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abstract

In  this  paper,  we  present  an  overview  of  the  reasoning  capacities  of  the
NéOpus system, a forward chaining first-order inference engine, integrated in
the  Smalltalk  environment.  NéOpus  is  a  complete  rewriting  of  the  Opus
system described in [Atkinson&Laursen], which itself is a translation of the
OPS5 rule-based system in  Smalltalk.
We describe here some major improvements that were added to NéOpus in
order to make it operational in a wide range of contexts.
We start by a brief description of the original Opus system, and then describe
our extensions, such as the use of class inheritance in variable typing, local
variables, the introduction of zero-order variables, rule base inheritance, and a
declarative architecture for  control.  We conclude on the operational  use of
NéOpus as a knowledge representation tool.
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Reasoning with objects : the NéOpus environment

François Pachet

I. Introduction

The aim of our work is to explore the reasoning capacities of Object-oriented
languages  to  represent  deductive  knowledge.  Smalltalk  offers  a  ideal
environment to explore those capacities,  because it  provides a very natural
and  clear  representation  for  domain  concepts.  However  the  inferential
capacities of Smalltalk are intrinsically limited (inheritance, in a way may be
condidered as a basic inferential mechanism). Adding an extra deductive layer
on top of Smalltalk is thus a very natural effort. Some systems were designed,
that added a deductive mechanism on top of Smalltalk, such as constraints in
ThingLab [Borning],  a zero-order inference engine in Humble [Piersol],   an
OPS5-like rule-based architecture in Essaim [Alizon&Huet], or a prolog-like
mechanism in [Lalonde].
The  Opus  system  [Atkinson&Laursen]  is  the  only  one  to  propose  a  full-
fledged  first-order  (handling  variables),  forward  chaining  inference  engine
that is totally integrated in the Smalltalk environment.
We took the description of this system by the authors as a starting point of our
investigations in Knowledge Representation. Our system, called NéOpus is a
complete rewriting of the Opus system, based on the original description by
the authors. We made a number of experiments in various contexts which led
us to a series of improvements that greatly extend its representation capacities.
We will  start  by a brief  description of  the original  Opus system, and then
describe four major developments that where not completely treated in the
original  system,  namely  use  of  inheritance  in  variable  typing,  zero-order
reasoning,  rule  base  inheritance,  and  meta  rules.  We  finally  describe  the
programming environment that supports those extensions, and conclude on
some issues on rule-based representation raised by the use of NéOpus.

II. The Opus environment

motivations

The Opus system was originally described in [Atkinson&Laursen]. It consists
in  a  first-order  inference  engine  written  in  Smalltalk-80.  The  engine  is  an
adaptation of the famous OPS5 [Brownston] inference engine to the Smalltalk
universe.
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The original objectives were to provide a production system with  maximum
integration of Smalltalk in the rule language. This objective led to a rule syntax
that allows writing of arbitrary Smalltalk expressions. There is no particular
rule  language  :  the  knowledge  is  expressed  directly  in  terms  of  messages
understood by the various domain objects. We rewrote the system by adding
an  other  reusability  objective.  We  wanted  the  system  to  be  as  opened  as
possible,  to  provide  a  testbed  for  experimenting  with  various  inference
techniques. The system is thus designed to be easily extended.

the rule syntax

Instead  of  having  an  ad'hoc  representation  for  facts,  Opus  facts  are  any
Smalltalk objects.
Each rule has a variable declaration part, in which the variables used in the rule
are declared, by indicating which class they denote. Rules consist in a name,
the  variable  declaration  part,  a  set  of  premises,  and  an  action  part.  Rule
premises  express  constraints  on  Smalltalk  objects,  that  appear  as  rule
variables.  Those  constraints  may  be  any  Smalltalk  expression  yielding  a
boolean  result.  Action  parts  can  be  any  Smalltalk  expression,  possibly
modifying the objects that appeared in the premises.

Example

Let us simulate an auction : an auctioneer, with several persons, wanting to
buy  objects.  We first  define three Smalltalk classes  Auctioneer,  Person,
ObjectInAuction,  with  the  necessary  instance  variables  (persons have
money, objectsInAuction have a price, a name, Auctioneers have a set
of  objectsToSell,  a  currentObject,  a  state that  defines  the  various
steps of an auction ..).
For instance, here is a rule that makes the auctioneer select the person with the
best proposed price for the current object.

3



4
bestPrice

|Person p. ObjectInAuction o. Auctioneer a| 

a hasStartedAuction.
o == a currentObject.
(p  proposedPriceForObject:  anObject)  >  a

bestPrice.

action
a bestPrice: p proposedPrice.
a modified.

modification of objects

Since  action  part  of  rules  may  be  arbitrary  Smalltalk  expressions,  it  is
impossible to know automatically which objects are actually modified after a
rule has been triggered. A partially satisfactory solution consists in explicitely
stating which objects have been modified in the action part, by sending them
the message  modified.  Of  course,  only  those  objects,  whose  modification
may change the instantiation state of a rule have to be sent this message.

2. Architecture
Rules are organized in rule bases. Rule bases are implemented as Smalltalk
classes, which are subclasses of a root class OpusRuleSet. Having rule bases
being  Smalltalk  classes  is  interesting  because  it  provides  "for  free"  all  the
Smalltalk  functionalities  for  classes,  as  fileIn,  fileOut,  and  cross-
references.
Rules are represented as instance methods for those classes. A special parser
parses the code of the rules in order to compile them in the Rete network.

For instance, a rule base named AuctionRules may be defined, as  a subclass
of class OpusRuleSet :

OpusRuleSet subbase: #AuctionRules
classVariables: ''
category: 'OPUS-rules'

The preceding rule bestPrice would then be defined as an instance method
of AuctionRules.
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If  instance  methods  are  interpreted  as  Opus  rules,  class  methods  are
interpreted  as  standard  Smalltalk  methods.  There  are  used  to  implement
example methods, that may create initial instances to be matched by the rules.
A set of methods are implemented to activate the rule base, such as execute
(the normal default activation method).

Here, an example method could be :

!AuctionRules class methodsFor: 'example'!

example
"creation of instances"
p1 := Buyer new; name: #Joe; money: 10000.
p2 := ...
o1 := ObjectInAuction new ...
o2 := ...
a := Auctioneer new; ..
self execute

3. Rete compilation

Rules  are  compiled  in  a  Rete  network [Forgy].  The  main  idea  of  the  Rete
compilation is to associate a Smalltalk method to every premise and to the
conclusion part of an Opus rule. Those methods are compiled in a separate
class, called dynamic class, which is uniquely associated to each rule base.
Then Rete nodes are created for every premise of a rule, and a particular Rete
node  for  its  conclusion  part.  The  network  is  used  at  activation  time  by
propagating  tokens,  which  represent  sets  of  objects  matching  the
corresponding premise of the rule. The tokens are sent initially to input nodes.
When a token reaches a terminal node, the corresponding rule is added to a
conflict set, and is ready to fire.
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Those networks are implemented by a instanciating class OpusNetwork. Rete
nodes  are  represented  by  instances  of  root  class  OpusNode,  or  of  its
subclasses.  A number of  subclasses  of  OpusNode were initially  designed :
nodes implementing positive premises (the standard Opus premise), negative
premises  (testing the absence of  objects  satisfying a  given expression),  and
terminal  nodes  (implementing the  action  part  of  the  rule).  As  we will  see
below, this taxonomy was largely extended in order to represent the various
extensions to the rule language.
For  debugging  purposes,  Rete  networks  may  be  visualized  and  animated
during execution time (see figure 5). 

4. Applications

We  entirely  rewrote  the  system  according  to  our  evolving  needs  and
specifications,  and  added  several  interesting  features,  such  as  the  use  of
inheritance in variable typing, the use of local variables in rules, the ability of
mixing 0-order variable in rules, an inheritance mechanism for rule bases, a
declarative  architecture  for  control,  and  a  supporting  programming
environment.
Our system, called NéOpus, is used in several real-world applications, such
as :

- a system thats performs geometrical reasoning [Pachet 1],
- a system that plays openings in Bridge [Alvarez],
- a system that control ventilator for patients after surgery,
- a systems that control medical image analysis,
-  a  system  that  automatically  generate  a  graphical  interface  using  a
Smalltalk tool box,
-  a  system  that  transforms  semantic  networks  into  relational  networks
according to certain transformation rules,
- a scenario generator.

Besides  those  applications,  the  system  is  used  as  a  basis  for  teaching
Knowledge Representation with Objects in a PhD cursus at the University of
Paris VI.

III. Extensions

We describe here our developments to the basic Opus system, that constitute
the  NéOpus  system.  More  informations  on  the  implementation  and
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motivations of those may be found in [Pachet 1,4].

III.1. Use of inheritance in variable typing

Rule variable typing

The standard Opus system intrinsically offers first-order inference capacities.
The variables appearing in rules are interpreted "universally" (i.e. a variable x
declared as being of class C, is interpreted as "any instance of class C").
In  the  original  system,  rule  variables  represented  any  instance  of  a  given
category.  Category  where  arbitrary  sets  of  objects,  in  which  any  Smalltalk
objects could be enrolled, modified or removed. We did not implement the
notion of category because we prefered the direct relationship between rule
variables and Smalltalk classes. Also, the notion of category is not bidirectional
: (an object may belong to several categories), which strongly limits the use of
object dependency in rules.
In NéOpus, rule variables are declared by specifying their Smalltalk class. This
leads  to  a  decision  regarding  Smalltalk  inheritance.  If  a  rule  variable  x  is
declared as being of class C, do we restrict  the objects denoted by x to all
instances of C or to all sub instances (instances of subclasses of C) ?
We introduced the notion of variable typing, in order to give the opportunity
of choosing for each rule base, between those two alternatives.
Simple typing is a typing where rule variables denote only direct instances of
their class, whereas natural typing considers also all sub instances.

Use of typing

Natural  typing is  a  very powerful  extension to Opus,  since it  allows more
objects to be concerned by rules. However, no computation is made on the
basis of this typing. A very natural feeling is that rules filtering objects higher
in a hierachy of classes are more general than rules filtering "lower" objects.
The notion of preferability here is to be handled at the activation time, when
the system has to chose a rule for firing.
For instance, the rule with a variable declaration such as :  | Object o|,
may be  considered more  general  than the rule  with  variable  declaration  |
Person p|, since Person is a sub class of Object.
But if several variables are declared, no decision a priori can be made, solely on
the basis of the rule variable declaration. Unlike method combination (as in
CLOS), no coherent rule combination can be imagined.

7



8
III.2. O-order reasoning

motivation

First-order reasoning is far more powerful than zero-order reasoning, because
if provides a factorisation of code (the same rule may be triggered with several
objects).  More over,  first  order reasoning is very natural in Smalltalk, since
Smalltalk objects themselves are not named, and are easily accessed by pattern
matching.
However,  in  a  number  of  cases,  the  notion  of  singular  object (a  particular,
known, existing object)  is very useful.  For instance,  one could not  imagine
Smalltalk classes with no name !.
This notion requires a naming system that may handle such singular objects.
Smalltalk offers two ways of accessing objects by their name : global variables
(reserved for system administration purposes) and class variables (which are
common to a set of subclasses and their instances).
Using  global  variables  in  rules  is  of  course  possible.  For  instance,  the
conclusion of a rule may be to display a message in the Transcript window.
Simply writing  "Transcript show: 'a message' " in a rule's  action
part will work. The problem is that those variables are not considered by the
system as rule variables, and thus their modification is not taken into account
(see above).
In order to allows the effective use of named variables in rules, a new type of
rule variable was designed. The idea is to use the class variables of the rule
base as named objects. Those objects may be used as standard class variables
in Smalltalk methods, and may be used in rules, by declaring them with the
key word "Global". Their modifications in rules is taken into account by the
system.

Example

In  our  preceding  auction  example,  it  is  clear  that  persons and
objectsInAuction are well represented by standard first-order variables. It
is awkward to represent the Auctionneer by such a variable, since he is unique
in  this  context  (of  course  several  instances  of  class  Auctioneer may
physically exist, but only one of them interests us). We will represent it by a
named (or class) variable.
This leads to a new definition of our AuctionRules rule base :
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OpusRuleSet subbase: #AuctionRules

classVariables: 'TheAuctioneer'
category: 'OPUS-rules'

Here is how our rule is now written :

bestPrice

| Person aPerson. ObjectInAuction anObject.
Global TheAuctioneer| 

TheAuctioneer hasStartedAuction.
anObject == TheAuctioneer currentObject.
(p  proposedPriceForObject:  anObject)  >  TheAuctioneer

bestPrice.

action
TheAuctioneer bestPrice: p proposedPrice.
TheAuctioneer modified.

Implementation

The implementation of named variables consists in redefining the parser so
that  it  creates  a special  kind of  premise for those premises  which contains
named variables.
For  those  premises,  a  subclass  of  Rete  node  is  created,  called
ReteNodeWithNamedVariable,  that  will  handle  the  appropriate
propagation of tokens. 
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Some basic access methods are also defined at the rule base level, to handle the
modification and initialization of named variables.

III.3. Dummy variables

Motivations

The fact that Opus premises may be arbitrary Smalltalk expressions has some
drawbacks that do not exist when only attribute/value premises are allowed. 
Let us consider for instance a premise testing that the country of origin of a
person' father's car is Europeean, and that its color is red  :

cars
| Person aPerson|

aPerson father car countryOfOrigin = #Europe.
aPerson father car color = #red.
...

This syntax leads to heavy premises. It would be very natural to factorize the
person's father's car in a "local" variable (in the Smalltalk sense).
We introduced such local variables in rules. They are declared by the keyword
Dummy,  and  are  interpreted  accordingly  :  a  premise  containing  a  dummy
variable is not expected to return a  boolean result, but a  non nil result. If the
result of the assignment is nil then the premise is considered false, else is it
considered true.
Our preceding rule cars now becomes :

cars
| Person aPerson . Dummy aCar|

aCar := aPerson father car.
aCar countryOfOrigin = #Europe.
aCar color = #red.
...

Local variables are only syntactic. In particular, they may not be declared as
modified, since they are not filtered in the Opus sense.
The implementation of these variables consists in creating a special subclass of
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ReteNode,  called  ReteNodeDummy,  for which the premise test  is changed,
and for which and no propagation is done for the dummy variable.

Dummy triggering variables

A  more  subtile  variation  on  dummy  variables  is  the  dummy  triggering
variable.  The  idea  is  that  opus  rules  do  not  take  into  account  the  natural
dependency of objects. If we take the preceding auction rule bestPrice for
instance, it is clear that the second premise is somewhat awkward. The object
anObject is  functionnaly  accessible  from  the  object  TheAuctioneer.  It
would be more natural to write an assignement instead of a test :

anObject := TheAuctioneer currentObject.

However, anObject may not be here declared as a dummy variable, since its
modification has to be taken into account by the system.
Dummy triggering variable are created to cope with those situations, when
objects are functionnally accessible, but must be handled as full rule variable
as far as propagation is concerned.
Those variable are declared the same way as standard rule variables, but may
be assigned in a premise, to allow the above expressions.
The rule bestPrice may now be written (with a dummy variable price, a
dummy  triggering  variable  anObject,  and  a  namedvariable
TheAuctioneer):

bestPrice

|Person  aPerson.  ObjectInAuction  anObject.  Global
TheAuctioneer. Dummy price| 

Auctioneer hasStartedAuction.
anObject := Auctioneer currentObject.
price := p proposedPriceForObject: anObject.
price > TheAuctioneer bestPrice.

action
TheAuctioneer bestPrice: price.
TheAuctioneer modified.
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As for dummy variables, the implementation of dummy triggering variable
consists in adding the ad'hoc parsing  functionality, that creates a particular
subclass  of  ReteNode,  here  ReteNodeWithTriggerDummy.  This  class
redefines  the  propagation  methods,  in  order  to  take  into  account  the
dependency of the assigned variable.

III.4. Rule base inheritance

Since rule bases are classes, the idea of using the inheritance mechanism of
Smalltalk is natural. Inheritance of rule bases can be used as a useful means of
organizing hierarchically set of rules.

Implementation

The implementation of this mechanism is not straightforward. Object-Oriented
languages  usually  separate  static  inheritance  (decided at  compilation time)
used for instance variables, from dynamic inheritance (decided at execution
time) used for methods.
Rules being closer to methods than to instance variables, dynamic inheritance
comes first to mind. But the compilation of a rule leads to two different kinds
of  compilations :  the  compilation of  the rule  in the Rete  network,  and the
compilation of the methods implementing the various premises and the action
part in the dynamic class.
This leads to a combination of static  (for Rete networks) and dynamic (for
dynamic classes) inheritance. Since dynamic class inheritance is parallel to rule
base  inheritance  (see  diagram  below),  the  inheritance  of  the  methods
implementing the rule in the dynamic class is the standard Smalltalk (dynamic
inheritance).  However,  because  of  the  nature  of  rule  triggering  (unlike
methods,  rules  are  not  looked  up),  the  updating  of  a  Rete  network  is
propagated down to the inheritance tree.
If we suppose a rule base RB, and a sub base of RB called RB2, compiling a
rule in RB will result in the compilation of Smalltalk methods in the dynamic
class of RB (but not in the dynamic class of RB2), and in the updating of both
RB's Rete network, and RB2's Rete network (cf figure 1).
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RBRB's Rete network

RB2RB's Rete network

RB's dynamic class

RB's dynamic class

sub class of

owns

figure 1. The rule base inheritance scheme

Use of rule base inheritance

Like variable typing, rule base inheritance introduces a notion of generality in
rules.  Rules  defined at  a  higher  level  in  the  rule  base  hierarchy  are  more
general than rules defined lower in the hierarchy. Deciding that this criteria
was clear enough, we chose it as a default sorting criteria for rules : the default
conflict resolution strategy sorts rules according to the rule base in which the
rule is implemented. 

III.5. meta rules

The idea of controlling rule bases by a particular rule base, instead of having a
procedural  control  is  also a very natural  extension of  Opus because of  the
basic syllogism : A) Opus rule bases, conflict sets, rules ... are Smalltalk objects,
and B) Opus rules may filter any Smalltalk object.
A declarative architecture for control is set  up in NéOpus, that allows rule
bases  to  be controlled by other  (meta)  rule bases.  The idea is  to substitute
entirely the activation of a rule base, by the activation of a meta base that will
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handle all the steps of the activation process, including the conflict resolution.
In  order  to  do  so,  a  reification  of  control  is  performed,  by  introducing  a
particular class, called Evaluator, that represent the evaluation state of a rule
base. Details on this architecture may be found in [Pachet 3].

A  series  of  standard  meta  bases  implement  standard  conflict  resolution
strategies, (such as LEX and MEA from OPS5), and less standard strategies
(strategies  based  on  agenda  managements,  strategies  handling  priorities).
Specialized meta bases are defined by subclassing one of the standard meta
base, using rule base inheritance.

The  association  of  a  meta  base  for  a  rule  base  can  be  done  by  Smalltalk
method, or by a simple selection in the NéOpus dashboard. This allows for
instance to trace a rule base activation, without recompiling any code, simply
by selecting a tracing meta base in the browser.

IV. The programming environment

The NéOpus system reaches a level of complexity such that powerful interface
tools  are  essential.  The  programming  environment  of  NéOpus  allows  the
efficient use of the system's functionalities by providing a series of interface
tools such as a dashboard, rule browsers,  conflict  sets views, Rete network
views, instance browsers.

A dashboard allows,  for  each rule base in the environment,  to  browse the
rules,  to browse the instances concerned by the rules,  to visualize the Rete
network,  the  conflict  set,  to  associate  a  meta  base,  to  activate  metaclass
methods (usually implenting examples),  to select  a step mode, and various
rule base parameters such as variable typing, or trace mode.
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figure2. the NéOpus dashboard

multi level programming

Rule browsers and conflict set views accomodate for meta control, by offering
multiple views, one for each rule base in the meta hierachy.

Here we illustrate the interface with a rule base that implement the Monkey
and  banana  example  using  meta  rules.  A  rule  base  called
MonkeyRulesWithMeta is  controlled  by  a  meta-rule  base  called
MonkeyMeta (itself subbase of a meta rule base implementing a depth-first
goal satisfaction strategy). The browser for MonkeyRulesWithMeta is thus a
"double"  browser,  in  which  both  rule  bases  may  be  browsed  in  parallel.
Similarily,  the  conflict  set  view  of  MonkeyRulesWithMeta is  double,  to
allow, at execution time the visualization of control.

Rete network views (figure 5) provide a graphical representation of the Rete
network. Each node is accessible via a local menu, allowing the inspecting of
the node, and of the associated Opus rule. At execution time, if the view is
opened,  an  animation  visualizes  the  flow  of  tokens  in  the  network.  A
scroll/zoom facility is also included that helps managing big networks.
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figure3. A multiple browser

figure4. The conflict set in the middle of the activation
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Rete network views provide a graphical representation of the Rete network.
Each node is accessible via a local menu, allowing the inspecting of the node,
and of the associated Opus rule. At execution time, if the view is opened, an
animation visualizes the flow of tokens in the network. A scroll/zoom facility
is also included that helps managing big networks.

figure5. the view of a Rete network

V. Conclusion
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We have shown four major extensions to the original Opus system, that makes
NéOpus  a  powerful  representation  tool.  The  combination  of  several
mechanisms,  such  as  natural  typing,  rule  base  inheritance,  zero-order
variables, and meta control is made possible for two reasons. The first one is
that all those concepts are the results of two years of experiments with the
systems. They are simple and clean concepts that supports cohabitation well.
The second is the role of the interface. Meta programming is supported by
multiple  views  that  reflects  well  the  hierarchy of  meta  levels.  However,  a
number of issued are yet to be solved. The fact that there is no rule language
supposes that objects hold all the necessry informations to express knowledge
about them. This is not always true, and objects often have to be enriched to
cope with needs in rule expression [Pachet 1].  Also, the extension of Opus
premises to arbitrary Smalltalk expressions yields a series a new problems. For
instance, implementing a backtracking or a TMS facility is made impossible by
using standard techniques. Lastly, the declarative control architecture requires
a description of rules that supports meta reasoning : expressing in terms of
objects what a rule is doing on its environment is not an easy task.
Further works on the NéOpus system includes a first-class representation of
Smalltalk assertions that will solve a great deal of those problems.
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