
Representing Knowledge Used by Jazz Musicians

François Pachet
LAFORIA, Institut Blaise Pascal,

Université Paris VI, 4, place Jussieu, 75252Paris Cedex 05

Abstract : Our system is a framework for building Expert Systems that simulate jazz musicians 's
playing. The music is generated according to a given jazz chord sequence, and the real-time MIDI
input of a soloing musician. A MIDI output is generated, which control MIDI synthetisers. The style
of music generated is standard "real book" style swing jazz. We outline here the basic architecture of
this system, which relies on a three axis representation scheme : objects, rules and strategies.

Introduction. What kind of Knowledge ?

We describe here an architecture that allows representing certain kinds of Knowledge used by
accompagnying Jazz musicians, namely swing bass lines or piano comping. The task of writing such
knowledge-based systems is made extremely difficult by the diversity of the knowledge which varies from
very formal definitions (inherited from Cassical Music) such as the formal theory of chords, modes, scales,
to largely heuristic principles ("play the tonic of the chord in the first beat of the measure" for a bassist).

Procedural/Declarative Knowledge. Knowing how to build or analyse a chord, play a scale,
find out common pitches for a given set of chords, may be considered procedural in the sense that there
are algorithms available that do the job. More complex operations such as analysing a sequence of chords
would not be considered procedural [Pachet 91]. Similarily, adding superstructures to a chord would not
be considered procedural as it relies heavily on the context, which may be very complex. Moreover,
declarative Knowledge in Music seems to be essentially non-monotonous and incomplete. Typically the
bassist's leitmotiv “play the tonic on the first beat” is incomplete (expliciting the precise contexts in which
this is true or false is impossible) and non-monotonous (the truth value of this statement may vary over
time, chord changes, context).

Implicit/Explicit Knowledge. Representing Knowledge is limited to representing only explicit
knowledge. Our system therefore represents abstractly the ideal "rational agent" for which every action
taken has justifications that are coherent for its inference mechanism.

Importance of licks. The activity of live playing is not entirely spontaneous and creative. A
tremendous corpus of information acquired through experience is used, retreived, modified along with
inference activities. This corpus consists in pre-existing sets of musical phrases, chords, sequences of
chords associated with (uncomplete) contexts of validity. This corpus play a central role in live music. It
may even constitute a characterization of a player's style (i.e. the licks that recurrently appear in its
playing). A representation of this somehow rigid knowledge has also to be set up.

Role of Time . Any musical composent has a time dimension, which has some properties used by
the inference : the sequenciality of objects, duration, metrics, are all relevant aspects to be taken into
account by the system. But time plays also an important role with regards to expectation/failure.
Musicians play with the expectation of the audience by fulfilling anticipations or creating ruptures or
breackdowns. To handle this, an history or trace of what has been played must be used and structured so
as to be usable by the inference system.

Description of the system
According to the previous requirements, our system is build around a triadic paradigm : objects,

rules and strategies. Those three elements form the kernel of our representation language and are
articulated so as to provide the expressive power needed. They are handled by an inference engine which
produces the music (a Midi output) according to the Midi input, the chord sequence and all the
Knowledge in its various forms. Time is not explicitely represented

but is handled by the engine in an ad'hoc way. Music in input is transformed into structured objects (notes
and chords) having absolute time values. The engine produces music by chunks, and constantly checks its
remaining time (i.e. the time left before the expected begining of the chunk). A Midi driver [Boynton86] is
in charge of producing Midi output according to their time tags.

Time management. A distinction is made between the logical time and the real time. The real
time is the actual time as given by the processor clock in milliseconds. The logical time is the time as
handled by the engine and can be seen as "what the system is currently thinking of". This distinction is
crucial, as the engine will constantly check it has enough time to spend on thinking in order to choose
between alternatives : costly calculations will be conducted only if it has enough remaining time.
Conversely, if the engine is late or "behind the schedule" (i.e. its logical time is greater than the real time)
then the engine will chose direct "stimulus-response" like actions (licks for instance) in order to make up.
This criteria is explicit in the system (there is a rule that dispatch actions according to the difference
between real and logical time). The tradeoff between the time taken to chose an action and the effective
time taken to perform the action is a constant preoccupation in meta Knowledge Representation[Pitrat 90]
and is given here an explicit representation.

Objects. Musical objects are structured according to the Object-orientation paradigms (i.e.
instanciation, inheritance, message passing). In this scheme, classes are defined which describe both
structures and behavior of their instances. For instance, chords are represented as instances of the class
Chord, having attributes listOfNotes, and harmonicDegree. This provides an excellent platform to
implement various procedural Knowledge such as :

- structural knowleedge. Objects are structured (in terms of attributes) and thus constitute a network : a
chord sequence is composed of chords, themselves composed of a list of notes and a duration. A note
consists in a pitch and a velocity and so on.
- Procedural Knowledge associated with these Objects. A chord for instance will be able to compute
inversions, transpositions, to extract its most important pitches. Those procedures are called methods.
- Handle multiple representations. For instance, a musical phrase may be described as a sequence of
notes, themselves described as having a pitch (a number, an initial time, an ending time, a velocity (or
pressure)). Such a representation is inadequate at music production time : a representation using
durations instead of absolute time will be prefered. Changing the representation will be made via a
method in class MusicalPhrase.

Moreover, Objects are also used to structure the environment itself : A class BassPlayer is defined,
having an hear (the object in charge of listening to the input data and converting it into a readable form), a
memory (in charge of managing the various data containing the pre-recorded licks), a mind (the actual
inference engine and the rule base), an eye (which sees and handles the chord sequence).
This structuration provides a natural representation of the Musician itself, and thanks to inheritance,
makes specialization of these classes easy. For instance a class PianoPlayer will share a lot of common
functionalities with the class BassPlayer. Only minor changes have to be made, so both classes will
inherit from an abstract class Musician, and will define only those characteristic behaviors.

Rules. Knowledge related to groups of objects and their interactions is represented by rules.
These rules implement the various operations a Musician can perform. These operations are well
represented by rules because they include a context part (the definition of the context in which the action
may be performed) and an action part (the actual action to be performed). The classical if-then production
rule is thus adequate. However, the contexts of activations are not entirely defined : those rules act more
like suggestions or advices than orders. Very often, those contexts are empty. For example, "the bass can
play an arpeggio starting with the tonic on the first beat" may be represented as a rule in the system, with
an emtpy context (a bass player can always do this).

Rules are organized in packs, each pack representing a certain chunk of Knowledge. The packs are not
necessarily independant and may share objects. The packs may themselves be recursively structured in
packs.
For the bass player rule base, a typical rule may thus be written as follows, stating that a possible action is
to produce an apreggio from the root of the current chord, in the same tonality :

rule r
(currentChord ?c ?- ?- ?tonality)

then (produce (arpeggioFrom ?tonality ?c))

This rule would be written in the pack "arpeggios", as well as other rules dealing with the many variations
around producing an arpeggio. The conclusion part of the rule adds a new "produce" fact in the fact-base,
with the necessary informations to actually compute the musical data. This produce fact will be handled
by a specific pack of rules that will, if this action is actually chosen, eventually produce the corresponding
Midi output data.

Strategies. As in any forward-chaining mechanism, rules have to be chosen, according to the
actual contexts. Those choices involve an other kind of Knowledge called meta-Knowledge [Pitrat 90]. In
order to provide a conceptual framework to represent this knowledge, we introduced the notion of
strategy : a strategy is any potential action related to the music to be produced. It is structured as :
a type (specifying the nature of the strategy), a time interval validity (possibly open), a name (the
name of the action), a set of rules (actually implementing the strategy).
Typical strategies will be : "play louder", "play more notes", "play arpeggio", "don't play", "play atonal",
"play lick number 7612", "play last played phrase transposed by a half step" ...
Strategies beeing defined as classes, as for domain objects, subclasses of Strategy can be defined, having
particular behavior, or adding structures. For instance, strategies of a special kind (say
OrderedStrategies) may have priorities that will be used at conflict resolution time.
Since several strategies may be valid at a given time, strategies will interact with each other, at conflict
resulution time, in order to determine the final decision for output. Conflict resolution will also be
handled by rules, which will decide according to the current context which strategy to chose. In particular,
this scheme allows the notion of "long-term" plan to be (partially) represented : once a strategy is chosen,
the corresponding pack of rule is triggered, and the cycle starts again. At the next selection time, the
strategy may still be valid. The choice of keeping the old strategy or choosing a new one will be made by
conflict resolution rules.
Strategies are not always exclusive. For instance a strategy like "play louder" may coexist with a strategy
like "play an arpeggio". The strategy "play louder" will not actually produce musical output, but will
simply modify the musical data produced by the strategy "play an arpeggio", by producing a louder
arpeggio. This distinction is represented by the attribute type. Strategies that actually produce something
will have the type #produce, whereas strategies influencing others will have the type #influence. Of
course type is not restricted to those two values, and other types can be added.

The Engine cycle. The engine cycle is classically threefold : identification of all matching
rules, selection of one rule, application of the action part of the rule. The management of strategies is
entirely described by rules. Rules are structured in packs, and each pack is triggered by the action
specified in the action part of a rule. Rules implement the strategy management in three steps :

- identification of all possible strategies,
- conflict resolution : choice of actual strategies
- music production : according to the various strategies chosen, musical data is generated.

The top level rules for instance looks like :

rule rLate
if

(currentTime ?t)
(logicalTime ?l)
(< ?t ?l) ; we are late on the schedule

then (trigger fastDecisionPack)

a similar rule will handle the case when there is enough time to think :

rule rAhead
if

(currentTime ?t)
(logicalTime ?l)
(> (?t (+ ?l 1000)) ; we are 1 second ahead on the schedule

then (trigger slowDecisionPack)

The pack fastDecisionPack will consist in choosing pre-recorded licks (in the memory of the
Musician). Strategies themselves are handled by the lower level packs.

Current Implementation. The current representation uses the n-ary predicate syntax. In this
scheme, facts of the fact base are described as lists whose first element is the predicate's name, and the
remaining are arguments. Arguments may themselves be the result of Lisp functions (notated between
parenthesis).
Strategies are therefore represented as : (strategy aName firstBeat lastBeat aPackOfRules
type). The chord sequence is represented by chunks : only the current chords are present in the fact-Base.
The chord's structure is (currentChord aChordName firstBeat lastBeat
underlyingTonality), where aChordName is the chord's name according to the chords naming
conventions; firstBeat and lastBeat are the current chord's range of validity in the chord sequence,
and unerlyingTonality is the current tonality. An implementation in Smalltalk-80 using the NéOpus
[Pachet91] environment is in progress.

Discussion
This representation scheme allows for representing a great deal of what a Musician (actually the

author) can say about its own playing. It provides a good framework to differentiate between different
types of Knowledge. Objects provide a very good and flexible representation framework. Rules give a
good representation for potential actions to be performed, independently of their contexts of activation,
and strategies, acting as an abstract representation of those rules, allow to separate between the
description of actions, and the decisions related to those actions. However all Knowledge is not well
represented. Notions related to time are poorly handled. A representation of rhythm is essential here, and
should be described as a component of an other object. Our system does not have the ability of handling
rhythm as a first class object. It is accessible only through the time properties of the objects. The level of
abstraction is not sufficient now in this concern, and such notions as swing, on the beat, slighlty ahead, are
not easily represented (they are accessed only by costly and hazardous computations).

References

[Boyton L] preFORM : an Object-Oriented environment for Music Composition. ICMC '89.
[Boyton L & al.] Midi-Lisp, a Lisp based Music Programming Environment for the Macintosh. ICMC '86.
[Jackendoff R., Legdahl F.] A Generative Theory of Tonal Music. Cambridge, MA. MIT Press, 1983
[Pachet F.] NéOpus User's manual. Rapport LAFORIA, July 91.
[Pachet F.] Towards a expert system that follows human improvisation. Rapport de DEA. Ircam, Paris
1988.
[Pachet F.] A Meta-level Architecture for analysing Jazz chord sequences. Same conference.
[Pitrat J.] Métaconnaissance, Hermes, Paris 1990.

