
Pachet, F. Perrot, J.-F. Report on the NéOpus System Experience. OOPSLA Workshop on 
EOOPS (Embedded Object-Oriented Production Systems), Portland, october 1994. 
 

 

Report on the NéOpus system experience 
 

François Pachet, Jean-François Perrot 
 

LAFORIA 
Institut Blaise-Pascal, Boite 169 

4, Place Jussieu 
75252 Paris Cedex 05, France 

E-mails: pachet/jfp@laforia.ibp.fr 
 
 
Abstract 
 
The NéOpus system integrates production rules with Smalltalk objects in a seamless 
way, avoiding the so-called "impedance mismatch problem" by proposing a rule 
formalism which does not constraint the objects and expressions used in condition or 
action parts. We outline here the basic asumptions underlying the design of the Opus 
and NéOpus systems, and stress on two original features of NéOpus that proved 
particularily interesting: rule base inheritance, and the declarative architecture for 
control. 
 

1. Introduction 
 
In 1987 Atkinson and Laursen showed how first-order, forward-chaining rules could be 
accommodated in Smalltalk-80 in an intimate and seamless way [2]. Their system, called 
Opus, can be viewed as OPS-5 revisited from a Smalltalk perspective. Opus compiles 
rules using an object-oriented realization of Forgy's Rete network. Among its most 
salient features are: 
   (1) that rules apply to all Smalltalk objects, thus opening the way to innumerable 
applications ;  
   (2) that rules are treated as Smalltalk methods and rule bases as abstract classes, which 
permits reusing most of the Smalltalk environment; 
   (3) that fireable rules, hence conflict sets, appear as first-class objects, thereby giving a 
firm grip on firing control problems. 
They suggested several developments, notably a scheme for the inheritance of rule bases 
deduced from the standard class inheritance mechanism of Smalltalk. The first author 
reimplemented Opus with several improvements as part of his doctoral research [11], 
[12], [14], [15]. He carried out the rule base inheritance proposal [13]. A number of 
experiments were conducted with his system, called NéOpus. We outline here the basic 
characteristics of the Opus and NéOpus systems, and stress on two original features of 
NéOpus : rule base inheritance, and the declarative architecture for control. 
 

2. Compilation of rules in Opus and NéOpus 
 

2.1. Rules that apply to any object 
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The main issue from the point of view of applicability is generality, i.e. the possibility to 
define rules applicable to objects that have been defined independently, typically in an 
already existing application. In our view, this is the main achievement of Opus. The 
NéOpus experience bears out the validity of this approach. Rule-based components have 
effectively been added to independently designed systems, see e.g. [11], [17]. 
From the technical point of view, the fact that every object has a well-defined 
communication interface (defined by its class) can be turned into an advantage by 
deciding that rules will be expressed entirely with expressions of the underlying 
language (Smalltalk-80), without specific linguistic constructs. Conditions are 
expressions with boolean value, action parts are procedure calls (via messages). This 
freedom of expression, however, has to be paid back with by the "modified" problem (Cf. 
section 3.2). 
 

2.2. Rule bases as abstract classes 
  
One is naturally tempted to declare that rules will be first-class objects, and rule bases as 
well. Following Atkinson & Laursen, we take a less naïve approach and stress the 
predominantly textual nature of rules and rule bases: we treat rule bases as abstract 
classes, subclasses of class RuleBase. As with all Smalltalk classes, we endow them with 
object properties and methods defined in their metaclasses, which are subclasses of the 
metaclass RuleBase class. 
Of course, the Smalltalk compilation process is redefined for these classes. To each rule 
base is associated a Rete network. Each rule compilation in a given rule base will result 
in an updating of the rule base’s network, according to standard Rete policy, i.e. one Rete 
node per condition. One extra node is also created for the action part of the rule (called a 
terminal node). The main idea of the Opus compilation is to associate a Smalltalk method 
to every condition and to the conclusion part of an Opus rule. Those methods are 
compiled in a separate class (called dynamic class), which is uniquely associated to each 
rule base, and are associated to the corresponding Rete nodes. 
 
The methods associated with the premisses of a rule will implement the test required for 
the tokens propagated in the network. The method representing an action part will be 
associated with so-called terminal nodes, which will be used for representing fireable 
rules. 
 

3. Rete compilation in NéOpus : main drawbacks and limitations 
 
The freedom of expression of NéOpus has several positive and negative consequences 
that we outline here. 
 

3.1 The tradeoff between expressivity and efficiency 
 
NéOpus allows maximum expressivity, in order to fully respect encapsulation. Indeed, 
using objects in rules is interesting only if arbitrary methods may be used to specify the 
matches, and not only so-called "accessing" methods. In a way, the whole "integration" 
issue starts when conditions and actions are not limited to instance variable accessing 
methods. 



Pachet, F. Perrot, J.-F. Report on the NéOpus System Experience. OOPSLA Workshop on 
EOOPS (Embedded Object-Oriented Production Systems), Portland, october 1994. 
 

 

But the fact that any expression may be used in condition as well as in action parts has to 
be paid by the programmer, in the form of the modified statement.  
For example, here is a simple rule taken from the "Monkey and banana" example [4]. 
Comments are between double quotes. 
 
holdObjectNotCeiling   "the rule name" 
  | Monkey m. PhysicalObject o |  "the variable declaration" 
 o weight = #light.  "a condition" 
 o isNotOn: #ceiling.  "an other one" 
 m isOn: #floor. 
 m holdsNothing. 
 m isAt: o at. 
actions 
 m take: o.    "an action" 
 o modified. s modified. "two modified statements" 

 
In the current version of NéOpus, it is the programmer's responsibility to declare which 
objects have been modified after the action part of the rule is executed (here the monkey 
AND the objects are modified after the expression "m take: o" is evaluated). In the case of 
complex methods used in condition or action parts, this modified statement may be 
complex to write, and sometime even impossible (Cf. the "Petri net example" in [14]). 
 

3.2 Rete efficiencies and inefficiencies 
 
In NéOpus, there is no (and there cannot be) "discrimination" network. The Rete network 
is limited to the joint network. Like in the standard Rete algorithm, the left memory 
stores all the tokens that successfully passed the previous conditions. Unlike in the 
standard Rete algorithm, the right memory stores all the instances of the classes of the 
"free" variables appearing in the rule under the form of a dictionary (free variable / set of 
objects). 
Since premisses are expressed as arbitrary Smalltalk expressions, it is not possible to 
compute the exact set of nodes which are actually concerned by the modification of an 
object. This may of course involve a lot of unnecessary updates of the network when an 
object is declared as "modified". Accordingly, another classical optimization of Rete, 
which consists in factoring out shared premisses is impossible in NéOpus, for the same 
reasons. 
 
This is still an open issue in NéOpus, as well as in most of EOOPS. However, there are 
two arguments to support our approach: 
 1) even with our "limited" Rete compilation, the comparison between NéOpus 
and totally interpreted systems (such as Essaim [1]) with similar knowledge bases ([9]) is 
in favor of NéOpus for large rule bases. 
 2) our experience in hybrid rule bases never led us to significant problems with 
inefficiency. In other words, although the efficiency of NéOpus is clearly not optimal, 
this does not seem to be a bottleneck for developping large EOOPS rule bases (our 
largest rule base - it deals with diagnosis and treatment of heart disease - contains 300 
rules). 
 

4. Rule base inheritance 
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Since rule bases are implemented as abstract classes, we have to define a status for the 
inheritance relation between rule bases. A particular inheritance scheme for rule bases 
has been developed, called rule base inheritance or RBI (see [13] for details).  This 
mechanism transposes the intuition of inheritance as found in class-based languages, i.e. 
a restricted specialization mechanism, in the world of rules. 
This transposition of class inheritance in the world of rule bases consists simply in 
redefining the compilation process to mimick method inheritance : when a rule base A is 
defined as as "subbase" of a rule base B, all the rules of B are added to A. This 
aggregation is performed at compile and definition time. Each time a rule is compiled in 
a rule base, the compiler propagates the compilation in the sub bases of the rule base, 
recursively.  
This transposition of inheritance has two interesting effects: 
 - It gives rule names an important status, relating to the "overriding mechanism". 
A sub base A of a rule base B may override an inherited rule r, simply by having a rule 
called r. Once again, this overriding mechanism is realized at compilation time, but the 
effect is strictly the same as for methods: inherited rules which are overriden are simply 
ignored. 
 - The real "intuition" of inheritance is represented by a particular control strategy 
(called RBI strategy). This hard-wired strategy consists, in case of conflict, in "preferring" 
a rule in the lowest subbase. 
  
 
This mechanism proved very useful in two ways: 
 1) it helps organizing large knowedge bases, by providing a means of reusing 
rules in a customary fashion. 
 2) It helps reduce the complexity of control specification. The hierarchy of meta 
bases takes into account the "static" relations of precedence between rules. To represent 
more sophisticated control specification, the declarative architecture (cf next section) is 
used. 
 

5. A declarative architecture for control 
 
Many systems have emphasized the need for explicit and separate representation of 
control (see e.g. [5], [6], [7]) or the reflexive aspect of meta level architecture [3]. 
Following this tradition, we designed a declarative architecture for specifying control 
that take full account of OO programming and of the various features of NéOpus, 
including Rule Base Inheritance. 
In NéOpus, fireable rules and conflict sets are represented by first-class objects. By 
adequately defining the behavior of these classes, we can program several control 
strategies. In our framework, this is operated in a natural way by sending adequate 
messages to the conflict set as object. 
In simple cases, the choice of the rule to be fired is made via a fixed criterion applied to 
the conflict set itself, e.g. choosing the most constrained rule, or the newest one, etc. In 
such a case, a method of class ConflictSet does the job. It is then activated in a loop by a 
method addressing the rule base as object, i.e. defined in the metaclass of class RuleBase 
or of one of its subclasses. This basic loop (a method called proceduralEvaluate) is easy 
to define in a procedural manner, since all the pertaining information is accessible from 
the rule base. 
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5.1 Control Objects 
 
It is often necessary to base the choice of the rule to be fired on quite elaborate 
information, such as a history, a trace of rule firings, an agenda, a tree of goals etc. The 
additional features needed might be added to class ConflictSet (via subclassing). But this 
would overload it with information that may be quite complex and foreign to its primary 
role. We propose to formalize this information without interfering with the definition of 
rule bases and conflict sets, by means of separate entities which we call control objects. 
This is not a really new idea. in fact, well-known control strategies such as subgoaling 
make use of specific objects that clearly fall into our category of control objects. We 
systematize this idea with the full backing of object-oriented programming. 
    
The main idea behind our notion of a control object is to introduce an independent object 
that will contain all the necessary information pertaining to the control of a rule base. 
This primary object, called an Evaluator, represents the present state of the reasoning 
process. This representation can carry more or less details, according to the structural 
complexity of the evaluators involved. In its most elementary form, an evaluator has two 
attributes: status and stopCondition. Status takes discrete atomic values (e.g. #start, 
#loop, #end), whereas stopCondition is a boolean expression (in Smalltalk, a block). This 
minimum definition is sufficient to represent the standard activation of a rule base, as 
defined in the procedural architecture. The interesting aspect of this notion is two-fold. 
Firstly, evaluators being independent objects, they are reusable and application-
independent. Secondly, the advantage of having a separate class appears when 
specifying more complex strategies: class Evaluator is designed to be specialized by 
subclassing, and the specialization's will not interfere with the rule base or conflict set 
definitions. More complex control strategies usually require the introduction of new data 
structures. These structures will be represented by attributes of particular subclasses of 
Evaluator, following the pure object-oriented style. 
 
For example, managing the notion of rule pack whose sequence is declared in an agenda 
is now straightforward. The class EvaluatorWithAgenda is introduced as a subclass of 
Evaluator. It has an additional attribute that contains an instance of class Agenda. Class 
Agenda is itself defined by, say, a list of rule packs to evaluate sequentially, and an index 
to the current rule pack. This new class of evaluator will be reusable by all the rule bases 
requiring this kind of control (see e.g. [8]). The same scenario applies for any control 
strategy that requires additional structure, such as: managing a history or a trace of rule 
firing, selecting rules according to priority lists, and so forth. 
 
In many applications, control information has to be somehow integrated in domain 
knowledge. A typical example is the so-called subgoaling technique presented e.g. by 
Brownston for the Monkey & Bananas problem [4]. Specific objects called goals are 
introduced and maintained together with the domain objects. They are organized in a 
tree-like hierarchy. Most of the rules have at least one condition which deals with a goal, 
and many rules have conclusions that create or modify goals. In our architecture, the 
objects necessary for managing subgoaling are naturally represented by adequate 
subclasses of evaluators. In the Monkey & Bananas problem, a class 
EvaluatorSubGoaling will be defined, as a subclass of Evaluator, that adds the attributes 
necessary for managing father/son relationships between goals and their subgoals. 
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5.2. Talking about a fireable rule : assertions 
 
However, the choice of the rule to be fired may require to know more about the fireable 
rule than simple syntactic information. The main thing to know about a rule is the 
consequence of its firing on the simulated world. But this information is not easily 
accessible, essentially because of the encapsulation principle. Indeed, as we saw in 
section 2.3, rule action parts are represented either as texts or compiled methods. Neither 
of these representations is suitable for manipulation by an inference engine. In other 
words, because attributes are hidden by the communication interface, the system does 
not know anything about what a rule does before it actually fires it. 
 
Our solution to this problem is to introduce a new syntactic construct that gives the 
programmer the ability to state the intention of a rule. This construct, called an assertion 
is basically a representation of a fact about the world (in the logical sense). It is expressed 
as a Smalltalk expression (between brackets {}) and is manipulated as an instantiated 
syntactic tree. Each NéOpus rule text has an additional field (the finalState field) that 
contains such an assertion. When a fireable rule is created, the assertion is instantiated 
with the objects that match the rule. 
 
For example, here is a rule taken from the M&B rule base. This rule states that if a 
monkey and a physical object verify a set of conditions, then the monkey takes the object 
(method take:). The finalState part of the rule declares that in this case, the monkey will 
hold it, by the assertion {s isHolding: o} : 
  

holdObjectNotCeiling 
  | Monkey s. PhysicalObject o |  
 o weight = #light. 
 o isNotOn: #ceiling. 
 s isOn: #floor. 
 s holdsNothing. 
 s isAt: o at. 
actions 
 s take: o. 
 o modified. s modified. 
finalState 
 {s isHolding: o} 

 
Those assertions may now be used for specifying more elaborate control strategies, 
involving dynamically created control objects. Since assertions are also boolean 
expressions, they may be used for representing the stopCondition of evaluators, instead 
of the former blocks. 
 

5.3. Substitution - regression 
 
We further propose to maintain these control objects by means of a separate set of rules, 
called control rules or metarules. These rules will deal only with control objects and with 
the conflict set. They constitute a separate rule base, called metabase, which completely 
specifies the control strategy. 
We propose an architecture for managing control objects that is completely substituted to 
the standard procedural activation (the method proceduralEvaluate). In this scheme, a 
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metabase is associated to the current rule base to be activated. The activation of the rule 
base consists simply in activating (recursively) its metabase. The basic inference loop, 
choice of rules to be fired, and more generally the management of control objects will all 
be defined by rules of the metabase. More precisely, the firing of a metarule operates 
either a modification of the control model (universe of control objects) and/or the firing 
of a domain rule via the conflict set of the rule base being activated. 
Of course, this architecture raises a regression problem : how is the metabase itself 
activated ? This problem is simply solved by forbidding loops in the control tree : a rule 
base is either activated in a procedural manner or by the activation of its metabase. A 
metabase may not be activated by itself. 
 

6. Discussion 
 
We described the design of the NéOpus system, emphasising on its freedom of 
expression, and stressed on two original features of NéOpus: rule base inheritance and a 
declarative architecture for control. Although this freedom of expression is paid by 
several inherent inefficiencies, we show how this freedom may be used to write complex 
(control) knowledge bases.  
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