
Rule Base Inheritance

François Pachet
LAFORIA

Adresse : LAFORIA, Institut Blaise Pascal
 Boite 169, Université Paris VI, Tour 46-00,
 4, Place Jussieu
 75252, Paris Cedex 05, France
Téléphone: (33).1. 44.27.70.10
Fax : (33).1. 44.27.70.00

ε-mail: fdp@laforia.ibp.fr

This paper was published in the proceedings of the conference "Représentations par objets",
La grande Motte, France, June 92

Catégorie : techniques

Abstract
We study the transposition of the inheritance mechanism of class-based languages in
a forward-chaining rule-based environment. This mechanism allows to specify
various levels of organization for a rule base, which represent a notion of
generalization/specialization. We show that this mechanism has some interesting
practical effects : a conceptual one (the vision of a rule base as a specialization of
other rule bases), and in relation with control (the inheritance tree is associated to a
particular control structure). We describe our implementation of the mechanism in
the NéOpus system, which integrates first order forward-chaining rules within
Smalltalk-80. We finally give some examples of applications.

Keywords : inheritance, rule-based programming, rule bases, control strategies

Résumé
Nous étudions la transposition du mécanisme d'héritage des langages de classes
dans un environnement de règles d'inférences en chaînage avant. Ce mécanisme
permet d'ajouter un niveau supplémentaire d'organisation pour les bases de règles
de notre système qui représente la notion de généralisation/spécialisation. Nous
montrons que ce mécanisme induit un double effet pratique : conceptuel (fabrication
d'un arbre de bases de règles), et de contrôle (l'arbre d'héritage est une
représentation implicite d'un certain type de contrôle). Nous décrivons notre
implémentation de ce mécanisme dans le système NéOpus, combinant un
mécanisme d'inférence d'ordre un en chaînage avant avec Smalltalk, et en décrivons
quelques applications.

Mots-clés: héritage, programmation par règles, stratégies de contrôle

1. Introduction

Objects and rules
This paper is part of a general study of the integration of a rule-based mechanism in
an object-oriented environment, and of the advantages and consequences of
applying object-oriented notions to rule-based programming.
Rule-based programming and object-oriented programming have common
characteristics. In both cases, programming consists in defining separately objects
and operations having side-effects on these objects. This constitutes a natural parallel
between a rule and a method. A next parallel is between a class, seen as a set of
methods, and a rule base, which is essentially a set of rules. In our system (NéOpus,
see below §3), rule bases are indeed implemented as abstract classes, and rules are
implemented as methods for these classes.
Now, class inheritance is widely acknowledged to be a useful and powerful
mechanism for organizing procedural code, by providing a generalization/
specialization mechanism, and increasing reusability and factorization of code.
The aim of this paper is to study the application of class inheritance to rule bases,
considered as particular classes, in order to propose a new organization tool for rule
bases. In the first part (§2) we propose a rule base inheritance mechanism and study
its practical effects; then (§3) we describe an implementation of this mechanism in the
NéOpus system, and finally (§4) we give some examples.

The context of our work

The origin of our work is the Opus system [Atkinson&Laursen]. This system
introduces a rule-based mechanism in Smalltalk. Our system, called NéOpus, is
based on the original description, and includes several extensions [Pachet 3]. The
original paper already mentioned the idea of using class inheritance for rule bases (p.
37). However, no indication whatsoever was given about its mechanism nor its
implementation. We present here a solution for this problem based on our
experimentation with NéOpus.

2. On the notion of inheritance in a rule-based scheme

2.1. What is a rule

Our notion of a rule is the standard production rule (or, better, "conditional action"),
which consists in a name, a condition part and an action part. The condition part is
matched against facts of a separate so-called "fact-base". When there exists a set of
facts that matches the condition part of a rule, the rule is eligible for firing. Such an
instance of a rule is called a fireable rule.
Rules are fired according to a forward chaining cycle, which is defined by the rule
interpreter. A general cycle of an abstract rule interpreter may be defined as a three-
step procedure : 1/ Selection of all fireable rules 2/Choice of one rule 3/ Firing of the
selected rule. This cycle is repeated until no rules are fireable (or a given goal is
achieved).

2.2. Need for organizing rules

The most common means of organizing rules is to group them in rule bases, which
represent the knowledge associated to a particular problem to solve. Rule bases may
be considered as a first level of organization for rules. A lot of well known inference
systems (Art [ART], OPS5 [Brownston]) do not propose any other organization
mechanism for rules.
However this organization is insufficient when rule bases contain large numbers of
rules [Chandrasekaran 1]. The usual ways of providing the user with better
organization for rules consist in either adding sub-levels (like the notion of task in
SMECI [Corby]; or packs of rules in Essaim [Alizon&Huet]), or higher levels (with the
notion of generic task [Chandrasekaran 2], or problem in Essaim) to the rule base level.
These mechanisms cope with the decomposition of knowledge into several
components which represent distinct conceptual knowledge units. We thus refer to
these types of organization as conceptual organizations.

These conceptual organizations for rules are very often related to the expression of
sequentiality, via some sequencing mechanism. Indeed, expressing the sequentiality
of operations is difficult in standard rule-based programming, because rules are not
functionally related to each other : the sequence of firings is determined by the rule
interpreter.
In these cases, the position of a rule within this organization gives an indication
about when this rule should be fired. We will see (§3.2) how the class organization
provided by the Smalltalk-80 environment (namely categories and protocols) may be
turned into a sequential organization for rules.

However, no mechanism allows to represent various degrees of generality or to
represent a notion of specialization between several groups of rules. In particular, it is
not possible to easily factor rules that are common to several groups, or to define an
abstract default behavior, and to refine/redefine it locally. Representing such notions
as generality/default, is usually performed by ad hoc tools (pseudo meta-rules,
numerical coefficients) or heavy logical mechanisms, such as default logic.

2.3. Using inheritance as a means of organizing rules

Inheritance in class-based languages, such as Simula or Smalltalk (referred to as class
inheritance) constitutes indeed a classification scheme. This scheme is acknowledged
to be useful, efficient, and has been applied successfully to a variety of programming
languages. It does not, however, handle every kind of generalization/specialization
classification (see the point of view notion in Rome [Carré&Geib]), and it is better
defined as an operational classification scheme. Such as it is, it has become a major tool
of object-oriented programming.

Class inheritance consists both in inheriting structure (instance variables in Smalltalk)
and behavior (methods). In our case, the abstract classes that represent rule bases do
not have instance variables [Pachet 1,4] so structure inheritance does not seem to be
relevant for our purposes. We shall try only to transpose method inheritance in the
rule world.
Let us first briefly recall the definition of method inheritance :

Method inheritance :

If A is defined as a subclass of B, the method inheritance will consist in aggregating
methods of B and methods of its superclasses to methods of A.

An important characteristic of method inheritance is the overriding mechanism: if a
method in A has the same name as a method in B, or in a superclass of B, then the
method in B is overridden.

Using a vocabulary naturally transposed from the class world : subclass/subbase;
superclass/superbase, we can now define the notion of rule inheritance, and state the
principle of rule base inheritance.

Rule inheritance :
The definition of rule inheritance is transposed directly from the definition of
method inheritance : If rule base A is defined as a subbase of rule base B, the rule
inheritance will consist in aggregating all rules of B, and all rules of the superbases of
B, to the rules of A.
The principle of rule base inheritance may now be stated as follows :

Principle of rule base inheritance (RBI) :

A rule base A defined as a subbase of rule base B will inherit rules of B, in the sense
of rule inheritance.

But this inheritance mechanism once transposed in the rule world has two
unexpected and important consequences that we will describe now : the lookup
mechanism becomes a control structure and rule names become significant.

2.4. Consequences of rule base inheritance

2.4.1. Comparison between methods and rules

Rules share important features with methods. Both are textual entities that define
operations on objects. Both are abstract entities that are instantiated at execution
time. But they have also a number of intrinsic differences that will affect the
transposition of the inheritance mechanism. In particular, the analogy between a
rule and a method leads to a comparison between the interpretation of a message
transmission and a cycle in a forward-chaining mechanism.

Methods are explicitly called via the message passing mechanism, which uses their
name to access them. Therefore methods names (in Smalltalk : selectors) play a
fundamental role in their interpretation by the system. Changing the name of a
method has dramatic effects on the rest of the program. The name of a method is
actually significant for two reasons : it is used by other methods of the program that
call it, and it is the key of the overriding mechanism (a method in a subclass
overrides a method with the same name in the superclass).

On the contrary, rules are not explicitly called, but are accessed via a pattern-
matching procedure, followed by a conflict resolution phase.

The name of a rule plays only an secondary role (for convenient accessing via
browsers for instance, or for explanation/debugging purposes) and is not used by
the interpreter. Changing a rule's name does not affect the working system.
Whereas the decision to invoke a method is under full control of the programmer,
the decision to fire a rule belongs to the rule interpreter (Figure 1).

A message transmission

Object selector {arguments}

A method

Side effect on objects

A set of objects

A rule

look up (interpreter)

activation

pattern matching

conflict resolution

(strategy)

message passing a cycle in forward-chaining

A set of fireable rule instances

activation

Figure 1. Comparison between a message transmission and a forward-chaining cycle

2.4.2. A simple control strategy

What is a control strategy ?
The rule-based mechanism in forward-chaining is intrinsically not deterministic: at
each cycle, there may be several rules fireable, and the choice/order of firings is
crucial. Since rule firings lead to side-effects on objects, firings are (very often) not
reversible, so the choice of the rule to be fired is indeed the most delicate part of a
rule-based system. A control strategy is a means of selecting one fireable rule. A
default control strategy consists in selecting a rule at random, but in a number of
cases more elaborate control strategies are needed to run the rule base correctly. A
number of control strategies have been designed [Brownston, Chandrasekaran 1] to
account for certain types of rule bases, but no absolute control strategy may exist,
and sophisticated systems usually offer means of defining user-specific control
strategies.

Now there is a natural intention behind the class inheritance mechanism, that we, as
object-oriented programmers, would like to transpose to the rule world : creating a
subclass carries the idea that the subclass is more specific. And it is indeed more
specific, thanks to the lookup. In the rule world, since there is no lookup, the name-

based lookup mechanism of class inheritance will find its equivalent in terms of a
nameless control strategy that we define as the RBI strategy :

Definition :
The RBI strategy consists in selecting preferably rules defined in the lowest subbase.

An other statement of the RBI strategy consists in saying that a rule is fired only if
there is no fireable rule implemented in a lower sub-base.

This is compatible with the notion of generalization/specialization, in the sense that
rules defined lower in the hierarchy may be considered more specific, thus preferable,
to rules defined higher.

2.4.3. Rule names become significant

An important consequence of method inheritance is to provide with the possibility of
redefining (overriding) a method. Redefining a method consists simply in defining a
method with the same name in a subclass. The mechanism of redefinition is actually
performed by the lookup.
In the rule world, since there is no lookup, the question is : what does it mean to
redefine a rule ? This question is not trivial because the very question of expressing
similarities between two rules is complex.

Rule base inheritance gives us the opportunity of defining simply and operationally
rule redefinition, by using rule's names :

Definition : rule redefinition
redefining a rule simply consists in defining a rule with the same name than a rule
defined higher in the inheritance tree.

We want this redefinition to have the same effect than with methods : if a rule base A
redefines a rule defined higher in the inheritance tree, the inherited rule is removed
from the set of rules of A.

This definition has an important consequence : rule's name become significant with
regards to redefinition : naming a rule is not just a handy way of accessing it, but its
is also a way of overriding an unwanted inherited rule.

However, rule overriding must not be confused with rule subsumption. Overriding a
rule in a subbase consists in replacing the inherited rule by an other one. The
inherited rule does not need to actually subsume the redefined rule, in the sense of
rule-based programming (i.e. "rule a subsumes rule b iff any set of objects that matches b
matches a"). The rule redefinition mechanism which is induced by rule base
inheritance is independent of the actual content of the rules.

Since we do not want the redefined rules to be ever fireable, this rule redefinition
mechanism is not performed via a specific control strategy, but is implemented
statically at the rule compilation time (see §3.4).

2.5. Practical features of rule base inheritance

There are a lot of practical effects of this mechanism. Organizing rules in a hierarchy
of rule bases brings new perspectives to rule-based programming. We list some of
them here.

2.5.1. A conceptual hierarchy

Classes in object-oriented settings have two functions : a function as an instance
generator, and a function as a potential superclass. In the same fashion, these two
functions of classes are now transposed for rule bases. Rule bases have now two
roles in the environment : a role as a group of rules, representing an abstraction of
some knowledge to be applied; and a role as a rule base to be specialized. This ability
to represent various degrees of generality has an effect on the methodology of rule-
writing : a rule base is considered not only as a group of cooperating rules, but as a
specialization of some other rule base. This new role for rule bases is interesting for
several reasons :

 - In the process of writing a rule base, some significant intermediary levels
may emerge. Inheritance may be seen as a methodological tools for building rule
bases.

 - A rule base may be constructed from an initial pre-existing rule base, thus
improving reusability. Building pre-defined and reusable sets of rules is a well
known problem of expert-system designers. Rule base inheritance gives a partial but
operational solution. As in class inheritance, abstract rule bases (analogous to abstract
classes) will define standard, general knowledge. Subbases will refine/override it.

2.5.2. A hidden, implicit control structure

The problem of separating the control structure from the rule definitions is recurrent
in rule-based programming. But systems that are able to provide user-specific
control strategies are rare, and often difficult to use.
The inheritance tree is indeed a (simple) way to specify rule sequencing, using the
RBI strategy (§2.4.2). It represents a kind of "static preference" relation between rules.
The position of a rule in the rule base tree indicates, in a non-numerical way, its
degree of preference compared to rules in other levels. As such, this specification has
some particular characteristics :

 - It is a static notion.
The position of a rule in the hierarchy does not depend on the actual instantiation of
the rule. There are cases when a rule may be considered more general than an other
one for a given set of instantiation, but not with other ones. The inheritance mechanism
cannot take this into account.

 - It simplifies rule conflicts.
The fact of organizing rules in a hierarchy of rule bases solves a great deal of conflict
cases, which otherwise should have required some elaborate conflict resolution
strategy. In this respect, rule base inheritance is a means of simplifying the conflict
resolution phase.
However, the strategy defined by the rule base hierarchy does not handle all conflict
cases as seen above (§2.4.2). When several rules of the lowest levels are fireable, the
choice has to be made according to others criteria. A solution consists in trying to
create intermediary levels in the inheritance tree that will avoid such cases. This

solution is not always possible, essentially because the inheritance is static. But a
better design of the hierarchy can substantially limit the number of such cases.

 - It supports mixing with other strategies.
Nothing prevents the interpreter to use standard or non standard control strategies
in cases of unresolved conflict. This has to be specified in the rule interpreter.
Compared to the object world, there is increased flexibility : there are only few
object-oriented languages in which the lookup mechanism of the interpreter
supports mixing with other lookup mechanisms.

 - It is implicit.
It is interesting to define a control strategy implicitly, if its definition is clear, which
is the case here. The effort of explicitly describing the control of the reasoning is
aimed at avoiding complex, intertwined and obscure control hacks that break the
declarative aspect of the rules. Here, the inheritance tree, though imperfect, is a clear
representation of control.

3. An implementation in NéOpus

3.1. Opus and NéOpus

NéOpus finds its origins in the Opus system [Atkinson&Laursen]. The Opus system
integrates first-order forward chaining production rules in the Smalltalk-80
environment. Opus rules consists in a name (a symbol), a variable declaration part,
in which the variables appearing in the rule are declared by their Smalltalk class, a
condition part and an action part. The rule language is Smalltalk itself without
limitation : any Smalltalk expression may be used in rule's condition part as well as
action parts.

NéOpus extensions to Opus mainly consist in object-oriented notions transposed in
the rule world, such as the rule base inheritance mechanism as seen here. Other
extensions include variable typing (which integrate class inheritance in the typing of
the first-order variables), so-called triggering variables (which take into account
functional dependencies between objects in the rules), and a declarative architecture
for control (§4.2 and [Pachet 2]), in which the control mechanism is expressed in
terms of meta-rules.

3.2. Rule bases are classes

Rules are organized in rule bases, which are Smalltalk (abstract) classes. Rules appear
as methods for these classes, in a specific browser, but are compiled by a particular
Rete compiler for efficiency. These classes serve only as a support for organization,
and for rule base inheritance.
Since rule bases are classes, they benefit from all the Smalltalk features for organizing
classes. In Smalltalk, methods within a class are grouped in protocols, and classes
themselves are grouped in categories. Categories and protocols are simply used in
Smalltalk for reference purposes. They may be described as a primitive conceptual
organization for Smalltalk code.

Now these organization levels find natural equivalents in terms of rule base
conceptual organization. As seen in §2.1, it is interesting to use this organization to
express sequentiality. Categories (of rule bases) and protocols (of rules) together
with adequate control strategies, can indeed be used for expressing the sequentiality
of rules (Cf. examples below §4.2 and [Pachet 2]).

The implementation of rule base inheritance is largely directed by the Rete
compilation of rules that we will describe now.

3.3. Rule compilation

The main idea of the Rete compilation in Opus [Atkinson&Laursen] is to associate a
Smalltalk method to every premise and to the conclusion part of an Opus rule. These
methods are compiled in a separate class, called dynamic class, which is uniquely
associated to each rule base.
Then Rete nodes are created for every premise of a rule, and a particular Rete node
for its conclusion part. The network is used at activation time by propagating tokens,
which represent sets of objects matching the corresponding premise of the rule.
Empty tokens are sent initially to input nodes. When a token reaches a terminal
node, the corresponding rule is added to a conflict set, and is ready to fire. Strategies
for selecting the appropriate rule to fire are defined in the conflict set.
The initial Forgy's Rete network is also extended in order to take into account the
substitution of OPS5 facts by real Smalltalk objects.

3.4. Implementation of the inheritance mechanism

The rule base inheritance mechanism is implemented in two steps : Rete network
updating (which has to take into account rules coming from superbases) and proper
conflict resolution strategy, defined in the conflict set.

3.4.1. A mixing of static/dynamic inheritance

Object-oriented languages usually separate static inheritance (decided at compilation
time) used for instance variables, from dynamic inheritance (decided at execution
time) used for methods.
Rules being paralleled to methods, dynamic inheritance comes first to mind. But the
compilation of a rule leads to two different kinds of compilations : the compilation of
the rule in the Rete network, and the compilation of the methods implementing the
various premises and the action part in the dynamic class.
This leads to a combination of static (for Rete networks) and dynamic (for dynamic
classes) inheritance. Since dynamic class inheritance is parallel to rule base
inheritance (see Fig. 2), the inheritance of the methods implementing the rule in the
dynamic class is the standard Smalltalk (dynamic) inheritance.
However, because of the nature of rule triggering (unlike methods, rules are not
looked up), the updating of a Rete network is propagated down to the inheritance
tree, at compilation time.
If we suppose a rule base RB, and a sub-base of RB called RB2, compiling a rule in RB
will result in the compilation of Smalltalk methods in the dynamic class of RB (but

not in the dynamic class of RB2), and in the updating of both RB's Rete network, and
RB2's Rete network (see Figure 2).

RB RB's dynamic class

RB RB's dynamic class

subclass of

points to

Figure 2. An implementation of the rule base inheritance scheme

3.4.2. Implementing the control strategy

Fireable rules are represented by a class implemented by a couple of instance
variables : 'terminalReteNode token', where token is a token having passed
successfully all the nodes of a rule, and terminalReteNode is the node associated
to the action part of the rule. Once this class is defined, it is easy to represent conflict
sets, simply as a class whose structure is essentially the list of fireable rules instances.

Object subclass: #OpusFireableRule
 instanceVariableNames: 'token terminalReteNode'

Object subclass: #OpusConflictSet
 instanceVariableNames: 'fireableRules'

When a rule is fireable, an instance of FireableRule is added to the list of fireable
rules as defined by the method addFireableRule:. (This method is actually
invoked when a token reaches a terminal nodes of the Rete network).

The default strategy is to fire the first rule of the conflict set, as defined in the method
trigger. The first FireableRule of the list is chosen :

trigger
 self trigger: fireableRules first

Now, implementing the appropriate semantics for rule base inheritance consists
simply in ensuring that the fireable rules are sorted in ascending order. The
following method initializes the set of fireable rules in the conflict set with an
instance of SortedCollection, as follows :

!OpusConflictSet methodsFor: 'initialize'!

initRules
 fireableRules := SortedCollection sortBlock:
 self inheritanceSortingBlock

inheritanceSortingBlock
 ^[:a :b | a implementingRuleBase isSubBaseOf:
 b implementingRuleBase]

The sort block takes two fireable rules as input, and uses the method
implementingRuleBase, which yields the lowest rule base in which the rule is
implemented.

4. Examples of rule base hierarchies

Here are two examples of applications of the rule base inheritance mechanism that
show different aspects of its potential. The reader can fin more details in the
references.

4.1. Representing default knowledge

Representing default knowledge is a recurrent issue of Artificial Intelligence systems.
Rule base inheritance is an elegant approximation of a default knowledge
mechanism. Moreover, rule base inheritance integrates well with the standard notion
of class inheritance, because it allows the programmer to follow his natural intuition
of inheritance, that consists in building hierarchies based on a reduced notion of
specialization. Indeed, a standard use of RBI is to create sub-bases for knowledge
concerned with sub-classes. If we assume a (general) class representing doors (say
class Door), we can write a rule base concerned with doors in general (for instance,
representing the knowledge associated to closing doors), DoorsRules. Now, if we
refine the notion of doors by creating subclasses (e.g. CarDoor, SlidingDoor), the
RBI mechanism leads us naturally to refine DoorsRules by creating sub-bases
(CarDoorRules, SlidingDoorRules) associated respectively to the subclasses of
Door.

4.2. Building predefined reusable rule bases.

A good example of a library of reusable rule bases is found in the declarative
architecture for control of NéOpus. In this architecture, the control itself is defined in
terms of meta-rules. These meta-rules are defined in rule bases called meta-bases. They
define the control (or activation) of a rule base. The details of their implementation
will not be described here. However, specifying control in terms of meta-rules is not
indeed an easy task, and organizing these meta-rules is essential. But the interesting
characteristics of these meta-bases is that they form a natural hierarchy, and share
important parts. This can be easily taken into account by the rule base inheritance
mechanism. A hierarchy of meta-bases was built according to the RBI mechanism.
Each meta-base represents a particular type of evaluation. An example of the use and
refinement of the hierarchy can be found in the NéoGanesh system [Dojat&Pachet].
This system was designed to control in real-time a ventilator providing respiratory
help to patients in intensive care units.

5. Extensions

Several extensions to the rule base inheritance scheme as developed here may be
considered. We indicate here the most important ones.

 Multiple rule base inheritance

The first one is to extend simple inheritance to multiple inheritance. Although
multiple inheritance is indeed a more powerful mechanism than simple inheritance,
we did not want to follow this direction. It seemed to us that the main advantage of
rule base inheritance is it simplicity. Rule base inheritance simplifies the problem of
conflict resolution. Multiple rule base inheritance would complicate it, by adding the
problem of solving multiple inheritance lookup conflicts.

Representing knowledge is indeed a very difficult task, and only simple and clear
tools can be useful. Using multiple inheritance for rule bases would perhaps be
useful in some cases, but would also introduce yet another level of complexity that
we did not want to handle.

 Other control strategies

The proposed control strategy is not necessarily the only one nor the best. An other
one could be just the opposite : preferring rules defined in the highest superbase
(following the intuition of inheritance as found in the Beta language). Or also trying
to combine rules (thus establishing a parallel with method combination) may
constitute interesting solutions. Our implementation has been designed so as to
support various control strategies for rule base inheritance. However, the proposed
one, because of its simplicity, seems to fit better than more complex ones.

 Applying rule base inheritance in non object-oriented contexts

The rule base inheritance mechanism described here could be implemented in other
rule-based environments. Our initial motivations were largely directed by the fact
that in NéOpus, rule bases were implemented by classes. But the mechanism is
general. In particular it could be applied to other inference systems (O or O+ order),
in non-object-oriented environments.

6. Conclusion

We have described a transposition of the inheritance mechanism of object-oriented
language in the world of rule bases. This mechanism allows to represent the notion
of generality for rules, and has some interesting practical effects, such as the
factorization of rules, the ability to redefine rules, and a simple and efficient control
structure. We described an implementation of this mechanism in the NéOpus
system, and showed practical applications. This mechanism has now proved to be
useful for building rule bases. It may be considered as a methodological tool as well

as a programming tool, and thus constitutes a major step towards object-oriented rule-
base programming.

7. References

Alizon F. Huet G.

Essaim : un environnement de programmation Smalltalk destiné à la construction de systèmes
experts. Note technique CNET NT/LAA/SLC/299, 1988.

ART

ART Reference Manual, v 3.0, January 1987, Inference Corporation.

Atkinson R.,Laursen J.

Opus : A Smalltalk Production System. OOPSLA '87 pp. 377-387.

Brownston L. & al.

Programming Expert Systems in OPS5. An Introduction to Rule-Based Programming. Addison-
Wesley Publishing Company, 1985.

Carré B., Geib J.-M.

The point of view notion for multiple inheritance. Proceedings of OOPSLA'90, Ottawa, pp. 312-
321.

Chandrasekaran B. (1)

Towards a Taxonomy of Problem-Solving Types. The AI Magazine, Winter/Spring 1983, pp 9-
17.

Chandrasekaran B. (2)
Towards a functional architecture for intelligence based on generic information processing
tasks. Proc. of the Tenth IJCAI, Milan (Italy), Vol. 2, 1987, pp 1183-1192.

Corby O.

BIB en SMECI. Proceedings of RFIA'87, Paris, pp. 581-586.

Dojat&Pachet
Dojat M., Pachet F. Representation of a Medical Expertise Using the Smalltalk environment:
putting a prototype to work. Proceedings of TOOLS 7, Dortmund, Germany, March 31-April 2,
(1992).

Forgy C. L.

Rete : A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem. Artificial
Intelligence Vol 19 (1982) pp 17-37.

Goldberg A., Robson D.

Smalltalk-80 : The Language and its Implementation. Addison-Wesley, 1983.

Pachet F. (1)

NéOpus mode d'emploi. Rapport LAFORIA n° 14/91, Paris 1991.

Pachet F. (2)
Du bon usage des méta-règles en NéOpus. Rapport LAFORIA n°16/91, Paris 1991.

Pachet F. (3)
Reasoning with objects : the NéOpus environment, East EurOOpe, Bratislava, Septembre 91.

Pachet F. (4)
Représentation de connaissances par objets et règles. Thèse de l'Université Paris VI. Paris, 1992.
A paraître.

