

goodFields will be specifed as a
parameter of an appropriate
subclass creation method, for
example : '
'!'RemanClass class
methods¥For: "sub class
creation'!
subclass.;: s
instanceVariableNames: i
goodFields: g

classVariableNames: ¢
poolDbhictionaries:
category: ¢
JnewClass|
newClass 1=
subclass: s
instanceVariableNames: 1
classVariableNames: c
poolDictionaries:
category: <.

newClass goodFields:
{Scanner new scanFieldNames:

super

gl .
“newClass
Access methods for the new

variable will have to be defined as
follows :

'!'RemanClass class

methodsFor: ‘access'!

goodFields: g
goodfields := g

goodPields
~goodFields

Then, a default behavior would
have to be defined in Cbiect class
as in the first solutions :

'Object c¢lass methodsFor:
'remanence’'!
goodFields

~allInstVarNames

The correct implementation is thus
acheived by using a metaclass
structure because it preventis from
basing the implementation on the
Smalltalk sole-instance metaclass

mechanism and Jlocates <class
structure information at the class
level,

2 Second Example
Implementing a save/restore
facility for object’s states.

We propose here to describe a
feature allowing objects to
dynamically save and recover their
states (basically the values of their
fields).

Here the idea is to implement a
save/restore mechanism in order to

237

have a backtraking facility on the
state of objects.

This is very useful in number of
cases. Two different uses can be
done of this feature, corresponding
10 distinct semantics .

local use (bactrack on one
instance): in optimization
computations for instance,
one may want to know the
"hypothetic” state of a
particular object after some
computation has been made,
without actually change its
"real” state,

global use (backtrack on all
instances of a c¢lass) it is
very useful to be able to
globally save/retrieve values
for all instances of given
classes, in order to simulate
the notion of environment,
especially in simulation

systems!.

Since we are dealing with Object-
Oriented languages, which highly
advocate encapsulation, the best
place to put the saved data is in the
objects themselves: objects will
encapsulate their data ("real
values” of the instance variables) as
well as their old states,
To do so, we simply create extira
instance variables which will poini
to stacks, for which usual push/pop
operations are possible. Once again
each c¢lass will have to specify
which instance variables need to be
stacked in a way or ancther.

3.1 the
solution

straightforward

A root class 5imulObject is created
to avoid redefinition of the class
Chject.

11n SAGESSE, we needed to visualize
the application after decisions had
been taken by the user, and then be
able to come back to previous states.

Two methods are implemented in
the root class SimulObiect , which
will save/restore the values of the
specified variables as follow ;

!SimulCbject methodsFor:
"backtracking'!

save
self class simulVariables
do:

[:s]

(self instVarat: (self class
allInstvVarNames indexQf:
("stack',s))) push: (self
instvVarAt: (self class
allinstVarNames indexOf:

5)1]

and similarly ;

restore

self simulVariables do:

[:s]

(self instVarAt: {self
class allInstvVvarNames
index0Qf: s5)) push:

(self instvarat: (self
class allInstVarNames
index0f: ('stack',s))]

One could also implement class
methods for global use:

!'SimulObject
methodsFor:
backtracking'!

class
"global

savedAll
self allInstances do:
save]

[:x]

X

regstoreAll
self allInstances do:
restore]

[:x] =

Here again, the only place to put
the information simulVariable is in
an instance variable of the
metaciass SimulObject class.

SimulObiject class

instanceVariableNames:
"simulVariables!

Then a new sublass creation method
is impfemented in the metaclass
SimulCbiject class

238

class
class

!'$imuloObiject
methodsFor: "sub
creation'!

subclass:
instanceVariableNames:
simulVariableNames:
classVariableNames:
poolDictionaries:
category: ¢
| string stackvariables
simulVariables|
string := i,s.
simulVariables : {(Scanner
new scanFieldNames: s).
stackVariables :
simulVariables
collect: fIsvl|
'stackOf!, sv.
string :
',stackVar.
stackVar].
~{self subclass:
instanceVariableNames:
string classVariableNames: ¢
poolDictionaries: o)
category: ¢) simulVariables:
simulVariables;yourself

Ho e e

stackVar

.
I

string,'

s

This way, any class defined as a
subclass of Simulcbject can specify
at creation time a set of instance
variables for which corresponding

stack variables will be created!.

Example :
SimulObject subclass: #Fco
instanceVariableNames: 'x y'
simulVariableNames: 'a b’
classVariableNames: '!
poolDicticnary: '?'
category: 'test®
Foc allinstVarNames -> (% ¥
a b stackOfa stackOfb)
Assuming access methods are
defined :
(Foo new) a: 1l; save; a: 2;
save; a: 3: restore;
restore; a ~-> 1
Lto be fully integrated in the
envirocnment, the methods

definition and copyForvalidation
must be also changed to handle the
extira class instance variable

This sofutien would work in
Smaliitalk, but it not satisfactery
because the delinition of this

ability to declare and save/restore
some instance variables is spread
over both the class (save/restore
methods) and the metaciass
(creation method, class instance
variable access method).

3.2 the solution wusing
{almost) only metaclasses

A root class simulObject is created,
not in order to be able to depict
some new structure or method, but
because (in Smailtalk) one cannot
creale metaclasses by instantiation,

The two save/restore methods are
implemented in the root metaclass
SimulObiect class, as follow

class
"instance

!SimuilObiject
methods¥For:
backtracking'!

save: X

self simulVariables do:

[:s] {x instvVarAt: (self

allInstVarNames index0Qf:

{('stack',s))) :

push: {x instVaradt:
allInstVarNames

5))

(self
indexOf:

and similarly :

restore: x

self simulVariables do:
[:5] (x instVarhAt:
allInstVarNames indexOf:

{self
s))

push: (x instVarAt:
(self allIinstVarNames
index0Of: ({('stack',s))]

and the generic methods :

saveall
self allInstances do: [:x}
self save: x]
restoreAll
gself allInstances do: [:x}
self restore: x]

The metaclass SimulObiject <class

defines an instance wvariable and a
creation meihod as in the first

solution. But mnow, only the
metaclass SimulObject class has
been defined and the «class
SimulObject is only here in order
10 access its metaclass.

The only remaining instance
methods are the save/restore for
instances, which will only call class

methods :

'SimulObject methodsFor:
'instance backtracking'!

save
self class save:; self
restore
self class restore: self
Thus, once again, ihe correct
implementation is acheived by
using appropriate metaclass
structure and behavior, and by
clearing the class level
3.3 towards better
solutions

An other solution would consist in
using variable subclasses. The room
allocated for indexzed element would
contain the stacks, making them
less "visibie" than exira instance
variables.

The implementation would then
consist in changing the subclass
creation method in order to create
variable subclasses instead of
standard subclasses, and then to
change the save/restore class
methods, so that they store and
retreive values 1o and from the
indexed locations of the instance.

The jdeal solution would consist in
defining some specific allocation
method {basicNew) that would

“allocate extra room for the stacks,

239

with specific behavior to access
them. The task is definitely not easy

within the actual Smalltalk
environment, because of the
difficulty to contrel metaclass
creation, and because allocation

methods are primitives, hidden to
the user.

4 Conclusion

Other works in Object Oriented
languages show that metaclasses
are helpful as scon as the system
description is not trivial {defining
iokens behavior in Rete network
[8}, implementing part-whole
hierarchy {101).

Works on Object-Oriented
methodology have demonstrated the
need for careful and coherent
programming, emphasising on the

notions of encapsulation [121],
reusability [9], safety, or
portability.

Metaclasses are never mentionned

as a means of ensuring code
readability, reusability or
portability.

Metaciasses play exactly the same
role regarding classes, that classes
play towards their instances if
they are absent or not used, then
this role has to be playved by the
class themselves, in an acrobatic
fashion. Programming without
them is most of the time possible,
and even advocated [1], but, as soon

as the classes have specific
behaviors, leads 1o programming
technigues that make classes
looking like ad hoc combinations of
methods rather than clean
abstractions of realities.

We advocate here a use of

metaclasses similar to the uses of

classes abstract definition of
entities having structures and
behavior,

This correct use of metaciasses
should avoid two pitfalls :

I ~ Replacement of structures by ad
hoc behavior,

The problem holds for classes as
well as for metaclasses, as we can
see on a4 classical example :

Suppose the class Human, for which
one wants to define the property of
being mortal

The simpliest way to do so is by
defining a method

240

'!'Buman methodsFor:
‘testing'!
mortal

L rue

the coherent way would be to define
morial as a part of the structure of
Human, and to have methods to
cater for the value of mortal, (e.g.
initialize};

Human
instanceVariableNames
:'mortal?
THuman methodsFor:
'initialize!'!
initialize
mertal :=true

and simply an access method to
answer the frightening question :
'Human methodsFor:
‘testing'!
mortal
“mortal

It is clear here that Smalltaik (as

most of the Object Oriented
languages) provides means of
turning around “structured”

definitions by using methods and
inheritance. But this is in a way =2
trick in the first solution,
subclasses of Human would not
really inherit from the property of
being mortal (or not), but would
inherit from the behavioer defined
by the method mortal

2 and metaclass

levels.

Mizing class

Inheritance in Smalitalk, hides the
need for metaclasses careful
definition, because of the parallel
inheritance of metaclasses, but
defining a particular behavior for a
class should be independant of the
class itself, in order to be really
reusable,

Let C be & class and M ils metaciass.
The wanted behavior is defined
both by C and M behaviors as in the
first solution of the last example.

Then, suppose one wants to have a
class C2 having similar behavior
than C.

One just needs 1o create it as a
subclass of C, as both C and M

structures and behavior will be
inherited.
In a more general language (CLOS,

Loops, Classtalk), where the user
has control over both classes
superclasses, and metaclasses, then
the behavior one wants to inherit
from has to be defined only in the
metaclass, and nol simulated by
means of ad hoc instance methods,
ctherwise, C2 would be forced to
inherit from C, which is a big
constraint.

This is also particulary important
with regards to readability and
portability finding the
specification of a particular class's
behavior is easy if it is defined
entirely at the metaclass level, It is
a lot more difficuit to do so if this
specification is spread between the
class (and its subclasses) and the
associated metaclasses.

The two previous examples make
use of the ability of metaciasses to
describe classes structures
(instance variables) and behavior
(methods) in a coherent way.

Besides from giving a more
coherent implementation of the
notions, this use is more declarative
and more readable : the only place
1o put specifications of classes is
their metaclasses.

The Smalitalk environment is not
really made for this (the user has
no control on the creation of
metaclasses, and the use of class
instance variable is not
documented) but minor additions to
the kernel allow extensive and free
use of metaciasses [3),

Although other problems may arise
when iniensive and careless use of
metaclasses is made [7], they give a
powerful and coherent means for
specifying high-leve! descriptions
in a readable and poriable way.

Aknowledgment

241

I whish to thank J.F. Perrot for his
support and N. Graubé for his
fruitful remarks.

References

[1] Borning A., O'Shea T.
Deltatalk: An Empirically and
Aesthetically motivated
Simplification of the Smalltalk-890
Language.
Proceedings of ECOOP'87.

[2] Briot, J-P., Cointe P.
A Uniform model for Object-
Oriented Languages Using the
Class Abstraction. Proceedings of
IJCAT 87, pp 40-43, Milan, [taly,
August 1987.

{31 Briot, J-P., Cointe P.
Programming with ObjVliisp
Metaclasses in Smalltalk-80,
Proceedings of OOPSLA '89

{4] Cointe P.
Metaclasses are first class; the
ObjVliisp model, OOPLSA '87,
Orlando, Florida, USA October 87.

(S} Cointe P, Graube N.
Programming with metaclasses
in CLOS Proceedings of the first
CLOS Users and Implementors
Workshop, Xerox Parc, Palo Alto,
California, USA October 88,

[6] Graube N.

Reflexive Architecture: From
ObjViisp to CLOS, ECOOP '88,
Lecture notes in Computer
science, Vol. 322, pp 110-127, Oslo,

Norway, August 88,

[71 Graube N.
Metlaciass compatibility.
Proceedings of OOPSLA '89

18] Laursen
Opus
system,
Proceedings of OOPSLA '86.

a Smalltalk production

[9] Lieberherr K., Holand I, Riel A.
Object-Oriented Programming
An Objective Sense of Style.
Proceedings of the OOPSLA ‘88

[10] Malenfant], & al.
OhjVProlog : Metaclasses in Logic.
Proceedings of the ECOOP ‘89

{11] Vegdah}, Steven R,
Moving Structures between
images. Proceedings of the
OOQPSL A '86

£12] Wirfs-Brock A., Wilkerson B.
Variable limit reusability in
journal of Object-Oriented
programming, pp 34-4G.
May/June 1989, Vol 2, N° 1. S8IGS
Publication, New York.

242

