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Abstract 
We study the transposition of the inheritance mechanism of class-based languages in 
a forward-chaining rule-based environment. This mechanism allows to specify 
various levels of organization for a rule base, which represent a notion of 
generalization/specialization. We show that this mechanism has some interesting 
practical effects : a conceptual one (the vision of a rule base as a specialization of 
other rule bases), and in relation with control (the inheritance tree is associated to a 
particular control structure). We describe our implementation of the mechanism in 
the NéOpus system, which integrates first order forward-chaining rules within 
Smalltalk-80. We finally give some examples of applications.  
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Résumé 
Nous étudions la transposition du mécanisme d'héritage des langages de classes 
dans un environnement de règles d'inférences en chaînage avant. Ce mécanisme 
permet d'ajouter un niveau supplémentaire d'organisation pour les bases de règles 
de notre système qui représente la notion de généralisation/spécialisation. Nous 
montrons que ce mécanisme induit un double effet pratique : conceptuel (fabrication 
d'un arbre de bases de règles), et de contrôle (l'arbre d'héritage est une 
représentation implicite d'un certain type de contrôle). Nous décrivons notre 
implémentation de ce mécanisme dans le système NéOpus, combinant un 
mécanisme d'inférence d'ordre un en chaînage avant avec Smalltalk, et en décrivons 
quelques applications. 
 
Mots-clés: héritage, programmation par règles, stratégies de contrôle 



1. Introduction 
 
Objects and rules 
This paper is part of a general study of the integration of a rule-based mechanism in 
an object-oriented environment, and of the advantages and consequences of 
applying object-oriented notions to rule-based programming. 
Rule-based programming and object-oriented programming have common 
characteristics. In both cases, programming consists in defining separately objects 
and operations having side-effects on these objects. This constitutes a natural parallel 
between a rule and a method. A next parallel is between a class, seen as a set of 
methods, and a rule base, which is essentially a set of rules. In our system (NéOpus, 
see below §3), rule bases are indeed implemented as abstract classes, and rules are 
implemented as methods for these classes. 
Now, class inheritance is widely acknowledged to be a useful and powerful 
mechanism for organizing procedural code, by providing a generalization/ 
specialization mechanism, and increasing reusability and factorization of code.  
The aim of this paper is to study the application of class inheritance to rule bases, 
considered as particular classes, in order to propose a new organization tool for rule 
bases. In the first part (§2) we propose a rule base inheritance mechanism and study 
its practical effects; then (§3) we describe an implementation of this mechanism in the 
NéOpus system, and finally (§4) we give some examples.  
 
The context of our work 
 
The origin of our work is the Opus system [Atkinson&Laursen]. This system 
introduces a rule-based mechanism in Smalltalk. Our system, called NéOpus, is 
based on the original description, and includes several extensions [Pachet 3]. The 
original paper already mentioned the idea of using class inheritance for rule bases (p. 
37). However, no indication whatsoever was given about its mechanism nor its 
implementation. We present here a solution for this problem based on our 
experimentation with NéOpus. 
 

2. On the notion of inheritance in a rule-based scheme 
 
2.1. What is a rule 

 
Our notion of a rule is the standard production rule (or, better, "conditional action"), 
which consists in a name, a condition part and an action part. The condition part is 
matched against facts of a separate so-called "fact-base". When there exists a set of 
facts that matches the condition part of a rule, the rule is eligible for firing. Such an 
instance of a rule is called a fireable rule. 
Rules are fired according to a forward chaining cycle, which is defined by the rule 
interpreter. A general cycle of an abstract rule interpreter may be defined as a three-
step procedure : 1/ Selection of all fireable rules 2/Choice of one rule 3/ Firing of the 
selected rule. This cycle is repeated until no rules are fireable (or a given goal is 
achieved). 
 
2.2. Need for organizing rules 

 



The most common means of organizing rules is to group them in rule bases, which 
represent the knowledge associated to a particular problem to solve. Rule bases may 
be considered as a first level of organization for rules. A lot of well known inference 
systems (Art [ART], OPS5 [Brownston]) do not propose any other organization 
mechanism for rules. 
However this organization is insufficient when rule bases contain large numbers of 
rules [Chandrasekaran 1]. The usual ways of providing the user with better 
organization for rules consist in either adding sub-levels (like the notion of task in 
SMECI [Corby]; or packs of rules  in Essaim [Alizon&Huet]), or higher levels (with the 
notion of generic task [Chandrasekaran 2], or problem in Essaim) to the rule base level. 
These mechanisms cope with the decomposition of knowledge into several 
components which represent distinct conceptual knowledge units. We thus refer to 
these types of organization as conceptual organizations. 
 
These conceptual organizations for rules are very often related to the expression of 
sequentiality, via some sequencing mechanism. Indeed, expressing the sequentiality 
of operations is difficult in standard rule-based programming, because rules are not 
functionally related to each other : the sequence of firings is determined by the rule 
interpreter. 
In these cases, the position of a rule within this organization gives an indication 
about when this rule should be fired. We will see (§3.2) how the class organization 
provided by the Smalltalk-80 environment (namely categories and protocols) may be 
turned into a sequential organization for rules. 
 
However, no mechanism allows to represent various degrees of generality  or to 
represent a notion of specialization between several groups of rules. In particular, it is 
not possible to easily factor rules that are common to several groups, or to define an 
abstract default behavior, and to refine/redefine it locally. Representing such notions 
as generality/default, is usually performed by ad hoc tools (pseudo meta-rules, 
numerical coefficients) or heavy logical mechanisms, such as default logic. 
 
2.3. Using inheritance as a means of organizing rules 

 
Inheritance in class-based languages, such as Simula or Smalltalk (referred to as class 
inheritance) constitutes indeed a classification scheme. This scheme is acknowledged 
to be useful, efficient, and has been applied successfully to a variety of programming 
languages. It does not, however, handle every kind of generalization/specialization 
classification (see the point of view notion in Rome [Carré&Geib]), and it is better 
defined as an operational classification scheme. Such as it is, it has become a major tool 
of object-oriented programming. 
 
Class inheritance consists both in inheriting structure (instance variables in Smalltalk) 
and behavior (methods). In our case, the abstract classes that represent rule bases do 
not have instance variables [Pachet 1,4] so structure inheritance does not seem to be 
relevant for our purposes. We shall try only to transpose method inheritance in the 
rule world. 
Let us first briefly recall the  definition of method inheritance : 
 
Method inheritance : 



If A is defined as a subclass of B, the method inheritance will consist in aggregating 
methods of B and methods of its superclasses to methods of A. 
 
An important characteristic of method inheritance is the overriding mechanism: if a 
method in A has the same name as a method in B, or in a superclass of B, then the 
method in B is overridden. 
 
Using a vocabulary naturally transposed from the class world : subclass/subbase; 
superclass/superbase, we can now define the notion of rule inheritance, and state the 
principle of rule base inheritance. 
 
Rule inheritance : 
The definition of rule inheritance is transposed directly from the definition of 
method inheritance : If rule base A is defined as a subbase of rule base B,  the rule 
inheritance will consist in aggregating all rules of B, and all rules of the superbases of 
B, to the rules of A. 
The principle of rule base inheritance may  now be stated as follows : 
 
Principle of rule base inheritance (RBI) : 
 

A rule base A defined as a subbase of rule base B will inherit rules of B, in the sense 
of rule inheritance. 

 
But this inheritance mechanism once transposed in the rule world has two 
unexpected and important consequences that we will describe now : the lookup 
mechanism becomes a control structure and rule names become significant. 
 
2.4. Consequences of rule base inheritance 

 
2.4.1. Comparison between methods and rules 

 
Rules share important features with methods. Both are textual entities that define 
operations on objects. Both are abstract entities that are instantiated at execution 
time. But they have also a number of intrinsic differences that will affect the 
transposition of the inheritance mechanism.  In particular, the analogy between a 
rule and a method leads to a comparison between the interpretation of a message 
transmission and a cycle in a forward-chaining mechanism. 
 
Methods are explicitly called via the message passing mechanism, which uses their 
name to access them. Therefore methods names (in Smalltalk : selectors) play a 
fundamental role in their interpretation by the system. Changing the name of a 
method has dramatic effects on the rest of the program. The name of a method is 
actually significant for two reasons : it is used by other methods of the program that 
call it, and it is the key of the overriding mechanism (a method in a subclass 
overrides a method with the same name in the superclass). 
 
On the contrary, rules are not explicitly called, but are accessed via a pattern-
matching procedure, followed by a conflict resolution phase. 



The name of a rule plays only an secondary role (for convenient accessing via 
browsers for instance, or for explanation/debugging purposes) and is not used by 
the interpreter. Changing a rule's name does not affect the working system. 
Whereas the decision to invoke a method is under full control of the programmer, 
the decision to fire a rule belongs to the rule interpreter (Figure 1). 
 

A message transmission

Object selector {arguments}

A method

Side effect on objects

A set of objects

A rule

look up (interpreter)

activation

pattern matching

conflict resolution

(strategy)

message passing a cycle in forward-chaining

A set of fireable rule instances

activation

 
Figure 1. Comparison between a message transmission and a forward-chaining cycle  

 
2.4.2. A simple control strategy 

 
What is a control strategy ? 
The rule-based mechanism in forward-chaining is intrinsically not deterministic: at 
each cycle, there may be several rules fireable, and the choice/order of firings is 
crucial. Since rule firings lead to side-effects on objects, firings are (very often) not 
reversible, so the choice of the rule to be fired is indeed the most delicate part of a 
rule-based system. A control strategy is a means of selecting one fireable rule. A 
default control strategy consists in selecting a rule at random, but in a number of 
cases more elaborate control strategies are needed to run the rule base correctly. A 
number of control strategies have been designed [Brownston, Chandrasekaran 1] to 
account for certain types of rule bases, but no absolute control strategy may exist, 
and sophisticated systems usually offer means of defining user-specific control 
strategies. 
 
Now there is a natural intention behind the class inheritance mechanism, that we, as 
object-oriented programmers, would like to transpose to the rule world : creating a 
subclass carries the idea that the subclass is more specific. And it is indeed more 
specific, thanks to the lookup. In the rule world, since there is no lookup, the name-



based lookup mechanism of class inheritance will find its equivalent in terms of a 
nameless control strategy  that we define as the RBI strategy : 
 

Definition : 
The RBI strategy consists in selecting preferably rules defined in the lowest subbase.  

 
An other statement of the RBI strategy consists in saying that a rule is fired only if 
there is no fireable rule implemented in a lower sub-base. 
 
This is compatible with the notion of generalization/specialization, in the sense that 
rules defined lower in the hierarchy may be considered more specific, thus preferable, 
to rules defined higher. 
 

2.4.3. Rule names become significant 
 
An important consequence of method inheritance is to provide with the possibility of 
redefining (overriding) a method. Redefining a method consists simply in defining a 
method with the same name in a subclass. The mechanism of redefinition is actually 
performed by the lookup.  
In the rule world, since there is no lookup, the question is : what does it mean to 
redefine a rule ? This question is not trivial because the very question of expressing 
similarities between two rules is complex. 
 
Rule base inheritance gives us the opportunity of defining simply and operationally 
rule redefinition, by using rule's names : 
 

Definition : rule redefinition 
redefining a rule simply consists in defining a rule with the same name than a rule 
defined higher in the inheritance tree. 

 
We want this redefinition to have the same effect than with methods : if a rule base A 
redefines a rule defined higher in the inheritance tree, the inherited rule is removed 
from the set of rules of A. 
 
This definition has an important consequence : rule's name become significant with 
regards to redefinition : naming a rule is not just a handy way of accessing it, but its 
is also a way of overriding an unwanted inherited rule. 
 
However, rule overriding must not be confused with rule subsumption. Overriding a 
rule in a subbase consists in replacing the inherited rule by an other one. The 
inherited rule does not need to actually subsume the redefined rule, in the sense of 
rule-based programming (i.e. "rule a subsumes rule b iff any set of objects that matches b 
matches a"). The rule redefinition mechanism which is induced by rule base 
inheritance is independent of the actual content of the rules. 
 
Since we do not want the redefined rules to be ever fireable, this rule redefinition 
mechanism is not performed via a specific control strategy, but is implemented 
statically at the rule compilation time (see §3.4).  
 



2.5. Practical features of rule base inheritance 
 
There are a lot of practical effects of this mechanism. Organizing rules in a hierarchy 
of rule bases brings new perspectives to rule-based programming. We list some of 
them here. 
 



2.5.1. A conceptual hierarchy 
 
Classes in object-oriented settings have two functions : a function as an instance 
generator, and a function as a potential superclass. In the same fashion, these two 
functions of classes are now transposed for rule bases.  Rule bases have now two 
roles in the environment : a role as a group of rules, representing an abstraction of 
some knowledge to be applied; and a role as a rule base to be specialized. This ability 
to represent various degrees of generality has an effect on the methodology of rule-
writing : a rule base is considered not only as a group of cooperating rules, but as a 
specialization of some other rule base. This new role for rule bases is interesting for 
several reasons : 
 
 - In the process of writing a rule base, some significant intermediary levels 
may emerge. Inheritance may be seen as a methodological tools for building rule 
bases.  
 
 - A rule base may be constructed from an initial pre-existing rule base, thus 
improving reusability. Building pre-defined and reusable sets of rules is a well 
known problem of expert-system designers. Rule base inheritance gives a partial but 
operational solution. As in class inheritance, abstract rule bases (analogous to abstract 
classes) will define standard, general knowledge. Subbases will refine/override it. 
 

2.5.2. A hidden, implicit control structure 
 
The problem of separating the control structure from the rule definitions is recurrent 
in rule-based programming. But systems that are able to provide user-specific 
control strategies are rare, and often difficult to use. 
The inheritance tree is indeed a (simple) way to specify rule sequencing, using the 
RBI strategy (§2.4.2). It represents a kind of "static preference" relation between rules. 
The position of a rule in the rule base tree indicates, in a non-numerical way, its 
degree of preference compared to rules in other levels. As such, this specification has 
some particular characteristics : 
 
 - It is a static notion. 
The position of a rule in the hierarchy does not depend on the actual instantiation of 
the rule. There are cases when a rule may be considered more general than an other 
one for a given set of instantiation, but not with other ones. The inheritance mechanism 
cannot take this into account. 
 
 - It simplifies rule conflicts. 
The fact of organizing rules in a hierarchy of rule bases solves a great deal of conflict 
cases, which otherwise should have required some elaborate conflict resolution 
strategy. In this respect, rule base inheritance is a means of simplifying the conflict 
resolution phase. 
However, the strategy defined by the rule base hierarchy does not handle all conflict 
cases as seen above (§2.4.2). When several rules of the lowest levels are fireable, the 
choice has to be made according to others criteria. A solution consists in trying to 
create intermediary levels in the inheritance tree that will avoid such cases. This 



solution is not always possible, essentially because the inheritance is static. But a 
better design of the hierarchy can substantially limit the number of such cases. 
 
 - It supports mixing with other strategies. 
Nothing prevents the interpreter to use standard or non standard control strategies 
in cases of unresolved conflict. This has to be specified in the rule interpreter. 
Compared to the object world, there is increased flexibility : there are only few 
object-oriented languages in which the lookup mechanism of the interpreter 
supports mixing with other lookup mechanisms.  
 
 - It is implicit. 
It is interesting to define a control strategy implicitly, if its definition is clear, which 
is the case here. The effort of explicitly describing the control of the reasoning is 
aimed at avoiding complex, intertwined and obscure control hacks that break the 
declarative aspect of the rules. Here, the inheritance tree, though imperfect, is a clear 
representation of control.  
 

3. An implementation in NéOpus 
 
3.1. Opus and NéOpus 

 
NéOpus finds its origins in the Opus system [Atkinson&Laursen]. The Opus system 
integrates first-order forward chaining production rules in the Smalltalk-80 
environment. Opus rules consists in a name (a symbol), a variable declaration part, 
in which the variables appearing in the rule are declared by their Smalltalk class, a 
condition part and an action part. The rule language is Smalltalk itself without 
limitation : any Smalltalk expression may be used in rule's condition part as well as 
action parts. 
 
NéOpus extensions to Opus mainly consist in object-oriented notions transposed in 
the rule world, such as the rule base inheritance mechanism as seen here. Other 
extensions include variable typing (which integrate class inheritance in the typing of 
the first-order variables), so-called triggering variables (which take into account 
functional dependencies between objects in the rules), and a declarative architecture 
for control (§4.2 and [Pachet 2]), in which the control mechanism is expressed in 
terms of meta-rules. 
 
3.2. Rule bases are classes 

 
Rules are organized in rule bases, which are Smalltalk (abstract) classes. Rules appear 
as methods for these classes, in a specific browser, but are compiled by a particular 
Rete compiler for efficiency. These classes serve only as a support for organization, 
and for rule base inheritance. 
Since rule bases are classes, they benefit from all the Smalltalk features for organizing 
classes. In Smalltalk, methods within a class are grouped in protocols, and classes 
themselves are grouped in categories. Categories and protocols are simply used in 
Smalltalk for reference purposes. They may be described as a primitive conceptual 
organization for Smalltalk code. 



Now these organization levels find natural equivalents in terms of rule base 
conceptual organization. As seen in §2.1, it is interesting to use this organization to 
express sequentiality. Categories (of rule bases) and protocols (of rules)  together 
with adequate control strategies, can indeed be used for expressing the sequentiality 
of rules (Cf. examples below §4.2 and [Pachet 2]). 
 
The implementation of rule base inheritance is largely directed by the Rete 
compilation of rules that we will describe now. 
 
3.3. Rule compilation 

 
The main idea of the Rete compilation in Opus [Atkinson&Laursen] is to associate a 
Smalltalk method to every premise and to the conclusion part of an Opus rule. These 
methods are compiled in a separate class, called dynamic class, which is uniquely 
associated to each rule base. 
Then Rete nodes are created for every premise of a rule, and a particular Rete node 
for its conclusion part. The network is used at activation time by propagating tokens, 
which represent sets of objects matching the corresponding premise of the rule. 
Empty tokens are sent initially to input nodes. When a token reaches a terminal 
node, the corresponding rule is added to a conflict set, and is ready to fire. Strategies 
for selecting the appropriate rule to fire are defined in the conflict set.  
The initial Forgy's Rete network is also extended in order to take into account the 
substitution of OPS5 facts by real Smalltalk objects. 
 
3.4. Implementation of the inheritance mechanism 

 
The rule base inheritance mechanism is implemented in two steps : Rete network 
updating (which has to take into account rules coming from superbases) and proper 
conflict resolution strategy, defined in the conflict set.  
 

3.4.1. A mixing of static/dynamic inheritance 
  
Object-oriented languages usually separate static inheritance (decided at compilation 
time) used for instance variables, from dynamic inheritance (decided at execution 
time) used for methods. 
Rules being paralleled to methods, dynamic inheritance comes first to mind. But the 
compilation of a rule leads to two different kinds of compilations : the compilation of 
the rule in the Rete network, and the compilation of the methods implementing the 
various premises and the action part in the dynamic class. 
This leads to a combination of static (for Rete networks) and dynamic (for dynamic 
classes) inheritance. Since dynamic class inheritance is parallel to rule base 
inheritance (see Fig. 2), the inheritance of the methods implementing the rule in the 
dynamic class is the standard Smalltalk (dynamic) inheritance. 
However, because of the nature of rule triggering (unlike methods, rules are not 
looked up), the updating of a Rete network is propagated down to the inheritance 
tree, at compilation time. 
If we suppose a rule base RB, and a sub-base of RB called RB2, compiling a rule in RB 
will result in the compilation of Smalltalk methods in the dynamic class of RB (but 



not in the dynamic class of RB2), and in the updating of both RB's Rete network, and 
RB2's Rete network (see Figure 2). 
 

RB RB's dynamic class

RB RB's dynamic class

subclass of

points to

 
Figure 2. An implementation of the rule base inheritance scheme 

 
3.4.2. Implementing the control strategy  

 
Fireable rules are represented by a class implemented by a couple of instance 
variables : 'terminalReteNode token', where token is a token having passed 
successfully all the nodes of a rule, and terminalReteNode is the node associated 
to the action part of the rule. Once this class is defined, it is easy to represent conflict 
sets, simply as a class whose structure is essentially the list of fireable rules instances. 
 

Object subclass: #OpusFireableRule 
 instanceVariableNames: 'token terminalReteNode' 
 
Object subclass: #OpusConflictSet 
 instanceVariableNames: 'fireableRules' 

 
When a rule is fireable, an instance of FireableRule is added to the list of fireable 
rules as defined by the method addFireableRule:. (This method is actually 
invoked when a token reaches a terminal nodes of the Rete network). 
 
The default strategy is to fire the first rule of the conflict set, as defined in the method 
trigger. The first FireableRule of the list is chosen : 
 

trigger 
 self trigger: fireableRules first 

 
Now, implementing the appropriate semantics for rule base inheritance consists 
simply in ensuring that the fireable rules are sorted in ascending order. The 
following method initializes the set of fireable rules in the conflict set with an 
instance of SortedCollection, as follows : 
  



!OpusConflictSet methodsFor: 'initialize'! 
 
initRules 
 fireableRules := SortedCollection sortBlock: 
      self inheritanceSortingBlock 
   
inheritanceSortingBlock 
 ^[:a :b |  a implementingRuleBase isSubBaseOf: 
   b implementingRuleBase] 

 
The sort block takes two fireable rules as input, and uses the method 
implementingRuleBase, which yields the lowest rule base in which the rule is 
implemented. 
 

4. Examples of rule base hierarchies 
 
Here are two examples of applications of the rule base inheritance mechanism that 
show different aspects of its potential. The reader can fin more details in the 
references. 
 
4.1. Representing default knowledge 

 
Representing default knowledge is a recurrent issue of Artificial Intelligence systems. 
Rule base inheritance is an elegant approximation of a default knowledge 
mechanism. Moreover, rule base inheritance integrates well with the standard notion 
of class inheritance, because it allows the programmer to follow his natural intuition 
of inheritance, that consists in building hierarchies based on a reduced notion of 
specialization. Indeed, a standard use of RBI is to create sub-bases for knowledge 
concerned with sub-classes. If we assume a (general) class representing doors (say 
class Door), we can write a rule base concerned with doors in general (for instance, 
representing the knowledge associated to closing doors), DoorsRules. Now, if we 
refine the notion of doors by creating subclasses (e.g. CarDoor, SlidingDoor), the 
RBI mechanism leads us naturally to refine DoorsRules by creating sub-bases 
(CarDoorRules, SlidingDoorRules) associated respectively to the subclasses of 
Door. 
 
4.2. Building predefined reusable rule bases. 

 
A good example of a library of reusable rule bases is found in the declarative 
architecture for control of NéOpus. In this architecture, the control itself is defined in 
terms of meta-rules. These meta-rules are defined in rule bases called meta-bases. They 
define the control (or activation) of a rule base. The details of their implementation 
will not be described here. However, specifying control in terms of meta-rules is not 
indeed an easy task, and organizing these meta-rules is essential. But the interesting 
characteristics of these meta-bases is that they form a natural hierarchy, and share 
important parts. This can be easily taken into account by the rule base inheritance 
mechanism. A hierarchy of meta-bases was built according to the RBI mechanism. 
Each meta-base represents a particular type of evaluation. An example of the use and 
refinement of the hierarchy can be found in the NéoGanesh system [Dojat&Pachet]. 
This system was designed to control in real-time a ventilator providing respiratory 
help to patients in intensive care units. 



 

5. Extensions 
 
Several extensions to the rule base inheritance scheme as developed here may be 
considered. We indicate here the most important ones. 
 
 Multiple rule base inheritance 
 
The first one is to extend simple inheritance to multiple inheritance. Although 
multiple inheritance is indeed a more powerful mechanism than simple inheritance, 
we did not want to follow this direction. It seemed to us that the main advantage of 
rule base inheritance is it simplicity.  Rule base inheritance simplifies the problem of 
conflict resolution. Multiple rule base inheritance would complicate it, by adding the 
problem of solving multiple inheritance lookup conflicts. 
 
Representing knowledge is indeed a very difficult task, and only simple and clear 
tools can be useful. Using multiple inheritance for rule bases would perhaps be 
useful in some cases, but would also introduce yet another level of complexity that 
we did not want to handle. 
 
 Other control strategies 
 
The proposed control strategy  is not necessarily the only one nor the best. An other 
one could be just the opposite : preferring rules defined in the highest superbase 
(following the intuition of inheritance as found in the Beta language). Or also trying 
to combine rules (thus establishing a parallel with method combination) may 
constitute interesting solutions. Our implementation has been designed so as to 
support various control strategies for rule base inheritance. However, the proposed 
one, because of its simplicity, seems to fit better than more complex ones. 
 
 Applying rule base inheritance in non object-oriented contexts 
 
The rule base inheritance mechanism described here could be implemented in other 
rule-based environments. Our initial motivations were largely directed by the fact 
that in NéOpus, rule bases were implemented by classes. But the mechanism is 
general. In particular it could be applied to other inference systems (O or O+ order), 
in non-object-oriented environments. 
 

6. Conclusion 
 
We have described a transposition of the inheritance mechanism of object-oriented 
language in the world of rule bases. This mechanism allows to represent the notion 
of generality for rules, and has some interesting practical effects, such as the 
factorization of rules, the ability to redefine rules, and a simple and efficient control 
structure. We described an implementation of this mechanism in the NéOpus 
system, and showed practical applications. This mechanism has now proved to be 
useful for building rule bases. It may be considered as a methodological tool as well 



as a programming tool, and thus constitutes a major step towards object-oriented rule-
base programming. 
 

7. References 
 
Alizon F. Huet G. 

Essaim : un environnement de programmation Smalltalk destiné à la construction de systèmes 
experts. Note technique CNET NT/LAA/SLC/299, 1988. 

 
ART 

ART Reference Manual, v 3.0, January 1987, Inference Corporation. 

 
Atkinson R.,Laursen J.  

Opus : A Smalltalk Production System. OOPSLA '87 pp. 377-387. 

 
Brownston L. & al. 

Programming Expert Systems in OPS5. An Introduction to Rule-Based Programming. Addison-
Wesley Publishing Company, 1985. 

 
Carré B., Geib J.-M. 

The point of view notion for multiple inheritance. Proceedings of OOPSLA'90, Ottawa, pp. 312-
321. 

 
Chandrasekaran B. (1) 

Towards a Taxonomy of Problem-Solving Types. The AI Magazine, Winter/Spring 1983, pp 9-
17. 
 

Chandrasekaran B. (2) 
Towards a functional architecture for intelligence based on generic information processing 
tasks. Proc. of the Tenth IJCAI, Milan (Italy), Vol. 2, 1987, pp 1183-1192. 

 
Corby O. 

BIB en SMECI. Proceedings of RFIA'87, Paris, pp. 581-586. 
 

Dojat&Pachet 
Dojat M., Pachet F. Representation of a Medical Expertise Using the Smalltalk environment: 
putting a prototype to work. Proceedings of TOOLS 7, Dortmund, Germany, March 31-April 2, 
(1992). 

 
Forgy C. L. 

Rete : A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem. Artificial 
Intelligence Vol 19 (1982) pp 17-37. 

 
Goldberg A., Robson D. 

Smalltalk-80 : The Language and its Implementation. Addison-Wesley, 1983. 

 
Pachet F. (1) 

NéOpus mode d'emploi. Rapport LAFORIA n° 14/91, Paris 1991. 
 

Pachet F. (2) 
Du bon usage des méta-règles en NéOpus. Rapport LAFORIA n°16/91, Paris 1991. 

 

Pachet F. (3) 
Reasoning with objects : the NéOpus environment, East EurOOpe, Bratislava, Septembre 91. 



 

Pachet F. (4) 
Représentation de connaissances par objets et règles. Thèse de l'Université Paris VI. Paris, 1992. 
A paraître. 


