
1
Reasoning with objects : the NéOpus environment

François Pachet

LAFORIA, Institut Blaise Pascal, Paris

Address : Boite 169, Université Paris VI, Tour 46-00, 4, Place Jussieu
75252, Paris Cedex 05

Phone: 33.1.44.27.70.10
Fax : 33.1.44.27.62.86
e-mail: fdp@laforia.ibp.fr

abstract

In this paper, we present an overview of the reasoning capacities of the
NéOpus system, a forward chaining first-order inference engine, integrated in
the Smalltalk environment. NéOpus is a complete rewriting of the Opus
system described in [Atkinson&Laursen], which itself is a translation of the
OPS5 rule-based system in Smalltalk.
We describe here some major improvements that were added to NéOpus in
order to make it operational in a wide range of contexts.
We start by a brief description of the original Opus system, and then describe
our extensions, such as the use of class inheritance in variable typing, local
variables, the introduction of zero-order variables, rule base inheritance, and a
declarative architecture for control. We conclude on the operational use of
NéOpus as a knowledge representation tool.

1

2
Reasoning with objects : the NéOpus environment

François Pachet

I. Introduction

The aim of our work is to explore the reasoning capacities of Object-oriented
languages to represent deductive knowledge. Smalltalk offers a ideal
environment to explore those capacities, because it provides a very natural
and clear representation for domain concepts. However the inferential
capacities of Smalltalk are intrinsically limited (inheritance, in a way may be
condidered as a basic inferential mechanism). Adding an extra deductive layer
on top of Smalltalk is thus a very natural effort. Some systems were designed,
that added a deductive mechanism on top of Smalltalk, such as constraints in
ThingLab [Borning], a zero-order inference engine in Humble [Piersol], an
OPS5-like rule-based architecture in Essaim [Alizon&Huet], or a prolog-like
mechanism in [Lalonde].
The Opus system [Atkinson&Laursen] is the only one to propose a full-
fledged first-order (handling variables), forward chaining inference engine
that is totally integrated in the Smalltalk environment.
We took the description of this system by the authors as a starting point of our
investigations in Knowledge Representation. Our system, called NéOpus is a
complete rewriting of the Opus system, based on the original description by
the authors. We made a number of experiments in various contexts which led
us to a series of improvements that greatly extend its representation capacities.
We will start by a brief description of the original Opus system, and then
describe four major developments that where not completely treated in the
original system, namely use of inheritance in variable typing, zero-order
reasoning, rule base inheritance, and meta rules. We finally describe the
programming environment that supports those extensions, and conclude on
some issues on rule-based representation raised by the use of NéOpus.

II. The Opus environment

motivations

The Opus system was originally described in [Atkinson&Laursen]. It consists
in a first-order inference engine written in Smalltalk-80. The engine is an
adaptation of the famous OPS5 [Brownston] inference engine to the Smalltalk
universe.

2

3
The original objectives were to provide a production system with maximum
integration of Smalltalk in the rule language. This objective led to a rule syntax
that allows writing of arbitrary Smalltalk expressions. There is no particular
rule language : the knowledge is expressed directly in terms of messages
understood by the various domain objects. We rewrote the system by adding
an other reusability objective. We wanted the system to be as opened as
possible, to provide a testbed for experimenting with various inference
techniques. The system is thus designed to be easily extended.

the rule syntax

Instead of having an ad'hoc representation for facts, Opus facts are any
Smalltalk objects.
Each rule has a variable declaration part, in which the variables used in the rule
are declared, by indicating which class they denote. Rules consist in a name,
the variable declaration part, a set of premises, and an action part. Rule
premises express constraints on Smalltalk objects, that appear as rule
variables. Those constraints may be any Smalltalk expression yielding a
boolean result. Action parts can be any Smalltalk expression, possibly
modifying the objects that appeared in the premises.

Example

Let us simulate an auction : an auctioneer, with several persons, wanting to
buy objects. We first define three Smalltalk classes Auctioneer, Person,
ObjectInAuction, with the necessary instance variables (persons have
money, objectsInAuction have a price, a name, Auctioneers have a set
of objectsToSell, a currentObject, a state that defines the various
steps of an auction ..).
For instance, here is a rule that makes the auctioneer select the person with the
best proposed price for the current object.

3

4
bestPrice

|Person p. ObjectInAuction o. Auctioneer a|

a hasStartedAuction.
o == a currentObject.
(p proposedPriceForObject: anObject) > a

bestPrice.

action
a bestPrice: p proposedPrice.
a modified.

modification of objects

Since action part of rules may be arbitrary Smalltalk expressions, it is
impossible to know automatically which objects are actually modified after a
rule has been triggered. A partially satisfactory solution consists in explicitely
stating which objects have been modified in the action part, by sending them
the message modified. Of course, only those objects, whose modification
may change the instantiation state of a rule have to be sent this message.

2. Architecture
Rules are organized in rule bases. Rule bases are implemented as Smalltalk
classes, which are subclasses of a root class OpusRuleSet. Having rule bases
being Smalltalk classes is interesting because it provides "for free" all the
Smalltalk functionalities for classes, as fileIn, fileOut, and cross-
references.
Rules are represented as instance methods for those classes. A special parser
parses the code of the rules in order to compile them in the Rete network.

For instance, a rule base named AuctionRules may be defined, as a subclass
of class OpusRuleSet :

OpusRuleSet subbase: #AuctionRules
classVariables: ''
category: 'OPUS-rules'

The preceding rule bestPrice would then be defined as an instance method
of AuctionRules.

4

5

If instance methods are interpreted as Opus rules, class methods are
interpreted as standard Smalltalk methods. There are used to implement
example methods, that may create initial instances to be matched by the rules.
A set of methods are implemented to activate the rule base, such as execute
(the normal default activation method).

Here, an example method could be :

!AuctionRules class methodsFor: 'example'!

example
"creation of instances"
p1 := Buyer new; name: #Joe; money: 10000.
p2 := ...
o1 := ObjectInAuction new ...
o2 := ...
a := Auctioneer new; ..
self execute

3. Rete compilation

Rules are compiled in a Rete network [Forgy]. The main idea of the Rete
compilation is to associate a Smalltalk method to every premise and to the
conclusion part of an Opus rule. Those methods are compiled in a separate
class, called dynamic class, which is uniquely associated to each rule base.
Then Rete nodes are created for every premise of a rule, and a particular Rete
node for its conclusion part. The network is used at activation time by
propagating tokens, which represent sets of objects matching the
corresponding premise of the rule. The tokens are sent initially to input nodes.
When a token reaches a terminal node, the corresponding rule is added to a
conflict set, and is ready to fire.

5

6
Those networks are implemented by a instanciating class OpusNetwork. Rete
nodes are represented by instances of root class OpusNode, or of its
subclasses. A number of subclasses of OpusNode were initially designed :
nodes implementing positive premises (the standard Opus premise), negative
premises (testing the absence of objects satisfying a given expression), and
terminal nodes (implementing the action part of the rule). As we will see
below, this taxonomy was largely extended in order to represent the various
extensions to the rule language.
For debugging purposes, Rete networks may be visualized and animated
during execution time (see figure 5).

4. Applications

We entirely rewrote the system according to our evolving needs and
specifications, and added several interesting features, such as the use of
inheritance in variable typing, the use of local variables in rules, the ability of
mixing 0-order variable in rules, an inheritance mechanism for rule bases, a
declarative architecture for control, and a supporting programming
environment.
Our system, called NéOpus, is used in several real-world applications, such
as :

- a system thats performs geometrical reasoning [Pachet 1],
- a system that plays openings in Bridge [Alvarez],
- a system that control ventilator for patients after surgery,
- a systems that control medical image analysis,
- a system that automatically generate a graphical interface using a
Smalltalk tool box,
- a system that transforms semantic networks into relational networks
according to certain transformation rules,
- a scenario generator.

Besides those applications, the system is used as a basis for teaching
Knowledge Representation with Objects in a PhD cursus at the University of
Paris VI.

III. Extensions

We describe here our developments to the basic Opus system, that constitute
the NéOpus system. More informations on the implementation and

6

7
motivations of those may be found in [Pachet 1,4].

III.1. Use of inheritance in variable typing

Rule variable typing

The standard Opus system intrinsically offers first-order inference capacities.
The variables appearing in rules are interpreted "universally" (i.e. a variable x
declared as being of class C, is interpreted as "any instance of class C").
In the original system, rule variables represented any instance of a given
category. Category where arbitrary sets of objects, in which any Smalltalk
objects could be enrolled, modified or removed. We did not implement the
notion of category because we prefered the direct relationship between rule
variables and Smalltalk classes. Also, the notion of category is not bidirectional
: (an object may belong to several categories), which strongly limits the use of
object dependency in rules.
In NéOpus, rule variables are declared by specifying their Smalltalk class. This
leads to a decision regarding Smalltalk inheritance. If a rule variable x is
declared as being of class C, do we restrict the objects denoted by x to all
instances of C or to all sub instances (instances of subclasses of C) ?
We introduced the notion of variable typing, in order to give the opportunity
of choosing for each rule base, between those two alternatives.
Simple typing is a typing where rule variables denote only direct instances of
their class, whereas natural typing considers also all sub instances.

Use of typing

Natural typing is a very powerful extension to Opus, since it allows more
objects to be concerned by rules. However, no computation is made on the
basis of this typing. A very natural feeling is that rules filtering objects higher
in a hierachy of classes are more general than rules filtering "lower" objects.
The notion of preferability here is to be handled at the activation time, when
the system has to chose a rule for firing.
For instance, the rule with a variable declaration such as : | Object o|,
may be considered more general than the rule with variable declaration |
Person p|, since Person is a sub class of Object.
But if several variables are declared, no decision a priori can be made, solely on
the basis of the rule variable declaration. Unlike method combination (as in
CLOS), no coherent rule combination can be imagined.

7

8
III.2. O-order reasoning

motivation

First-order reasoning is far more powerful than zero-order reasoning, because
if provides a factorisation of code (the same rule may be triggered with several
objects). More over, first order reasoning is very natural in Smalltalk, since
Smalltalk objects themselves are not named, and are easily accessed by pattern
matching.
However, in a number of cases, the notion of singular object (a particular,
known, existing object) is very useful. For instance, one could not imagine
Smalltalk classes with no name !.
This notion requires a naming system that may handle such singular objects.
Smalltalk offers two ways of accessing objects by their name : global variables
(reserved for system administration purposes) and class variables (which are
common to a set of subclasses and their instances).
Using global variables in rules is of course possible. For instance, the
conclusion of a rule may be to display a message in the Transcript window.
Simply writing "Transcript show: 'a message' " in a rule's action
part will work. The problem is that those variables are not considered by the
system as rule variables, and thus their modification is not taken into account
(see above).
In order to allows the effective use of named variables in rules, a new type of
rule variable was designed. The idea is to use the class variables of the rule
base as named objects. Those objects may be used as standard class variables
in Smalltalk methods, and may be used in rules, by declaring them with the
key word "Global". Their modifications in rules is taken into account by the
system.

Example

In our preceding auction example, it is clear that persons and
objectsInAuction are well represented by standard first-order variables. It
is awkward to represent the Auctionneer by such a variable, since he is unique
in this context (of course several instances of class Auctioneer may
physically exist, but only one of them interests us). We will represent it by a
named (or class) variable.
This leads to a new definition of our AuctionRules rule base :

8

9
OpusRuleSet subbase: #AuctionRules

classVariables: 'TheAuctioneer'
category: 'OPUS-rules'

Here is how our rule is now written :

bestPrice

| Person aPerson. ObjectInAuction anObject.
Global TheAuctioneer|

TheAuctioneer hasStartedAuction.
anObject == TheAuctioneer currentObject.
(p proposedPriceForObject: anObject) > TheAuctioneer

bestPrice.

action
TheAuctioneer bestPrice: p proposedPrice.
TheAuctioneer modified.

Implementation

The implementation of named variables consists in redefining the parser so
that it creates a special kind of premise for those premises which contains
named variables.
For those premises, a subclass of Rete node is created, called
ReteNodeWithNamedVariable, that will handle the appropriate
propagation of tokens.

9

10
Some basic access methods are also defined at the rule base level, to handle the
modification and initialization of named variables.

III.3. Dummy variables

Motivations

The fact that Opus premises may be arbitrary Smalltalk expressions has some
drawbacks that do not exist when only attribute/value premises are allowed.
Let us consider for instance a premise testing that the country of origin of a
person' father's car is Europeean, and that its color is red :

cars
| Person aPerson|

aPerson father car countryOfOrigin = #Europe.
aPerson father car color = #red.
...

This syntax leads to heavy premises. It would be very natural to factorize the
person's father's car in a "local" variable (in the Smalltalk sense).
We introduced such local variables in rules. They are declared by the keyword
Dummy, and are interpreted accordingly : a premise containing a dummy
variable is not expected to return a boolean result, but a non nil result. If the
result of the assignment is nil then the premise is considered false, else is it
considered true.
Our preceding rule cars now becomes :

cars
| Person aPerson . Dummy aCar|

aCar := aPerson father car.
aCar countryOfOrigin = #Europe.
aCar color = #red.
...

Local variables are only syntactic. In particular, they may not be declared as
modified, since they are not filtered in the Opus sense.
The implementation of these variables consists in creating a special subclass of

10

11
ReteNode, called ReteNodeDummy, for which the premise test is changed,
and for which and no propagation is done for the dummy variable.

Dummy triggering variables

A more subtile variation on dummy variables is the dummy triggering
variable. The idea is that opus rules do not take into account the natural
dependency of objects. If we take the preceding auction rule bestPrice for
instance, it is clear that the second premise is somewhat awkward. The object
anObject is functionnaly accessible from the object TheAuctioneer. It
would be more natural to write an assignement instead of a test :

anObject := TheAuctioneer currentObject.

However, anObject may not be here declared as a dummy variable, since its
modification has to be taken into account by the system.
Dummy triggering variable are created to cope with those situations, when
objects are functionnally accessible, but must be handled as full rule variable
as far as propagation is concerned.
Those variable are declared the same way as standard rule variables, but may
be assigned in a premise, to allow the above expressions.
The rule bestPrice may now be written (with a dummy variable price, a
dummy triggering variable anObject, and a namedvariable
TheAuctioneer):

bestPrice

|Person aPerson. ObjectInAuction anObject. Global
TheAuctioneer. Dummy price|

Auctioneer hasStartedAuction.
anObject := Auctioneer currentObject.
price := p proposedPriceForObject: anObject.
price > TheAuctioneer bestPrice.

action
TheAuctioneer bestPrice: price.
TheAuctioneer modified.

11

12

As for dummy variables, the implementation of dummy triggering variable
consists in adding the ad'hoc parsing functionality, that creates a particular
subclass of ReteNode, here ReteNodeWithTriggerDummy. This class
redefines the propagation methods, in order to take into account the
dependency of the assigned variable.

III.4. Rule base inheritance

Since rule bases are classes, the idea of using the inheritance mechanism of
Smalltalk is natural. Inheritance of rule bases can be used as a useful means of
organizing hierarchically set of rules.

Implementation

The implementation of this mechanism is not straightforward. Object-Oriented
languages usually separate static inheritance (decided at compilation time)
used for instance variables, from dynamic inheritance (decided at execution
time) used for methods.
Rules being closer to methods than to instance variables, dynamic inheritance
comes first to mind. But the compilation of a rule leads to two different kinds
of compilations : the compilation of the rule in the Rete network, and the
compilation of the methods implementing the various premises and the action
part in the dynamic class.
This leads to a combination of static (for Rete networks) and dynamic (for
dynamic classes) inheritance. Since dynamic class inheritance is parallel to rule
base inheritance (see diagram below), the inheritance of the methods
implementing the rule in the dynamic class is the standard Smalltalk (dynamic
inheritance). However, because of the nature of rule triggering (unlike
methods, rules are not looked up), the updating of a Rete network is
propagated down to the inheritance tree.
If we suppose a rule base RB, and a sub base of RB called RB2, compiling a
rule in RB will result in the compilation of Smalltalk methods in the dynamic
class of RB (but not in the dynamic class of RB2), and in the updating of both
RB's Rete network, and RB2's Rete network (cf figure 1).

12

13

RBRB's Rete network

RB2RB's Rete network

RB's dynamic class

RB's dynamic class

sub class of

owns

figure 1. The rule base inheritance scheme

Use of rule base inheritance

Like variable typing, rule base inheritance introduces a notion of generality in
rules. Rules defined at a higher level in the rule base hierarchy are more
general than rules defined lower in the hierarchy. Deciding that this criteria
was clear enough, we chose it as a default sorting criteria for rules : the default
conflict resolution strategy sorts rules according to the rule base in which the
rule is implemented.

III.5. meta rules

The idea of controlling rule bases by a particular rule base, instead of having a
procedural control is also a very natural extension of Opus because of the
basic syllogism : A) Opus rule bases, conflict sets, rules ... are Smalltalk objects,
and B) Opus rules may filter any Smalltalk object.
A declarative architecture for control is set up in NéOpus, that allows rule
bases to be controlled by other (meta) rule bases. The idea is to substitute
entirely the activation of a rule base, by the activation of a meta base that will

13

14
handle all the steps of the activation process, including the conflict resolution.
In order to do so, a reification of control is performed, by introducing a
particular class, called Evaluator, that represent the evaluation state of a rule
base. Details on this architecture may be found in [Pachet 3].

A series of standard meta bases implement standard conflict resolution
strategies, (such as LEX and MEA from OPS5), and less standard strategies
(strategies based on agenda managements, strategies handling priorities).
Specialized meta bases are defined by subclassing one of the standard meta
base, using rule base inheritance.

The association of a meta base for a rule base can be done by Smalltalk
method, or by a simple selection in the NéOpus dashboard. This allows for
instance to trace a rule base activation, without recompiling any code, simply
by selecting a tracing meta base in the browser.

IV. The programming environment

The NéOpus system reaches a level of complexity such that powerful interface
tools are essential. The programming environment of NéOpus allows the
efficient use of the system's functionalities by providing a series of interface
tools such as a dashboard, rule browsers, conflict sets views, Rete network
views, instance browsers.

A dashboard allows, for each rule base in the environment, to browse the
rules, to browse the instances concerned by the rules, to visualize the Rete
network, the conflict set, to associate a meta base, to activate metaclass
methods (usually implenting examples), to select a step mode, and various
rule base parameters such as variable typing, or trace mode.

14

15

figure2. the NéOpus dashboard

multi level programming

Rule browsers and conflict set views accomodate for meta control, by offering
multiple views, one for each rule base in the meta hierachy.

Here we illustrate the interface with a rule base that implement the Monkey
and banana example using meta rules. A rule base called
MonkeyRulesWithMeta is controlled by a meta-rule base called
MonkeyMeta (itself subbase of a meta rule base implementing a depth-first
goal satisfaction strategy). The browser for MonkeyRulesWithMeta is thus a
"double" browser, in which both rule bases may be browsed in parallel.
Similarily, the conflict set view of MonkeyRulesWithMeta is double, to
allow, at execution time the visualization of control.

Rete network views (figure 5) provide a graphical representation of the Rete
network. Each node is accessible via a local menu, allowing the inspecting of
the node, and of the associated Opus rule. At execution time, if the view is
opened, an animation visualizes the flow of tokens in the network. A
scroll/zoom facility is also included that helps managing big networks.

15

16

figure3. A multiple browser

figure4. The conflict set in the middle of the activation

16

17

Rete network views provide a graphical representation of the Rete network.
Each node is accessible via a local menu, allowing the inspecting of the node,
and of the associated Opus rule. At execution time, if the view is opened, an
animation visualizes the flow of tokens in the network. A scroll/zoom facility
is also included that helps managing big networks.

figure5. the view of a Rete network

V. Conclusion

17

18
We have shown four major extensions to the original Opus system, that makes
NéOpus a powerful representation tool. The combination of several
mechanisms, such as natural typing, rule base inheritance, zero-order
variables, and meta control is made possible for two reasons. The first one is
that all those concepts are the results of two years of experiments with the
systems. They are simple and clean concepts that supports cohabitation well.
The second is the role of the interface. Meta programming is supported by
multiple views that reflects well the hierarchy of meta levels. However, a
number of issued are yet to be solved. The fact that there is no rule language
supposes that objects hold all the necessry informations to express knowledge
about them. This is not always true, and objects often have to be enriched to
cope with needs in rule expression [Pachet 1]. Also, the extension of Opus
premises to arbitrary Smalltalk expressions yields a series a new problems. For
instance, implementing a backtracking or a TMS facility is made impossible by
using standard techniques. Lastly, the declarative control architecture requires
a description of rules that supports meta reasoning : expressing in terms of
objects what a rule is doing on its environment is not an easy task.
Further works on the NéOpus system includes a first-class representation of
Smalltalk assertions that will solve a great deal of those problems.

VI. References

Alizon F. Huet G.
Essaim : un environnement de programmation Smalltalk destiné à la
construction de systèmes experts. Note technique CNET
NT/LAA/SLC/299, 1988.

Alvarez I.
Explication comparative dans les systèmes experts. 3 ièmes Journées
nationales sur l'explication. Avignon 91.

Forgy C. L.
Rete : A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem.
Artificial Intelligence Vol 19 (1982) pp 17-37.

Borning Alan
ThingLab -- A Constraint-Oriented Simulation Laboratory.
Xerox Palo Alto Research Center. July 79.

18

19
Brownston L. & al.

Programming Expert systems in OPS5. An Introduction to Rule-Based
Programming. Addison-Wesley Publishing Company 1985.

Lalonde Wilf R.
A novel Rule Base facility for Smalltalk. Proceedings of Ecoop 1987, pp
193-198, Paris.

Laursen J. , Atkinson R.
Opus : A Smalltalk Production System. OOPSLA '87 pp. 377-387.

Pachet F. (1)
Mixing Rules and Objects : An Experiment in the World of Euclidean

Geometry. ISCIS V, Cappadocia, Turkey 1990.

Pachet F. (2)
NéOpus mode d'emploi. Rapport LAFORIA, Paris 1991.

Pachet F. (3)
Une architecture déclarative de contrôle pour NéOpus. Rapport
LAFORIA, Paris 1991.

Pachet F. (4)
PhD thesis. To be published. Laforia, Paris 1991.

19

